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Lightpath Arrangement in Survivable Rings to
Minimize the Switching Cost

Tamar Eilam, Shlomo Moran, and Shmuel Zaks

Abstract—This paper studies the design of low-cost survivable one wavelength-division-multiplexing (WDM) channel (wave-
wavelength-division-multiplexing (WDM) networks. To achieve |ength) per link. We assume a static setting in which lightpaths
survivability, lightpaths are arranged as a set of rings. Arrange-  4a gesigned and constructed in the setup time of the network.
ment in rings is also necessary to support SONET/SDH protection Si th it bled by this technol bstantiall
schemes such as 4FBLSR above the optical layer. This is expected ince the capaci y_ena ed by 'S, echnology su- S e_m lally
to be the most common architecture in regional (metro) networks €Xceeds the one provided by conventional networks, it is impor-
[9]. We assume that we are given a set of lightpaths in an arbitrary tant to incorporate the ability to recover from failures into the
network topology and aim at finding a partition of the lightpaths  optical layer.Survivabilityis the ability of the network to re-
to rings adding a minimum number of lightpaths to the original .oyer from failures of hardware components. In this paper, we

set. The cost measure that we consider (number of lightpaths) tudy the desi f ivabl tical | o Lis th
reflects the switching cost of the entire network. In the case of a study the design or a survivable optical layer. Qur goal IS the

SONET/SDH higher layer, the number of lightpaths is equal to the  construction of a low-cost survivable set of lightpaths in a given
number of add-drop multiplexers (ADMSs) (since two subsequent topology. We assume that an initial set of lightpaths (designed

lightpaths in a ring can share an ADM at the common node). according to the expected communication pattern) is given, and
We prove some negative results on the tractability and approx- \ye are targeted at augmenting this initial set with additional

imability of the problem and provide an approximation algorithm - . . . .
with a worst case approximation ratio of 8/5. We study some spe- lightpaths such that the resulting set will guarantee survivability.

cial cases in which the performance of the algorithm is improved. FOr this purpose, we definesarrvivability conditiorthat the so-
A similar problem was introduced, motivated, and studied in [9] lution must satisfy and aost functionaccording to which we
and recently in [13] (where it was termedminimum ADM problem).  evaluate the cost of the solution found.

However, these two works focused on a ring topology while we gen- We focus on theing partition survivability condition In-

eralize the problem to an arbitrary network topology. formally, this condition states that lightpaths are partitioned to
Index Terms—Optical network design, SONET add/drop multi-  rings, and that all lightpaths in a ring traverse disjoint routes
plexers (ADMs), SONET rings, wavelength-division multiplexing in the underlying topology. The motivation for the ring parti-
(WOM). tion survivability condition is two folded. First, it supports a
simple and fast protection mechanism. In the case of a failure,
|. INTRODUCTION the data are rerouted around the impaired lightpath, on the al-
ternate path of lightpaths in its ring. The demand that all light-
_ o _ paths in one ring traverse disjoint routes guarantees that this
O PTICAL networks play a key role in providing high bandygtection mechanism is always applicable in the case of one
width and connectivity in today’s communication worldegjlure. Second, a partition of the lightpaths to rings is neces-
and are currently the preferred medium for the transmissionégry in order to support a higher layer in the form of synchronous
data. While first-generation optical networks simply served aptical network (SONET)/synchronous digital hierarchy (SDH)
transmission medium, second-generation optical networks pgéif-nealing rings (e.g., 4FBLSR protection mechanism). While
form some switching and routing functions in the optical dqy js anticipated that shared-mesh restoration schemes will dom-

main. In these networks, routing is performed by usliggt-  inate in the core network, regional (metro) networks will con-
paths A lightpath is an end-to-end circuit-switched commuinye to deploy ring restoration (e.g., [9]).

nication connection that traverses one or more links and use@\nother issue is determining the cost of the design. We

assume that ainiform costis charged for every lightpath,
namely, the cost of the design is the number of lightpaths in it.

Manuscript received February 14, 2001; revised July 29, 2001. An extendbliS cost measure IS justified for two reasons. First, in regional
abstract of this work appeared in DISC 2000. The work of S. Zaks was supporafea networks, it is reasonable to assume that the same cost

in part by the fund for the promotion of research at the Technion, by Technigg|| pe charged for all the Iightpaths ([16]) Second every
V.P.R. fund, and by the Bar-Nir Bergreen Software Technology Center of E !

cellence, Department of Computer Science, Technion. The work of S. Mor gh_tpath is terminated by a pair_ Of_”ne terminals (LTS_)- In
was supported in part by the fund for the promotion of research at the Technt@gional (metro) networks, thewitching costof the entire

and by the Bernard Elkin Chair in Computer Science. _ network is dominated by the number of LTs (port cost), which
T. Eilam was with the Department of Computer Science, The Technion, 32000

Haifa, Israel. She is now with the IBM T. J. Watson Research Center, Yorktod? proportlonal to the number of Ilghtpaths ([9]) In the case of

Heights, NY 10532 USA (e-mail: eilamt@us.ibm.com). a SONET/SDH higher layer, the line terminals are add-drop
S. Moran and S. Zaks are with the Department of Computer Science, Tﬂ?ﬂjltiplexers (ADI\/IS). Two subsequent Iightpaths in a ring

Technion, 32000 Haifa, Israel (e-mail: moran@cs.technion.ac.il; zaks@cs.tech-

nion.ac.l). can share one ADM at the common node. Thus, the number

Publisher Item Identifier S 0733-8716(02)00157-9. of lightpaths in a ring partition arrangement is equal to the

A. Background

0733-8716/02$17.00 © 2002 IEEE



EILAM et al: LIGHTPATH ARRANGEMENT IN SURVIVABLE RINGS 173

number of ADMs, and minimizing the number of lightpathsings, a randomized approximation scheme for the problem, and

is equivalent to minimizing the number of ADMs, whichsome heuristics and simulation results.

corresponds to the port cost of the network. Other works in this field refer to different models than what
We assume that the network topology is given in the form efe considered. Reference [10] presents methods for recovering

a simple graph. A lightpath is modeled as a [§tr, ), where from channel, link, and node failures in first-generation WDM

ID is a unique identifier and” is a simple path in the graph.ring networks with limited wavelength conversion. Reference

A designD for a set of lightpaths” is a set of lightpaths that [15] assumes that lightpaths are dynamic and focuses on man-

subsumeg’ (i.e.,C C D). A design is termed &ng partition agement protocols for setting them up and taking them down.

if it satisfies the ring partition condition. Theostof a design ~ When the set of lightpaths is static, the survivability is

is the number of lightpaths in it (namely, coBX) = |D|). We achieved by providing disjoint routes to be used in the case of a

end up with the following optimization problem, which we ternfailure. References [12] and [1] study this problem, but the ob-

theminimum cost ring partition desigiMCRPD) problem. The jective is the minimization of the total number of wavelengths

input is a graph# and an initial set” of lightpaths inGG. The and not the number of lightpaths.

goal is to find a ring partition desig® for C' with minimum Reference [2] offers some heuristics and empirical results for

COst. the following problem. Given the physical topology and a set of

connections requests (i.e., requests for lightpaths in the form of

B. Results pairs of nodes), find routes for the requests so as to minimize
We prove that the MCRPD problem is NP-hard for everthe number of pairél, ¢) consisting of a routed request (i.e., a

family of topologies that contains cycles with unboundelightpath)! and a physical link for which there is no alternative

length, e.g., rings (see formal definition in Section IIl). Apath of lightpaths between the endpointd af the case that

similar proof only for the family of rings recently appearedails. Note that this survivability condition is less restrictive than

in [13]. We prove that there is no polynomial time approxithe ring partition condition that we consider in this paper.

mation algorithmA that constructs a desigh that satisfies A related problem in this area with a similar goal of mini-

Cos{D) < OPT+ n® for any constantx < 1, wheren is the mizing the electronic multiplexing cost in WDM networks is

number of lightpaths in the initial set and OPT is the cost of araffic grooming (see, e.g., [5], [3], and [11]).

optimal solution for this instance (unlegs= NP). Fora = 1,

a trivial approximation algorithm constructs a solution within

this bound.
We present aing partition algorithm (RPA) that finds in For our purposes, lightpaths are modeledcasnections,

polynomial time a ring partition design for every given instanc&here every connection has a unique identifier IG) and is

of MCRPD (if it exists). We analyze the performance of RPAssociated with a simple pafc) in the network R is termed

and show that for the general case (arbitrary topology), RRAerouting function Note that two different connections might

guarantees Cosb) < min(OPT+(3/5)-n,2n) < (8/5)OPT, have the same route. We assume that routes of connections are

wheren and OPT are as defined above. We analyze the perfaiways simple (i.e., they do not contain loops). We say that

mance of RPA also for some interesting special cases in whieto connections ardisjointif their routes are disjoint, namely,

better results are achieved. they do not share any edge and any node that is not an end
This paper is structured as follows. We first present the modabde of both connections. We use the terms “connections” and

followed by a description of the MCRPD problem (Section Il):lightpaths” interchangeably.

We then present and discuss the results; the focus of Section IIA virtual path P is a sequencéuy, c1,v2, €2, . - -, Cky Vk+1 ),

is the negative results, while Section IV presents and analyzeiserec; is a connection with endpoints andwv;;1 (for ¢ =

the approximation algorithm and the special cases. Last, we .. k). P is termed avirtual cycleif v;1 = wxy1. We de-

summarize and discuss future research directions (Section \ipte byS(P) the set{c;, ca, ..., c; } of connections in”. The

routing functionR is naturally generalized to apply to virtual

C. Related Works paths (and cycles) by concatenating the corresponding paths of
This paper [9] studies ring partition designs for the speciabnnections. A virtual path (or cyclé) is termedplain if R(P)

case where the physical topology is a ring. In fact, the MCRPB a simple path (or cycle) in the network.

problem is a generalization of this problem for arbitrary topolo- A designD for a set of connection€’ in a network& is

gies. Reference [9] also motivates the focus on the numberaoget of connections that subsun@gi.e., C C D). A ring

lightpaths rather than the total number of wavelengths in tipartition designD for a set of connection§’ satisfiesD =

design. Some heuristics to construct ring partition designslincrS(F;), where everyF;,¢ € T, is a plain virtual cycle

rings are given and some lower and upper bounds on the cast S(P;,) N S(P.,) = 0 for everyt;,to € T. The partition

(as a function of the load) are proved. The paper also consid€fs }.cr is termedthe ring partition of the desig. For a de-

lightpath splitting—a lightpath might be partitioned to two orsign D, cos{D) = |D|, i.e., the number of lightpaths in the

more lightpaths. It is shown that better results can be achiewdskign.

by splitting lightpaths. Theminimum cost ring partition desigoroblem is formally
Recently, [13] presented more results on the same problerfined as follows. The input is a graghand a set of connec-

(termedminimum ADM problemonly for ring topology. The tionsC'in G. The goalis to find a ring partition design for C

paper presents a similar NP-hardness result for the family thht minimizes co$f)). The corresponding decision problem

[Il. MODEL AND DEFINITIONS
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Fig. 1. The MCRPD problem.

is to decide for a set of connectionsin G and a positive in-  Recall that load. of an edgec is the number of connec-

tegers whether there is a ring partition desi@ihfor C such that tions (or circular arcs) in the sét that usee, and let/; be the

cos{D) < s. maximum load of an edge (for a given instance= (G, C)).
MCRPD; denotes the version of the problem in which th#Ve say that an instancg is full if it satisfiesl. = I for

input is restricted to a familg of networks (e.g., the familg ~ €very edge. Given an instanée= (R&,,,C), for everyt >

of rings). I, fully(I) = (R,,,, CUC") is afull instance with load, which
Fig. 1is an example of the MCRPD problem, where (a) shoW&sconstructed frond by adding connetctilons of length one. For-

an instance with an initial set of size four and (b) shows a soltally, ¢’ = U= C,, whereC, = U._\" " {(z,z + 1)},

tion that consists of two rings and three new connections. Tf¥ everyz = 0,...m — 1 (mod m). . )
cost of the solution is thus seven. For an instancd = (R,,, F) of the circular arc coloring

problem and a positive integdt, we construct the instance
fullg(I) = (R,,,C) of the MCRPD; problem, whereZ' =
IIl. THE MCRPD FROBLEM F U ¢’ (and the set’” contains the appropriate connections
of length 1). Note that we can assume tliatsatisfieslc <
In this section, we begin our study of the MCRPD probleni < || since otherwise the answer for this instance of the
by providing some negative results regarding the tractability agticular arc coloring problem can be determined immediately.
approximability of the problem. Note that|C| < K - m; thus the construction is polynomial
We say that a family of topologie® = Gy, Gs, ... has the (sinceK < |F|andm < 2-|7]). See Fig. 2 for an example of
unbounded cycl¢UBC) property if there exists a constaht the transformation. N _
such that for every,, there exists a grapli;, € G with size Proposition 1:The set? can be partitioned intd¢
O(n*) that contains a cycle of length Examples for families qlasses pf pair-wise r_10n|ntersect|ng arcs iff there is a ring parti-
of topologies having the UBC property are the fanfilyof ring 10N designD for C with costD) = |C]. .
topologies and the family of complete graphs. Proof:In one direction, assume that there is a ring

Theorem 1: The MCRPL; problem is NP-hard for every partition dgsignD — Ur5(Cy) for C' such that c_:oél_D) =1Cl.
family of topologiesg havingj the UBC property Clearly, this situation where the cost of a design is equal to the

Prof. We prove Treorem 1 i wo Steps. I Step 1, w28 1 SeLof connectonts (e 1o ew connectons re
prove that MCRPR is NP-hard, and in Step 2, we extend th P y

Sull (1)) and only if the number of rings i® is equal to the
result to every family of topologies with the UBC propertym K . . o :
Step 1:We prove that the MCRPR problem is load of the instance, i.47°| = K in our case. Such a solutidn

NP-hard b | al ¢ ion f biecul induces a partition af to K classes of pairwise nonintersecting
-hard by a polynomial transformation from taecular arc 5.4 in the obvious way, since routes of connections in the same
coloring problemwhich is known to be NP-hard [8].

: g - virtual cycleC; do not intersect.

A graph( is termed aircular arc graphifits nodes canbe |, the other direction, consider a partition.fto K classes
placed in a one-to-one correspondence with a/Seff routes (1% such that in every class all the arcs do not intersect.
(paths) in a ring in such a way that two nodesCoire joined  Sincefull (1) is a full instance with loads, and since”” con-
by an edge iff the corresponding two routes intersect. tains only paths of length one, it can be easily seen that from

The circular arc coloring problem is formalized as followsuch a partition ofF into K classes one can construct a ring
(definitions are adapted from definitions in this paper)sét partition of C simply by completing every class to a cycle by
F of circular arcs in a ringR,,, is a set{Ag, A1,...,4,-1}, using paths (of length 1) fro8”. We get a ring partition design
where eachy; is an ordered paifa;, b;) of positive integers, D for C with costD) = |C|. [ |
with a; # b;. For our needs, there is no difference between Step2: LetG be afamily of topologies with the UBC prop-
circular arcs and connections. Note that we can assume alseiity. We prove that the MCRRPproblem is NP-hard by a poly-
this case thatn < 2n. The circular arc coloring problem is nomial transformation from the MCRBD(which is NP-hard
formally defined as follows. Given a palr= (R,,,, F), where by Step 1).

F is a set of circular arcs in the rin@d,.,, and a positive integer Let I = (R,,, C) be an instance of the MCRRDproblem.
K, canF be partitioned intd¥ classes so that no two arcs inLetG,; . € G be the graph i§ that contains a cycle of length
the same class intersect? (by the definition of the UBC property, such grafh  existsin
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A) (B)
Fig. 2. (a) Aninstancé of the circular arc coloring problem. (b) The instarfa#i. (1) of the MCRPD: problem.

G). We construct an instandé = (G;, ,C") of the MCRPL; Proof: We prove Theorem 2 for the case of a ring. The
problem in the obvious way such that there is a one-to-one corpgeof is generalized to every family of topologies having the
sponds (which preserves the intersection pattern) between p&iB&C property by using the same transformation as in Step 2
from C in R,,, and paths in the rind?,, (of sizem), which is a in the proof of Theorem 1. Assume to the contrary that there is
subgraph of; . a constantyr < 1 and a polynomial approximation algorithm

Clearly, for every ring partition desigh for C there is a A such that for every instancé of the MCRPD; problem,
ring partition designD’ for ¢’ with the same cost. In the otherA(I) < OPT(I) + n®. We show a polynomial algorithr’
direction, letD’ = U, S(P!) be aring partition design fap’.  that optimally solves the MCRP® problem, in contradiction
Note that by the construction, all connections in the&ebave Wwith Theorem 1.

routes that are paths in the ridgj,,, but new connections might  Given an instancel = (R,,,C) (where |C| = n)
have any route iid7; _ . It is clear that we can construct fraf¥  of the MCRPD; problem, we construct a new instance
a ring partition desigrD such thatall connections inD have [ = (R,,,C"), where|C’| = n-n®,m' = m -n”, andg

routes on the ring and Cq#?) < Cost D) as follows. We can s a constant whose value will be determined later as follows.
take the induced subgraph partition bf (see Section IV-C) The ring R, is divided into n® sectionsJy,...,J,s_ 1,
and complete every virtual path in it (whose route must beeach of sizen. The section/, contains the interval of nodes
path on the ring) to a virtual cycle by adding one new connection-¢, ..., (m+1)-t—1, foreveryt = 0,...,n". The set of con-
with the complement route on the ring. By the observations irectionsC” is the union of2” sets of connections, where all the
Section IV-C, CodtD) < CostD’). sets are isomorphic to the original $gtout shifted in steps of
We note that the definition of the UBC property can be to different sections on the ring. Formally! = U?io_lcj,
relaxed so as to include families of topologies in which faghereci = {(af,b{) |i=0,...,n— 1}7a§' =a; +j-m,and
everyn > 0, there is a graph of siz&(n*1) that includes a ;i — b; + j - m, for everyj € 0,...,n° — 1. See Fig. 3 for
cycle of length®(n**) for some constant&’;, K». The same zn example of the construction.
proof holds for the relaxed definition with slight technical Recall that a canonical ring partition design satisfies that the
extensions. B number of new connections in every virtual ring is at most one.
We continue by studying approximation algorithms foBy the discussion in Section IV-C, for every ring partition de-
the MCRPD problem. A trivial approximation algorithm issign there is an egivalent cononical ring partition design, there-
achieved by adding for every connectiena new disjoint fore without loss of generality we can consider only canonical
connection betweeris endpoints. Note that if there is no suching partition designs. Consider a canonical ring partition de-
route, then there is no ring partition design for this instancsign D = urS(P;) for C’. Note that in canonical ring partition
The resulting ring partition design will include virtual cyclesdesigns, every attachment point of two connections in a virtual
each with two connections, one of which belongs to the initizing is an endpoint of a connection in the original set. Since
setC. For an algorithm4, we denote byA(I) the value of a every connection id’ has its two endpoints in one of the (dis-
solution found byA for an instancd and by OPTY) the value joint) sections of size» on the ring, all the connections in every
of an optimal solution. Clearly, TRI) = 2n < OPT(I) +n, virtual cycleP;,t € T, have their endpoints in the same section.
for every instancd = (G, C) of MCRPD, wherdC| = n. A Formally, ]
question that arises naturally is whether there exists an approx©bservation 1: Consider a canonical ring partition design
imation algorithmA for the MCRPD problem that guaranteed) = UrpS(C,) for the instancel’ = (R, ,C’). For every
A(I) < OPT(I) + n~ for some constantt < 1. We give a virtual cycleC;,t € T, there existg,j € 0,...,n° — 1, such
negative answer for this questions (for every constart1).  that every connection = (x,y) € S(C;) satisfiesj - m <
Theorem 2:Let G be any family of topologies having thez,y < j -m + (m — 1).
UBC property. Then for any constant < 1, MCRPL; has Proof: By the above discussion. [ |
no polynomial-time approximation algorithrhthat guarantees It follows that.D can be partitioned inte® sets of virtual cy-
A(I) < OPT(I) + n™ (unlessP = NP). clesC;, j = 0,...,n”, according to the endpoints of their con-
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(A /> ®)

section 1

We get
A'(I) < OPT(I) + nPHDa=5,

Fixing /3 such tha? > («)/(1 — «), we getn(PTDa=8 < 1;
thus A’ actually finds an optimal solution for every instanke
in contradiction with Theorem 1. We conclude that there is no
constanty < 1 for which there is an approximation algorithm
that guaranteed(/) < OPT(!) +»n® (unlessP = NP). =

The next question is whether there is an approximation algo-
rithm A for MCRPD that guarantee4(/) < OPT(I) + k - n,

2, and wherek < 1 is a constant (clearly, the trivial algorithm TRIV
L 18, @ satisfies this bound fok = 1). In the sequel we answer this
question positively fok = (3/5).

section 2

Fig. 3. (a) The input instancd, where m = 4,n
C = {(1,2),(3,1)}. (b) The new instancd’, where 3
multiplication by two.

nections; the famil¢; includes all virtual cycles with endpoints

in the jth section on the ring. Every family; naturally induces IV. A RING-PARTITION APPROXIMATION ALGORITHM

a canonical ring partition desigh; to the original seC' as fol- In this section, we provide a polynomial approximation
lows: D; = {(a,b)|(m-j+a,m-j+b) € S(P), P €C;}. algorithm, thering partition algorithm, for the MCRPD
Claim 1: OPT(I’") = OPT(I) - n". problem. We analyze RPA and show that it guarantees

Proof: On one direction, one can easily see that from RPA(/) < min(OPT(J) + (3/5) - n,2n) for every instance
canonical ring partition desigP to the original set, we can | (wheren is the number of connections in the initial set).
construct a (canonical) ring partition desigr for C’ such that we also study some special cases in which better results are
Cos{D’) = CostD) - n” simply by multiplying it byn” inthe  zchieved.
same manner as we constructed the instahdeom 1. Thus,  |nformally, the first step of the algorithm is to connect as

OPT(I') < OPT(—_T) ’ ”_'8- . ) . many endpoints of pairs of lightpaths with a common node as
On the other direction, by Observation 5, there is an optimgdgsiple. This is done by constructing a certain graph for every
canonical ring partition desigh” = UzS(1) to C'. Such a o4 and finding a maximum matching in it. We get a set of
design can be partitioned, as explained aboveﬁtsubseps of chains (and cycles) of lightpaths. The problem is that some of
conne?tlons. We have to show that j {éa’ b)[(m - J + the chains (and cycles) of lightpaths may traverse nonsimple
gézlidnjf:rlb)Bﬁt i(llsDtl)s’ gteaer ffésnltsh:an cgﬁstricr;ir;gn p;rrfgf ?op aths in the physical topology [see example in Fig. 4(a)]. Even
every connéctiom: — (a,b) € C, there is a connec',[iod _ if the path .traversed by a chain of Iightpaths is simple, it might
(m-j+a,m-j+b) € C". 'i'hus inb’ there is a virtual cyclé® be impossible _to cpmplete it to a cycle in the physmal topolpgy
such tha;t’ e S(FP,). From tﬁe dis’cussion above, sinDégics’, [see exgmple in Fig. L.l(b)]' The_second step is Fhen to partition
canonical P, € ;. It follows thatD; is a ring partition design any c.hr?un or cycle of lightpaths into a sgt of chains sych that all
. . nh , remaining chains and cycles traverse simple paths in the phys-
for the original SeE- Now, S'?Cezv‘:O CostD;) = CostD"), ical topology that can be completed to a cycle. The last step is to
WeT%et %PTI)]; 7t1h = IOPT%JH, that truct f mf.l actually complete every chain to a cycle by adding one lightpath
€ ldea of the aigon at we construct 1o per chain. This is done by finding a disjoint path in the physical

should be clear by now. Given an instanfe= (R,,,C) . i .
of the MCRPD; problem, the algorithmd’ first constructs topology using standard 'breadth first search (BFS) techniques.
Unless stated otherwise, we assume an arbitrary network

the instance’ = (R,,,C’). It then executesi on the new loavC — (V. E). wherel — 4 an initial
instance. LetD’ be the ring partition design found by. Let tOPOIOgYG = (V,E), whereV = {v1,...,v,}, and an initia
set of connection§ in G, where|C| = n. We assume that

us assume thab’ is canonical (otherwisel’ can construct in e . '
polynomial time a canonical ring partition design frai). e routeR(c) of every connectior in C'is a subpath in some

Then I inducesn? ring partition designgDo, ... D, s_, for ;imple cyclg inC_? (observe that thi; assumption can be ve.r?fied
C such thatz?ial CostD;) = Cos(D’). The output o4’ is |dn polygofmlalctlme, and without it there is no ring partition
a ring partition desigrD; for C,¢ € 0,...,n” — 1, such that esignl) for C).

Cos(D,) = Min}”io_lCos(Dj). Clearly, for a constant, A’ A Preliminary Constructions

runs in time polynomial in the size dt ) - .
poly We define some preliminary constructions that are used later

Claim 2: A'(I)-n” < A(I"). L . .
Proof: Immediate  from the discussion, SinCefor the definition of RPA. Recall that a virtual pafh is a se-

, -  aronfol ' ~ _guence{vi,ci,va,C,. .., Ck, Vit1), Wheree; is a connection
Al = Coiﬁf);) = Minj_,"CostD;) and A(I') = with endpointsy; andwv; 1 (fori = 1,...,k). P is termed a
Cost(D’) =3, CostDj;). B virtual cycleif v; = vx41. The pair of connections; andc;;

Now are termedttached at node;; in P (or simply, attached in

A(I) 0P < A(I) P_). If Pis avirtual cycle, then_the paif, andc; are also con-
) . sideredattached (at node;.1) in P.

< OPT(') + (n-n”) Let C be a set of connections i&, and letv be a node in

= OPT{I) - n” + (n-n®)". G. We denote byC(v) C C the set of connections for which
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(A) (B)
-—= A lightpath
B An attachment point of a pair of lightpaths

Fig. 4. (a) A chain of lightpathséa, b) that traverses a nonsimple path in the physical topology. (b) A chain of lightpaths that cannot be completed to a
simple cycle in the physical topology.

End-node graphs and matchings A subgraph-partition
¢ 5
e e el
A P /, ‘ 1 !
1 o« o 3 , N\, . i
[P | 4,113
2e——9 4 !
&——® Ap edge in the matching ‘g _____________________________ 5
- A connection
W An attachment point

Fig. 5. A graph, a set of connections, a matching set (where only matchings in nontrivial end-node graphs are shown), and the equivalent stibgraph parti

v is an endpoint. Let) be the symmetric binary relation overD = U7 S(F;) is actually a subgraph partition f@ (where

the setC of connections that is defined as followsi, c2) € Q@ G = G., G, = ). In general, the virtual paths and cycles in a
iff ¢; andc, are disjoint and there exists a simple cycleGn subgraph partition might not be plain.

that contains both routé8(c; ) andR(c;). Then@ definesan  Note that there is a one-to-one correspondence between
end-node grapiNG, = (NV,,, NE,) for every nodev, where matching sets and subgraph partitions as follows. Consider a
the set of nodesvV,, is C(v) and NV E, is the set of edges, asmatching se€ = {NE] ,NE/ ,...,NE/ }and asubgraph
follows. For every pair of connections, c; € C(v),{¢ci,c;} € partitionG = G, U G. for a set of connection§' in G. € andg

NE, iff (¢;,¢;) € Q. A matchingfor a graphG = (V, E) are termeaquivalenif the following condition is satisfied. For

is a sett” C F such that no two edges ifi’ share a common every pair of connections;, co € C, there exists a subgraph
endpoint. Anaximum matchinig a matching of maximum size. g, ¢ € G, such that; ande, are attached at nodg in g, iff

We denote by matdlér) the size of a maximum matching fof. ~ {c;,co} € NEJ .

A matching in an end-node graph N@r a nodev describesa  For a matching sef we denote byGe the (unigue) equiv-

set of attachments of pairs of connections (which satigfyn  alent subgraph partition. Similarly; is the (unique) equiva-

v. lent matching set for a given subgraph partit@nClearly, for
Consider a grapli’ = (V, E), whereV = {vy,v2,...,vn}, amatching sef, &, = £. As an example, see Fig. 5.

and a set of connectiors in G. A matching sefor G andC

is a set of matching€ = {NE, ,NE, ,...,NE, }, where : o :

NE, C NE,, is amatching inlthe enzd-node grap]r} NGsee B.Ring Partition Algorithm (RPA)

Fig. 5 as an example). We present a ring partition algorithm that finds a ring parti-
A subgraph partitiorg = G, UG,, for a set of connections, tion design for a set of connectionsin G in four main stages.
is a partition of the connections{fiinto virtual paths and cycles First, the end-node graph NGis constructed and a maximum

(which are also termesubgraph¥as follows. Recall tha§(g) matching in it is found for every nodg,¢ = 1,...,m. This

is the set of connections that are included in a virtual path (defines a maximum matching s€t Then, the equivalent sub-
cycle)g. G, is a set of virtual pathgj. is a set of virtual cycles, graph partitiong = G is constructed.

C = UyegS(9), andS(g1) N S(g2) = 0 for everyg:, g» € G. Next, we partition every nonplain virtual path or virtual cycle
Note that the ring partitiod P, };-r of a ring partition design in G to plain virtual paths. In addition, we make sure that for
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every virtual path” € G, there is a simple cycle i& in which  endpoints of pairs of disjoint lightpaths. Last, the construction
R(P) is a subpath. Lastly, the subgraph partition is completed the equivalent subgraph partition is straightforward.

to a ring partition by adding for every virtual path € G a The functionAdjustPartitionpartitions every virtual path and
connection that completes it to a plain virtual cycle. Followingirtual cycle in the subgraph partition using the functfearti-

is the description of RPA followed by an informal descriptiotion. After the partition, every virtual path is plain and can be
of the operations taken by its main functions. completed to a simple cycle i&. Every virtual path is then
checked, andifitis actually a cycle (i.e., its endpoints are equal),
then it is inserted int@..

The task ofPartition is to partition a virtual path (or cycle)
to a set{ P, ..., I} of plain virtual paths, such that for every
P;, R(F;) is a subpath in some simple cycleGh The function
cycleEzists(P) returnstrue if there is a disjoint path i7 be-
tweenP’s endpoints. The functionycle( P) returnstrue if the
endpoints of a given virtual path are equal.

Lastly, the functionCompletePartitiorcompletes every vir-
tual path inG,, to a virtual cycle by adding a new disjoint con-
nectionP¢ betweenP’s endpoints.

1: RPA(G,C)

2: (Gp,Ge) := ConstructPartition(G, C)
3. (Gp,Ge) := AdjustPartition(G,, G, G)
4: D := C U CompletePartition(G,, G, G)
5: return D

6: ConstructPatition G, C)

7. foreveryi € 1,....,m

8 construclNG,,, = (NVUZ.,NEUZ.)

9 find maximum matching\fE’Uz_ C NE,,
10: €:={NE, ,NE,,,...,NE] }

11: construct the equivalent subgraph-partitign = (G,, G.) C. Correctness and Analysis
12: return (Gp,G.)

13: AdjustPartition(G,,, G.., G)
14: foreveryl> C G, UG,

15 G. := G. \ {P} /" incaselis acycle"/
16: C, := Partition(P)

170 Gy = (Gp \{PHUCP
18: foreveryl’ € Gp

19:  if (eyele(P?)) then

20: Gp :=Gp\{P}

21 Go = Go U{Pr}

22: return (Gp, Go)

23: CompletePartitioG,,G., G)
24: D' =0

25: foreveryl” C Gp

26:  P° := findDisjoint(P)
27 D' := D u{P}

We first present four observations that are used for the proof
of the main theorem (Theorem 3). Observation 2 shows a con-
nection between the sizes of matching sets and the equivalent
subgraph partitions.

Observation 2:Let & = {NE, ,NE, ,...,NE] } be a
matching set for a set of connectiofisin G = (V, E), where
|C] = nandV = {wvi,...,u,}. LetGs = G, U G, be the
equivalent subgraph partition. Thé®,| =n — 3", |[NE,, |.

Proof: Let anattachment poinin G- be an ordered pair
({e1, 2}, v), where the connections ande, are attached at
nodewv in some subgraph € G¢. Clearly, the number of unique
attachment points in a virtual paf, € G, is one less than the
number of connections iR, i.e.,|S(P,)| — 1. The number of
unique attachment points is equal |8 P,.)| if P, € G.isa
virtual cycle. It follows that the number of unique attachment

points is equal t@3_ ;. [S(g)l) — |Gp| = n — |G,[. Now by

28: return D’ .. :
29: Partiton(P) the definitions, there is a one-to-one correspondence between
30 Assume thaf® = (1, ey, vs, ca, -, vi, co, viss) attachment points and edges in the matchings. It follows that the

number of attachment points is equal to the number of edges in
the matching set, i.en — |G,| = >/~ |[NE] |. [
Let G(D) be a subgraph partition for a set of connectidhs

31l: Cp := @;first := 1
32: fori := 1tol

33 P i= {Ufirst, Clirsts - Ciy Vi) . . .
34 if (—(plain(I") A cyeleBrisis(I”))) then .TheprOJect|ong(D)|.c of G(D) on a set of 9onnect|on§ cD

_ is a subgraph partition faf, which is obtained frong;( D) by
35: Cp :=Cp U {{Vfirst, Clirsts - Cim1,vi) ) . ; i
36 firet i i d.ele'u.ng allthe connect|on§that are nodirgi.e., al! the connec-
37 1ol Cp U {0 simes cfivars oty vt} tions inD\ C). Note that a virtual path (or cycle) (D) might

be cut by this process into few virtual paths. Similarly déD)
be a matching set fab. Then theprojection&(D)|c of £(D)
The functionConstructPartitiorfirst constructs the end-nodeon a set of connections C D is a matching set fof’, which is
graphs. The algorithm to construct the end-node graphsoistained from€(D) by deleting from the end-node graphs (and
straightforward and is not elaborated. It consists of determinittge matchings) nodes that correspond to connectiod® \n”
for every pair of connections with a common endpoint whethand the edges that meet them. ClearhyG (@) and&(D) are
they are disjoint and whether the path that is formed kguivalent, then so a@(D)|c and&(D)|c.
concatenating them can be completed to a simple cyct&.in  Consider a ring partition desigh) = U7 S(P;) for a
This could be done using standard BFS techniques (see, esgt, of connectiong. We denote byG(D) the ring partition
[7]). ConstructPartitionthen finds maximum matchings in the{ P, };,cr of D, and by&(D) the equivalent matching set for
end-node graphs. Efficient algorithms for finding maximund (i.e., £(D) = &g(py). The subgraph partitiog(D)|c and
matchings in graphs can be found in, e.g., [14] (for a survee matching sef(D)| for the initial set of connection§’
see [17, pp. 580-588]). Finding maximum matching in thare termedthe induced subgraph partitioand the induced
end-node graphs corresponds to connecting as many as possitaeching set,respectively (note that they are equivalent).



EILAM et al: LIGHTPATH ARRANGEMENT IN SURVIVABLE RINGS 179

Observation 3 associates the cost of ring partition designs withit can be proved that Observation 3 holds for canonical ring-

the sizes of the induced matching sets and subgraph partitiopartition designsD’ with equality, i.e., cogtD’) = n + |G,|.
Observation 3:Let D = U, S(P:) be a ring par- ltis therefore sometimes convenient to consider for simplicity

tition design for a set of connection§€’ in a physical only canonical ring-partition designs.

topology G = (V, E), where|C| = n and|V| = m. Let We are now ready to prove the main theorem.

ED)|c ={NE, ,NE, ,..., NE, }andG(D)|c = G,UG. Theorem 3:RPA({) < min(OPT(I) + (3/5) - n,2n), for

be the induced matching set and subgraph partitio®forhen everyl = (G, C), where|C| = n.

cos{D) > n+1(Gp| =2n— 3" [NE, |. Proof: For the analysis, we denote b} andg! the sets

Proof: By the definitions, CostD) = >, S(F;). Let G, andg. right after the execution o€onstructPartition,and

new( ;) be the number of new connections in the virtual cyclby gﬁ andg? the corresponding sets right after the execution of

Py ie., new ;) = S(P)N(D\ C). Clearly, CostD) =n+ AdjustPartition ]

> ter NEW(F;). Consider now the induced subgraph partition We now examine the partition procediRartition. Recall that

G(D)|c = G,UG,. Recall thatitis obtained fror? by deleting the end-node graphs are constructed with respect to the relation

all the new connections. In this process, a virtual cycle in the rirdg, which istrue for a pair of connections; and ¢ iff their

partition might be cut into few virtual paths. Clearly, the numbewoutesR(c; ) andR(c2) are disjoint and there is a simple cycle

of such virtual paths for each virtual cycle is at most the numbtrat contains both routes (as subpaths). Consider a virtual path

of new connections iniit. It follows thad@,| < >, ., new(F);, P = (vi,c1,v2,¢2,...,v_1,0,0) € g;. SinceP is a vir-
thus CostD) > n + |Gp|. By Observation 2n + |G,| = 2n —  tual path in the equivalent subgraph partiti@s, it holds that
> |[NE, |. Note that strict inequality occurs when two new(c;, c;41) € Q, foreveryi = 1,...,1 — 1. Let Cp be the set of
connections are attached in one of the virtual cycles. m virtual paths which is the output of PartitioR). By the above
A maximum matching sets a matching set¢ = discussion, and by the definition Bértition, at most one virtual
{NE, ,...,NE] } for a set of connection€, such that path inCp contains less than two connections. Such a virtual
the matchingNE,’Uz_' is a maximum matching for the end-nodepath can be only the last one, which contains the conneegtion
graphNG,,, for everyi = 1,...,m. Recall that matof?) Letnp = |S(P)] (i.e., the number of connections in the virtual
is the size of a maximum matching fé¥. Observation 4 is a pathP). Letmp = |Cp| (i.e., the number of plain virtual paths
lower bound on the value of an optimal solution. that are the result of applying the partition procedureg)nit
Observation 4: Every ring partition desigi for C satisfies follows thatmp < [np + 1/2].
costD) > 2n — > matcNG,,) (wheren andm are de- ~ Now consider a nonplain virtual cycle € G1. Then, by the
fined as above). same considerationsyp < |np+1/2|, wherenp andmp are

Proof: Let D = U7 S(P;) be a ring-partition design defined similarly.
for C. Note that every two connections that are attachedLet G’ C G! andG” C G! be the sets of nonplain virtual
in a virtual cycle P,,t € T, in the design satisfy the re-cycles with, respectively, odd and even number of connections
lation @, i.e., they are disjoint and there is a simple cyclafter ConstructPartition Note thatCompletePartitioradds one
that contains both routes. Clearly, the same holds also foew connection for every virtual pati € QI%. We get
the induced subgraph partitiog(D)|c and matching set

(since we only delete connections). Consider the equivalent RPA(I) = |G| +n
matching set&(D)l« = {NE, ,NE/ ,...,NE! }. np 1 np
It follows that NE., is actually1 a mgtching in the = Z o T3t Z (?)
end-node graphNG,,, for ¢ = 1,...,m, and thus Pede Pege
INE, | > match(NfUz.). It /follows, fromnS)bservation 3, that + Z <”7P + %) +n
Cos(D)' > 20— >t |_NE,U7_| Z 20— > i, match NG, )m Peay
Consider a ring-partition desigh = U,c7.S(F;) for a set of 30 1 1
connectiong” in G. Let new( F;) be the number of new connec- < o> + QIQQI + 3 |g;,| .
tionsinS(F;) (i.e., connections if (P,)N(D\C)). A canonical
ring-partition design satisfies that néi) < 1 foreveryt € T.. Observe that a nonplain virtual cycle @}, contains at least

Note that it is always possible to construct from a given ring-paieur connections, since otherwise clearly there are two consec-
tition designD a canonical ring-partition desigh’ such that utive connections that are not disjoint in the cycle, which is
Cos(D’) < CostD) as follows. LetG(D)|c = G, U G. be not possible by the definition of the algorithm. It follows that
the induced subgraph partition 6. To construct a canonical |G.| < (n/5). We get RPAI) < n + (3/5) - n + (1/2)|G}].

ring partition designD’ with at most the same cost, we comNow, by Observation 4, we can show that QP> n + |g;|

plete every virtual path i, to a plain virtual cycle by adding (since in the first step RPA finds maximum matchings in the
one new connection. (This is always doable since every virtuaid-node graphs). Thus, REA < OPT(I) + (3/5) - n.

path inG, is plain and is included in some simple cycled). Observe that RPA constructs a canonical solution, i.e., there

From the discussion above, CaBt) = n + |G,| < Cos{D). is at most one new connection in every ring. Clearly, there is at

Observation 5 follows. least one connection from the initial set in every ring. It follows
Observation 5:If there is a ring partition design for a setthat RPAI) < 2n. [ |

of connectiong” in G, then there is a canonical ring-partitionNote that since ORT) > n, this is actually better than an
design with minimum cost. 8/5-approximation.
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The time complexity depends on the exact format of the inpfdrtunately, we actually proved in Theorem 1 that the MCRPD
for the algorithm and the data structures that are used in ordeptoblem is NP-hard for every family of topologies that con-
represent the physical topology, the set of connections, and thims cycles with unbounded length (e.g., rings). Since trees do
auxiliary combinatorial constructions (i.e., the end-node graphet support ring partition designs, this implies that the problem
and the subgraph partition). It is clear, however, that this timeis NP-hard for every family of topologies that is of interest in
polynomial in the size of” andG. It is well known that it takes this setting. This observation motivates the question of finding
O(\/m - |E]) time to find a maximum matching in a graphpolynomially solvable classes of instances of the problem when
G = (V, F) ([14]) and that it take®)(| E|) time to find whether taking into account not only the topology of the network but also
two paths are disjoint, or whether there exists a disjoint patie initial set of connections.

between a given path’s endpoints. For special topologies, theseheinduced graphGe = (IVe, IE¢) for a set of connec-
tasks can be significantly simpler. For instance, clearly in thnsC in G is the subgraph off that includes all the edges and
ring physical topology case, every plain virtual path can be comodes of@ that are used by at least one connectiofiin

pleted to a plain virtual cycle; thus the relatiQncan be simpli- A natural question is whether applying restrictions on the in-
fied to Q(c1, c2) = disjoint(cy, c2). The end-node graphs areduced graph suffices to guarantee efficient optimal solution to
bipartite, and finding maximum matchings in bipartite graphs {e problem. We answer this question negatively by showing
considerably easier ([17]). Also, to find a disjoint path betweeRat the problem remains NP-hard even for the most simple case
the endpoints of a given simple path is trivial. In any case, f@fhere the induced graph is a chain.

the applications of RPA for the design of optical networks, time Theorem 4: The MCRPD problem is NP-hard even if the

efficiency is not crucial since the algorithm is applied only in thiyxduced graph for the set of connectiafisn G is a chain (or a
design stage of the network, and it is reasonable to invest sogeg of chains).

preprocessing time once in order to achieve better network de- Proof: See [6]. ]

signs. Next we show that if, in addition to an induced graph with no
Some practical considerations for using the RPA in real nefycles, the network topology satisfies a certain condition (with

works are due. Note thatin some “bad” cases @BF(3/5)-n  respect to the initial set of connections), then RPA finds a min-

might be larger thans2, in which case the RPA will not out- imum cost ring partition design.

perform the trivial algorithm. (Recall that the trivial algorithm Theorem 5: RPA(I) = OPT(I) for every instance

simply adds one new lightpath for every lightpath in the original = (@, ), which satisfies the following two properties.

set.) From the description of the RPA, itis clear that this poor re- . )

sult will occur in the following two cases: 1) if there are no pairs 1) NO CyclesThe induced graph I6 = (IVc, 1Ec) is a

of lightpaths that share a common endpoint or 2) if every pair of _ forest. o

lightpaths with a common endpoint violates tfisjointnesor 2) CompletionFor every plain virtual patti” over, there

thecompletionconditions (namely, they do not traverse disjoint 1S & SImple cycle iz that contains the route @?, R(P),

routes in the underlying topology or their route cannot be com- &S @ subpath.

pleted to a simple cycle). However, especially in regional area  proof: See [6]. n

networks, it is unlikely that this will be the case, there will be We discuss below some cases in which the conditions in The-
many nodes that are end-nodes of more than one lightpath, @féim 5 are satisfied. A perfectly connected graph (PC) satisfies
itis expected that many pairs of lightpaths can be completedit every simple path in itis included in a simple cycle. Clearly,
cycles (a common physical topology in regional area networlf graph is perfectly connected, then the completion property is
is a tree of rings in which any two disjoint lightpaths on theatisfied for every initial set of connections. This property also
same ring can be completed to a cycle). A simple example g@arantees that there is a ring partition desigfor everyini-
illustrate the behavior of RPA relative to the trivial algorithm isig| set of connection€. A natural question is to characterize
aring(0,...,n — 1) with n/2 disjoint lightpaths of length 2 in perfectly connected graphs. We give a full characterization of
the original set (e.g., between nodes 0 and 2, 2 and 4, etc.). Hegfectly connected graphs by proving that a graph is PC iff it is
trivial algorithm will add one new lightpath for every lightpathrandomly Hamiltonian. Randomly Hamiltonian graphs are de-
in the original set, while RPA will connect every two consecUined and characterized in [4].

tive lightpath; thus, will add one new lightpath in the case that Theorem 6: A graph@ is perfectly connected iff it is one of

n is odd and no new lightpaths otherwise. Therefore, the cafk following: a ring, a complete graph, or a complete bipartite
of the design constructed by RPA is 50% less than the desigiaph with equal number of nodes in both sets.

constructed by the trivial algorithm. Proof: See [6]. n
We note that RPA does not have to be modified in order to
give an optimal result for instances that satisfy the conditions
in Theorem 5. However, we can benefit from recognizing in ad-
In this section, we study some special cases of the MCRRBNce such instances since in these cases, the procdedjuss-
problem. Due to space limitations, proofs are omitted in thigartition can be skipped. The recognition can be done easily for
section. specific topologies (e.g., rings) and in polynomial time in the
1) Optimal Cases:Since the MCRPD problem is NP-hardgeneral case.
(Theorem 1), it is natural to try and find restricted families of 2) Bounded Length Connections in Ringéle analyze the
topologies for which it can be solved in polynomial time. Unperformance of RPA in the case of a ring physical topology

D. Special Cases
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when there is a bound on the length of connections in the initi@sult is a ring-partition design with minimum cost. We have

set.
Theorem 7: RPA(I) < min(OPT(I)+ (3k/2m)-n, 2n), for

every instancd = (R,,,C) of MCRPDg, if for every connec-

tion ¢ € C,length(R(c)) < k, for any constank, 1 < k <
m — 1.

Proof. See [6]. [ |

shown an approximation algorithm for this problem that guar-
antees Co$D) < min(OPT+ k - n, 2n), wherek = (3/5), n
is the number of lightpaths in the initial set, and OPT is the
cost of an optimal solution. Moreover, we have shown that un-
lessP = NP, there is no approximation algorithrh for this
problem that guarantees CasY) < OPT+ n<, for every con-

Note that RPA does not guarantee that the same bound ongtenta < 1. The main open question here is whether the con-
length holds also for connections in the ring partition design thstiantk can be improved.
is constructed. Indeed, the case where the length of connectionRing-partition designs are necessary for the near-term future
in the solution must be bounded is inherently different, and ttoé optical networks since they support a SONET/SDH higher

main results in this paper do not hold for it.
3) Approximations Based on the Loadlet theload /. of

layer network that is configured in the form of rings. However, it
is claimed that the core network architecture will have to change

an edgec € F be the number of connections @ that use and that SONET/SDH will give way to a smart optical layer. In-
e, andl; = max.cgl.. Recall the definition of an induced corporating new technologies, it might be possible to reroute

graph IG = (IV,IEc) for a set of connection§’ in G

lightpaths dynamically. In these cases, other less restrictive sur-

(Section IV-D1). We add to this definition a weight functiorvivability conditions might be considered. While less restrictive
w:IEc — N that assigns a weight for every edge that is equalirvivability conditions might be less expensive to implement,
to its load. Although in the worst case the load of an instantiee price to pay is of a more complex protection mechanism that
is equal to the number of connectiod, usually it is substan- is executed for every failure. The challenge here is two-fold:
tially smaller. Therefore, it is interesting to bound the cost offirst, to study the gain in the cost of the network when less re-

design as a function of the load.

strictive survivability conditions are considered, and second, to

For this purpose, we assume that the route of every virtugldy the algorithmic and technological issues of implementing
path is a subpath is some simple cycleGn(i.e., the comple- protection mechanisms in the optical domain based on these
tion property). LetV = 3~ __ . l.. Now consider the weighted conditions.

induced graph IG = (IVe,IEc, We) for C. Let Ty, be a
maximum-weight spanning tree in ¥§6Wr,, ., = > . I
andWeg_r, .. = W — Wg . Following is a description of a

modified version of RPA, termed RPANe temporarily remove
all connections that use edges that are ndl}in.
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find a ring partition design for the remaining set of connectiong,rach for some useful references on randomly Hamiltonian
(using RPA). Lastly, we reinsert the removed connections a Paphs.

complete each one of them to a virtual cycle by adding a new
connection. We prove that the cost of the resulting ring partition
design is larger by at most®;_7; , than the optimal one.
(Note that an improved heuristics might be to repeat the samel-ll
process with the remaining set of connections.)

Theorem 8:RPA(I) < OPT({) + 2Wqg_r._ ., for every
instancel = (G, C) that satisfies the completion property.

Proof. See [6]. [ |

For the case of a ring physical topology, it holds RFA <
OPT(I) 4+ min.cg .. A slightly better bound is given for this
case in [9].

Note that there might be a set of connecti6ifs,, with size
smaller tharW¢_, .. such that the induced graph for the re-
maining setC'\ C};,, is a forest. However, we prove in Proposi- [g]
tion 9 that finding a minimum set of connections whose removal
leaves us with an induced graph with no cycles is NP-hard.

Theorem 9: Find a minimum set of connectiod® C Cina
graph@ such that the induced graph for the remaining$g”’
does not contain cycles is NP-hard.

Proof: See [6]. [ |

(2]
(3]

(4]
(3]

(7]
(8]

(9]

V. SUMMARY AND FUTURE RESEARCH [10]

In this paper, we studied the MCRPD problem for which 1
the input is an initial set of lightpaths in a network and the[ ]
goal is to augment this set by adding lightpaths such that the
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