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Lightpath Arrangement in Survivable Rings to
Minimize the Switching Cost

Tamar Eilam, Shlomo Moran, and Shmuel Zaks

Abstract—This paper studies the design of low-cost survivable
wavelength-division-multiplexing (WDM) networks. To achieve
survivability, lightpaths are arranged as a set of rings. Arrange-
ment in rings is also necessary to support SONET/SDH protection
schemes such as 4FBLSR above the optical layer. This is expected
to be the most common architecture in regional (metro) networks
[9]. We assume that we are given a set of lightpaths in an arbitrary
network topology and aim at finding a partition of the lightpaths
to rings adding a minimum number of lightpaths to the original
set. The cost measure that we consider (number of lightpaths)
reflects the switching cost of the entire network. In the case of a
SONET/SDH higher layer, the number of lightpaths is equal to the
number of add-drop multiplexers (ADMs) (since two subsequent
lightpaths in a ring can share an ADM at the common node).

We prove some negative results on the tractability and approx-
imability of the problem and provide an approximation algorithm
with a worst case approximation ratio of 8/5. We study some spe-
cial cases in which the performance of the algorithm is improved.

A similar problem was introduced, motivated, and studied in [9]
and recently in [13] (where it was termedminimum ADM problem).
However, these two works focused on a ring topology while we gen-
eralize the problem to an arbitrary network topology.

Index Terms—Optical network design, SONET add/drop multi-
plexers (ADMs), SONET rings, wavelength-division multiplexing
(WDM).

I. INTRODUCTION

A. Background

OPTICAL networks play a key role in providing high band-
width and connectivity in today’s communication world

and are currently the preferred medium for the transmission of
data. While first-generation optical networks simply served as a
transmission medium, second-generation optical networks per-
form some switching and routing functions in the optical do-
main. In these networks, routing is performed by usinglight-
paths. A lightpath is an end-to-end circuit-switched commu-
nication connection that traverses one or more links and uses
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one wavelength-division-multiplexing (WDM) channel (wave-
length) per link. We assume a static setting in which lightpaths
are designed and constructed in the setup time of the network.

Since the capacity enabled by this technology substantially
exceeds the one provided by conventional networks, it is impor-
tant to incorporate the ability to recover from failures into the
optical layer.Survivability is the ability of the network to re-
cover from failures of hardware components. In this paper, we
study the design of a survivable optical layer. Our goal is the
construction of a low-cost survivable set of lightpaths in a given
topology. We assume that an initial set of lightpaths (designed
according to the expected communication pattern) is given, and
we are targeted at augmenting this initial set with additional
lightpaths such that the resulting set will guarantee survivability.
For this purpose, we define asurvivability conditionthat the so-
lution must satisfy and acost functionaccording to which we
evaluate the cost of the solution found.

We focus on thering partition survivability condition. In-
formally, this condition states that lightpaths are partitioned to
rings, and that all lightpaths in a ring traverse disjoint routes
in the underlying topology. The motivation for the ring parti-
tion survivability condition is two folded. First, it supports a
simple and fast protection mechanism. In the case of a failure,
the data are rerouted around the impaired lightpath, on the al-
ternate path of lightpaths in its ring. The demand that all light-
paths in one ring traverse disjoint routes guarantees that this
protection mechanism is always applicable in the case of one
failure. Second, a partition of the lightpaths to rings is neces-
sary in order to support a higher layer in the form of synchronous
optical network (SONET)/synchronous digital hierarchy (SDH)
self-healing rings (e.g., 4FBLSR protection mechanism). While
it is anticipated that shared-mesh restoration schemes will dom-
inate in the core network, regional (metro) networks will con-
tinue to deploy ring restoration (e.g., [9]).

Another issue is determining the cost of the design. We
assume that auniform cost is charged for every lightpath,
namely, the cost of the design is the number of lightpaths in it.
This cost measure is justified for two reasons. First, in regional
area networks, it is reasonable to assume that the same cost
will be charged for all the lightpaths ([16]). Second, every
lightpath is terminated by a pair of line terminals (LTs). In
regional (metro) networks, theswitching costof the entire
network is dominated by the number of LTs (port cost), which
is proportional to the number of lightpaths ([9]). In the case of
a SONET/SDH higher layer, the line terminals are add-drop
multiplexers (ADMs). Two subsequent lightpaths in a ring
can share one ADM at the common node. Thus, the number
of lightpaths in a ring partition arrangement is equal to the
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number of ADMs, and minimizing the number of lightpaths
is equivalent to minimizing the number of ADMs, which
corresponds to the port cost of the network.

We assume that the network topology is given in the form of
a simple graph. A lightpath is modeled as a pairID , where
ID is a unique identifier and is a simple path in the graph.
A design for a set of lightpaths is a set of lightpaths that
subsumes (i.e., ). A design is termed aring partition
if it satisfies the ring partition condition. Thecostof a design
is the number of lightpaths in it (namely, cost ). We
end up with the following optimization problem, which we term
theminimum cost ring partition design(MCRPD) problem. The
input is a graph and an initial set of lightpaths in . The
goal is to find a ring partition design for with minimum
cost.

B. Results

We prove that the MCRPD problem is NP-hard for every
family of topologies that contains cycles with unbounded
length, e.g., rings (see formal definition in Section III). A
similar proof only for the family of rings recently appeared
in [13]. We prove that there is no polynomial time approxi-
mation algorithm that constructs a design that satisfies
Cost OPT for any constant , where is the
number of lightpaths in the initial set and OPT is the cost of an
optimal solution for this instance (unless NP). For ,
a trivial approximation algorithm constructs a solution within
this bound.

We present aring partition algorithm (RPA) that finds in
polynomial time a ring partition design for every given instance
of MCRPD (if it exists). We analyze the performance of RPA
and show that for the general case (arbitrary topology), RPA
guarantees Cost OPT OPT,
where and OPT are as defined above. We analyze the perfor-
mance of RPA also for some interesting special cases in which
better results are achieved.

This paper is structured as follows. We first present the model,
followed by a description of the MCRPD problem (Section II).
We then present and discuss the results; the focus of Section III
is the negative results, while Section IV presents and analyzes
the approximation algorithm and the special cases. Last, we
summarize and discuss future research directions (Section VI).

C. Related Works

This paper [9] studies ring partition designs for the special
case where the physical topology is a ring. In fact, the MCRPD
problem is a generalization of this problem for arbitrary topolo-
gies. Reference [9] also motivates the focus on the number of
lightpaths rather than the total number of wavelengths in the
design. Some heuristics to construct ring partition designs in
rings are given and some lower and upper bounds on the cost
(as a function of the load) are proved. The paper also considers
lightpath splitting—a lightpath might be partitioned to two or
more lightpaths. It is shown that better results can be achieved
by splitting lightpaths.

Recently, [13] presented more results on the same problem
(termedminimum ADM problem) only for ring topology. The
paper presents a similar NP-hardness result for the family of

rings, a randomized approximation scheme for the problem, and
some heuristics and simulation results.

Other works in this field refer to different models than what
we considered. Reference [10] presents methods for recovering
from channel, link, and node failures in first-generation WDM
ring networks with limited wavelength conversion. Reference
[15] assumes that lightpaths are dynamic and focuses on man-
agement protocols for setting them up and taking them down.

When the set of lightpaths is static, the survivability is
achieved by providing disjoint routes to be used in the case of a
failure. References [12] and [1] study this problem, but the ob-
jective is the minimization of the total number of wavelengths
and not the number of lightpaths.

Reference [2] offers some heuristics and empirical results for
the following problem. Given the physical topology and a set of
connections requests (i.e., requests for lightpaths in the form of
pairs of nodes), find routes for the requests so as to minimize
the number of pairs consisting of a routed request (i.e., a
lightpath) and a physical link for which there is no alternative
path of lightpaths between the endpoints ofin the case that
fails. Note that this survivability condition is less restrictive than
the ring partition condition that we consider in this paper.

A related problem in this area with a similar goal of mini-
mizing the electronic multiplexing cost in WDM networks is
traffic grooming (see, e.g., [5], [3], and [11]).

II. M ODEL AND DEFINITIONS

For our purposes, lightpaths are modeled asconnections,
where every connectionhas a unique identifier ID and is
associated with a simple path in the network. is termed
therouting function. Note that two different connections might
have the same route. We assume that routes of connections are
always simple (i.e., they do not contain loops). We say that
two connections aredisjoint if their routes are disjoint, namely,
they do not share any edge and any node that is not an end
node of both connections. We use the terms “connections” and
“lightpaths” interchangeably.

A virtual path is a sequence ,
where is a connection with endpoints and (for

). is termed avirtual cycle if . We de-
note by the set of connections in . The
routing function is naturally generalized to apply to virtual
paths (and cycles) by concatenating the corresponding paths of
connections. A virtual path (or cycle) is termedplain if
is a simple path (or cycle) in the network.

A design for a set of connections in a network is
a set of connections that subsumes(i.e., ). A ring
partition design for a set of connections satisfies

, where every , is a plain virtual cycle
and for every . The partition

is termedthe ring partition of the design . For a de-
sign cost , i.e., the number of lightpaths in the
design.

Theminimum cost ring partition designproblem is formally
defined as follows. The input is a graphand a set of connec-
tions in . The goal is to find a ring partition design for
that minimizes cost . The corresponding decision problem
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Fig. 1. The MCRPD problem.

is to decide for a set of connectionsin and a positive in-
teger whether there is a ring partition designfor such that
cost .

MCRPD denotes the version of the problem in which the
input is restricted to a family of networks (e.g., the family
of rings).

Fig. 1 is an example of the MCRPD problem, where (a) shows
an instance with an initial set of size four and (b) shows a solu-
tion that consists of two rings and three new connections. The
cost of the solution is thus seven.

III. T HE MCRPD PROBLEM

In this section, we begin our study of the MCRPD problem
by providing some negative results regarding the tractability and
approximability of the problem.

We say that a family of topologies has the
unbounded cycle(UBC) property if there exists a constant
such that for every , there exists a graph with size

that contains a cycle of length. Examples for families
of topologies having the UBC property are the familyof ring
topologies and the family of complete graphs.

Theorem 1: The MCRPD problem is NP-hard for every
family of topologies having the UBC property.

Proof: We prove Theorem 1 in two steps. In Step 1, we
prove that MCRPD is NP-hard, and in Step 2, we extend the
result to every family of topologies with the UBC property.

Step 1: We prove that the MCRPD problem is
NP-hard by a polynomial transformation from thecircular arc
coloring problem,which is known to be NP-hard [8].

A graph is termed acircular arc graphif its nodes can be
placed in a one-to-one correspondence with a setof routes
(paths) in a ring in such a way that two nodes ofare joined
by an edge iff the corresponding two routes intersect.

The circular arc coloring problem is formalized as follows
(definitions are adapted from definitions in this paper). Aset

of circular arcs in a ring is a set ,
where each is an ordered pair of positive integers,
with . For our needs, there is no difference between
circular arcs and connections. Note that we can assume also in
this case that . The circular arc coloring problem is
formally defined as follows. Given a pair , where

is a set of circular arcs in the ring , and a positive integer
, can be partitioned into classes so that no two arcs in

the same class intersect?

Recall that load of an edge is the number of connec-
tions (or circular arcs) in the set that use , and let be the
maximum load of an edge (for a given instance ).
We say that an instance is full if it satisfies for
every edge. Given an instance , for every

full is a full instance with load, which
is constructed from by adding connections of length one. For-
mally, , where ,
for every .

For an instance of the circular arc coloring
problem and a positive integer , we construct the instance

of the MCRPD problem, where
(and the set contains the appropriate connections

of length 1). Note that we can assume thatsatisfies
since otherwise the answer for this instance of the

circular arc coloring problem can be determined immediately.
Note that ; thus the construction is polynomial
(since and ). See Fig. 2 for an example of
the transformation.

Proposition 1:The set can be partitioned into
classes of pair-wise nonintersecting arcs iff there is a ring parti-
tion design for with cost .

Proof:In one direction, assume that there is a ring
partition design for such that cost .
Clearly, this situation where the cost of a design is equal to the
size of the set of connections (i.e., no new connections are
added) is possible only if the instance is full (as is the case with
full ) and only if the number of rings in is equal to the
load of the instance, i.e., in our case. Such a solution
induces a partition of to classes of pairwise nonintersecting
arcs in the obvious way, since routes of connections in the same
virtual cycle do not intersect.

In the other direction, consider a partition ofto classes
such that in every class all the arcs do not intersect.

Since is a full instance with load , and since con-
tains only paths of length one, it can be easily seen that from
such a partition of into classes one can construct a ring
partition of simply by completing every class to a cycle by
using paths (of length 1) from . We get a ring partition design

for with cost .
Step 2: Let be a family of topologies with the UBC prop-

erty. We prove that the MCRPDproblem is NP-hard by a poly-
nomial transformation from the MCRPD(which is NP-hard
by Step 1).

Let be an instance of the MCRPDproblem.
Let be the graph in that contains a cycle of length
(by the definition of the UBC property, such graph exists in
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Fig. 2. (a) An instanceI of the circular arc coloring problem. (b) The instancefull (I) of the MCRPD problem.

). We construct an instance of the MCRPD
problem in the obvious way such that there is a one-to-one corre-
sponds (which preserves the intersection pattern) between paths
from in and paths in the ring (of size ), which is a
subgraph of .

Clearly, for every ring partition design for there is a
ring partition design for with the same cost. In the other
direction, let be a ring partition design for .
Note that by the construction, all connections in the sethave
routes that are paths in the ring , but new connections might
have any route in . It is clear that we can construct from
a ring partition design such thatall connections in have
routes on the ring and Cost Cost as follows. We can
take the induced subgraph partition of (see Section IV-C)
and complete every virtual path in it (whose route must be a
path on the ring) to a virtual cycle by adding one new connection
with the complement route on the ring. By the observations in
Section IV-C, Cost Cost .

We note that the definition of the UBC property can be
relaxed so as to include families of topologies in which for
every , there is a graph of size that includes a
cycle of length for some constants . The same
proof holds for the relaxed definition with slight technical
extensions.

We continue by studying approximation algorithms for
the MCRPD problem. A trivial approximation algorithm is
achieved by adding for every connectiona new disjoint
connection between’s endpoints. Note that if there is no such
route, then there is no ring partition design for this instance.
The resulting ring partition design will include virtual cycles,
each with two connections, one of which belongs to the initial
set . For an algorithm , we denote by the value of a
solution found by for an instance and by OPT the value
of an optimal solution. Clearly, TRIV OPT ,
for every instance of MCRPD, where . A
question that arises naturally is whether there exists an approx-
imation algorithm for the MCRPD problem that guarantees

OPT for some constant . We give a
negative answer for this questions (for every constant ).

Theorem 2: Let be any family of topologies having the
UBC property. Then for any constant , MCRPD has
no polynomial-time approximation algorithmthat guarantees

OPT (unless NP).

Proof: We prove Theorem 2 for the case of a ring. The
proof is generalized to every family of topologies having the
UBC property by using the same transformation as in Step 2
in the proof of Theorem 1. Assume to the contrary that there is
a constant and a polynomial approximation algorithm

such that for every instance of the MCRPD problem,
OPT . We show a polynomial algorithm

that optimally solves the MCRPDproblem, in contradiction
with Theorem 1.

Given an instance (where )
of the MCRPD problem, we construct a new instance

, where , and
is a constant whose value will be determined later as follows.
The ring is divided into sections ,
each of size . The section contains the interval of nodes

, for every . The set of con-
nections is the union of sets of connections, where all the
sets are isomorphic to the original setbut shifted in steps of

to different sections on the ring. Formally, ,
where , and

, for every . See Fig. 3 for
an example of the construction.

Recall that a canonical ring partition design satisfies that the
number of new connections in every virtual ring is at most one.
By the discussion in Section IV-C, for every ring partition de-
sign there is an eqivalent cononical ring partition design, there-
fore without loss of generality we can consider only canonical
ring partition designs. Consider a canonical ring partition de-
sign for . Note that in canonical ring partition
designs, every attachment point of two connections in a virtual
ring is an endpoint of a connection in the original set. Since
every connection in has its two endpoints in one of the (dis-
joint) sections of size on the ring, all the connections in every
virtual cycle , have their endpoints in the same section.
Formally,

Observation 1: Consider a canonical ring partition design
for the instance . For every

virtual cycle , there exists , such
that every connection satisfies

.
Proof: By the above discussion.

It follows that can be partitioned into sets of virtual cy-
cles , according to the endpoints of their con-
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Fig. 3. (a) The input instanceI , where m = 4; n = 2, and
C = f(1; 2); (3; 1)g. (b) The new instanceI , where � = 1, i.e., a
multiplication by two.

nections; the family includes all virtual cycles with endpoints
in the th section on the ring. Every family naturally induces
a canonical ring partition design to the original set as fol-
lows: .

Claim 1: OPT OPT .
Proof: On one direction, one can easily see that from a

canonical ring partition design to the original set , we can
construct a (canonical) ring partition design for such that
Cost Cost simply by multiplying it by in the
same manner as we constructed the instancefrom . Thus,
OPT OPT .

On the other direction, by Observation 5, there is an optimal
canonical ring partition design to . Such a
design can be partitioned, as explained above, tosubsets of
connections. We have to show that

is indeed a ring partition
design for . But this is clear from the construction, since for
every connection , there is a connection

. Thus, in , there is a virtual cycle ,
such that . From the discussion above, since is
canonical, . It follows that is a ring partition design

for the original set . Now, since Cost Cost ,
we get OPT OPT .

The idea of the algorithm that we construct from
should be clear by now. Given an instance
of the MCRPD problem, the algorithm first constructs
the instance . It then executes on the new
instance. Let be the ring partition design found by. Let
us assume that is canonical (otherwise can construct in
polynomial time a canonical ring partition design from).
Then induces ring partition designs for

such that Cost Cost . The output of is
a ring partition design for , such that
Cost Cost . Clearly, for a constant
runs in time polynomial in the size of.

Claim 2: .
Proof: Immediate from the discussion, since

Cost Cost and

Cost Cost .
Now

OPT

OPT

We get

OPT

Fixing such that , we get ;
thus actually finds an optimal solution for every instance,
in contradiction with Theorem 1. We conclude that there is no
constant for which there is an approximation algorithm
that guarantees OPT (unless ).

The next question is whether there is an approximation algo-
rithm for MCRPD that guarantees OPT ,
where is a constant (clearly, the trivial algorithm TRIV
satisfies this bound for ). In the sequel we answer this
question positively for .

IV. A RING-PARTITION APPROXIMATION ALGORITHM

In this section, we provide a polynomial approximation
algorithm, the ring partition algorithm, for the MCRPD
problem. We analyze RPA and show that it guarantees
RPA OPT for every instance

(where is the number of connections in the initial set).
We also study some special cases in which better results are
achieved.

Informally, the first step of the algorithm is to connect as
many endpoints of pairs of lightpaths with a common node as
possible. This is done by constructing a certain graph for every
node and finding a maximum matching in it. We get a set of
chains (and cycles) of lightpaths. The problem is that some of
the chains (and cycles) of lightpaths may traverse nonsimple
paths in the physical topology [see example in Fig. 4(a)]. Even
if the path traversed by a chain of lightpaths is simple, it might
be impossible to complete it to a cycle in the physical topology
[see example in Fig. 4(b)]. The second step is then to partition
any chain or cycle of lightpaths into a set of chains such that all
remaining chains and cycles traverse simple paths in the phys-
ical topology that can be completed to a cycle. The last step is to
actually complete every chain to a cycle by adding one lightpath
per chain. This is done by finding a disjoint path in the physical
topology using standard breadth first search (BFS) techniques.

Unless stated otherwise, we assume an arbitrary network
topology , where , and an initial
set of connections in , where . We assume that
the route of every connection in is a subpath in some
simple cycle in (observe that this assumption can be verified
in polynomial time, and without it there is no ring partition
design for ).

A. Preliminary Constructions

We define some preliminary constructions that are used later
for the definition of RPA. Recall that a virtual path is a se-
quence , where is a connection
with endpoints and (for ). is termed a
virtual cycleif . The pair of connections and
are termedattached at node in (or simply,attached in

). If is a virtual cycle, then the pair and are also con-
sideredattached (at node ) in .

Let be a set of connections in, and let be a node in
. We denote by the set of connections for which
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Fig. 4. (a) A chain of lightpathsha; bi that traverses a nonsimple path in the physical topology. (b) A chain of lightpathsha; bi that cannot be completed to a
simple cycle in the physical topology.

Fig. 5. A graph, a set of connections, a matching set (where only matchings in nontrivial end-node graphs are shown), and the equivalent subgraph partition.

is an endpoint. Let be the symmetric binary relation over
the set of connections that is defined as follows:
iff and are disjoint and there exists a simple cycle in
that contains both routes and . Then defines an
end-node graphNG for every node , where
the set of nodes is and is the set of edges, as
follows. For every pair of connections

iff . A matchingfor a graph
is a set such that no two edges in share a common
endpoint. Amaximum matchingis a matching of maximum size.
We denote by match the size of a maximum matching for.
A matching in an end-node graph NGfor a node describes a
set of attachments of pairs of connections (which satisfy) in
.
Consider a graph , where ,

and a set of connections in . A matching setfor and
is a set of matchings , where

is a matching in the end-node graph NG(see
Fig. 5 as an example).

A subgraph partition , for a set of connections,
is a partition of the connections ininto virtual paths and cycles
(which are also termedsubgraphs) as follows. Recall that
is the set of connections that are included in a virtual path (or
cycle) . is a set of virtual paths, is a set of virtual cycles,

, and for every .
Note that the ring partition of a ring partition design

is actually a subgraph partition for (where
). In general, the virtual paths and cycles in a

subgraph partition might not be plain.
Note that there is a one-to-one correspondence between

matching sets and subgraph partitions as follows. Consider a
matching set and a subgraph
partition for a set of connections in . and
are termedequivalentif the following condition is satisfied. For
every pair of connections , there exists a subgraph

, such that and are attached at node in , iff
.

For a matching set we denote by the (unique) equiv-
alent subgraph partition. Similarly, is the (unique) equiva-
lent matching set for a given subgraph partition. Clearly, for
a matching set . As an example, see Fig. 5.

B. Ring Partition Algorithm (RPA)

We present a ring partition algorithm that finds a ring parti-
tion design for a set of connectionsin in four main stages.
First, the end-node graph NGis constructed and a maximum
matching in it is found for every node . This
defines a maximum matching set. Then, the equivalent sub-
graph partition is constructed.

Next, we partition every nonplain virtual path or virtual cycle
in to plain virtual paths. In addition, we make sure that for
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every virtual path , there is a simple cycle in in which
is a subpath. Lastly, the subgraph partition is completed

to a ring partition by adding for every virtual path a
connection that completes it to a plain virtual cycle. Following
is the description of RPA followed by an informal description
of the operations taken by its main functions.

1:

2: ConstructPartition

3: AdjustPartition

4: CompletePartition

5: return

6: ConstructPatition

7: for every

8: construct

9: find maximum matching

10:

11: construct the equivalent subgraph-partition

12: return

13: AdjustPartition

14: for every

15: / in case is a cycle /

16: Partition

17:

18: for every

19: if cycle then

20:

21:

22: return

23: CompletePartition

24:

25: for every

26: �ndDisjoint

27:

28: return

29: Partition

30: Assume that

31: �rst

32: for to

33:

34: if plain cycleExists then

35:

36: �rst

37: return

The functionConstructPartitionfirst constructs the end-node
graphs. The algorithm to construct the end-node graphs is
straightforward and is not elaborated. It consists of determining
for every pair of connections with a common endpoint whether
they are disjoint and whether the path that is formed by
concatenating them can be completed to a simple cycle in.
This could be done using standard BFS techniques (see, e.g.,
[7]). ConstructPartitionthen finds maximum matchings in the
end-node graphs. Efficient algorithms for finding maximum
matchings in graphs can be found in, e.g., [14] (for a survey,
see [17, pp. 580–588]). Finding maximum matching in the
end-node graphs corresponds to connecting as many as possible

endpoints of pairs of disjoint lightpaths. Last, the construction
of the equivalent subgraph partition is straightforward.

The functionAdjustPartitionpartitions every virtual path and
virtual cycle in the subgraph partition using the functionParti-
tion. After the partition, every virtual path is plain and can be
completed to a simple cycle in . Every virtual path is then
checked, and if it is actually a cycle (i.e., its endpoints are equal),
then it is inserted into .

The task ofPartition is to partition a virtual path (or cycle)
to a set of plain virtual paths, such that for every

is a subpath in some simple cycle in. The function
cycleExists returnstrue if there is a disjoint path in be-
tween ’s endpoints. The functioncycle returnstrue if the
endpoints of a given virtual path are equal.

Lastly, the functionCompletePartitioncompletes every vir-
tual path in to a virtual cycle by adding a new disjoint con-
nection between ’s endpoints.

C. Correctness and Analysis

We first present four observations that are used for the proof
of the main theorem (Theorem 3). Observation 2 shows a con-
nection between the sizes of matching sets and the equivalent
subgraph partitions.

Observation 2: Let be a
matching set for a set of connectionsin , where

and . Let be the
equivalent subgraph partition. Then .

Proof: Let anattachment pointin be an ordered pair
, where the connections and are attached at

node in some subgraph . Clearly, the number of unique
attachment points in a virtual path is one less than the
number of connections in , i.e., . The number of
unique attachment points is equal to if is a
virtual cycle. It follows that the number of unique attachment
points is equal to . Now by
the definitions, there is a one-to-one correspondence between
attachment points and edges in the matchings. It follows that the
number of attachment points is equal to the number of edges in
the matching set, i.e., .

Let be a subgraph partition for a set of connections.
Theprojection of on a set of connections
is a subgraph partition for , which is obtained from by
deleting all the connections that are not in(i.e., all the connec-
tions in ). Note that a virtual path (or cycle) in might
be cut by this process into few virtual paths. Similarly, let
be a matching set for . Then theprojection of
on a set of connections is a matching set for , which is
obtained from by deleting from the end-node graphs (and
the matchings) nodes that correspond to connections in
and the edges that meet them. Clearly, if and are
equivalent, then so are and .

Consider a ring partition design for a
set of connections . We denote by the ring partition

of , and by the equivalent matching set for
(i.e., ). The subgraph partition and

the matching set for the initial set of connections
are termedthe induced subgraph partitionand the induced
matching set,respectively (note that they are equivalent).
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Observation 3 associates the cost of ring partition designs with
the sizes of the induced matching sets and subgraph partitions.

Observation 3: Let be a ring par-
tition design for a set of connections in a physical
topology , where and . Let

and
be the induced matching set and subgraph partition for. Then
cost .

Proof: By the definitions, Cost . Let
new be the number of new connections in the virtual cycle

, i.e., new . Clearly, Cost
new . Consider now the induced subgraph partition

. Recall that it is obtained from by deleting
all the new connections. In this process, a virtual cycle in the ring
partition might be cut into few virtual paths. Clearly, the number
of such virtual paths for each virtual cycle is at most the number
of new connections in it. It follows that ;
thus Cost . By Observation 2,

. Note that strict inequality occurs when two new
connections are attached in one of the virtual cycles.

A maximum matching setis a matching set
for a set of connections , such that

the matching is a maximum matching for the end-node
graph , for every . Recall that match
is the size of a maximum matching for. Observation 4 is a
lower bound on the value of an optimal solution.

Observation 4: Every ring partition design for satisfies
cost matchNG (where and are de-
fined as above).

Proof: Let be a ring-partition design
for . Note that every two connections that are attached
in a virtual cycle , in the design satisfy the re-
lation , i.e., they are disjoint and there is a simple cycle
that contains both routes. Clearly, the same holds also for
the induced subgraph partition and matching set
(since we only delete connections). Consider the equivalent
matching set .
It follows that is actually a matching in the
end-node graph , for , and thus

match . It follows, from Observation 3, that
Cost match .

Consider a ring-partition design for a set of
connections in . Let new be the number of new connec-
tions in (i.e., connections in ). A canonical
ring-partition design satisfies that new for every .
Note that it is always possible to construct from a given ring-par-
tition design a canonical ring-partition design such that
Cost Cost as follows. Let be
the induced subgraph partition of. To construct a canonical
ring partition design with at most the same cost, we com-
plete every virtual path in to a plain virtual cycle by adding
one new connection. (This is always doable since every virtual
path in is plain and is included in some simple cycle in).
From the discussion above, Cost Cost .
Observation 5 follows.

Observation 5: If there is a ring partition design for a set
of connections in , then there is a canonical ring-partition
design with minimum cost.

It can be proved that Observation 3 holds for canonical ring-
partition designs with equality, i.e., cost .
It is therefore sometimes convenient to consider for simplicity
only canonical ring-partition designs.

We are now ready to prove the main theorem.
Theorem 3: RPA OPT , for

every , where .
Proof: For the analysis, we denote by and the sets

and right after the execution ofConstructPartition,and
by and the corresponding sets right after the execution of
AdjustPartition.

We now examine the partition procedurePartition. Recall that
the end-node graphs are constructed with respect to the relation

, which is true for a pair of connections and iff their
routes and are disjoint and there is a simple cycle
that contains both routes (as subpaths). Consider a virtual path

. Since is a vir-
tual path in the equivalent subgraph partition, it holds that

, for every . Let be the set of
virtual paths which is the output of Partition . By the above
discussion, and by the definition ofPartition, at most one virtual
path in contains less than two connections. Such a virtual
path can be only the last one, which contains the connection.
Let (i.e., the number of connections in the virtual
path ). Let (i.e., the number of plain virtual paths
that are the result of applying the partition procedure on). It
follows that .

Now consider a nonplain virtual cycle . Then, by the
same considerations, , where and are
defined similarly.

Let and be the sets of nonplain virtual
cycles with, respectively, odd and even number of connections
afterConstructPartition. Note thatCompletePartitionadds one
new connection for every virtual path . We get

RPA

Observe that a nonplain virtual cycle in contains at least
four connections, since otherwise clearly there are two consec-
utive connections that are not disjoint in the cycle, which is
not possible by the definition of the algorithm. It follows that

. We get RPA .
Now, by Observation 4, we can show that OPT
(since in the first step RPA finds maximum matchings in the
end-node graphs). Thus, RPA OPT .

Observe that RPA constructs a canonical solution, i.e., there
is at most one new connection in every ring. Clearly, there is at
least one connection from the initial set in every ring. It follows
that RPA .
Note that since OPT , this is actually better than an
8/5-approximation.
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The time complexity depends on the exact format of the input
for the algorithm and the data structures that are used in order to
represent the physical topology, the set of connections, and the
auxiliary combinatorial constructions (i.e., the end-node graphs
and the subgraph partition). It is clear, however, that this time is
polynomial in the size of and . It is well known that it takes

time to find a maximum matching in a graph
([14]) and that it takes time to find whether

two paths are disjoint, or whether there exists a disjoint path
between a given path’s endpoints. For special topologies, these
tasks can be significantly simpler. For instance, clearly in the
ring physical topology case, every plain virtual path can be com-
pleted to a plain virtual cycle; thus the relationcan be simpli-
fied to . The end-node graphs are
bipartite, and finding maximum matchings in bipartite graphs is
considerably easier ([17]). Also, to find a disjoint path between
the endpoints of a given simple path is trivial. In any case, for
the applications of RPA for the design of optical networks, time
efficiency is not crucial since the algorithm is applied only in the
design stage of the network, and it is reasonable to invest some
preprocessing time once in order to achieve better network de-
signs.

Some practical considerations for using the RPA in real net-
works are due. Note that in some “bad” cases OPT
might be larger than 2, in which case the RPA will not out-
perform the trivial algorithm. (Recall that the trivial algorithm
simply adds one new lightpath for every lightpath in the original
set.) From the description of the RPA, it is clear that this poor re-
sult will occur in the following two cases: 1) if there are no pairs
of lightpaths that share a common endpoint or 2) if every pair of
lightpaths with a common endpoint violates thedisjointnessor
thecompletionconditions (namely, they do not traverse disjoint
routes in the underlying topology or their route cannot be com-
pleted to a simple cycle). However, especially in regional area
networks, it is unlikely that this will be the case; there will be
many nodes that are end-nodes of more than one lightpath, and
it is expected that many pairs of lightpaths can be completed to
cycles (a common physical topology in regional area networks
is a tree of rings in which any two disjoint lightpaths on the
same ring can be completed to a cycle). A simple example to
illustrate the behavior of RPA relative to the trivial algorithm is
a ring with 2 disjoint lightpaths of length 2 in
the original set (e.g., between nodes 0 and 2, 2 and 4, etc.). The
trivial algorithm will add one new lightpath for every lightpath
in the original set, while RPA will connect every two consecu-
tive lightpath; thus, will add one new lightpath in the case that

is odd and no new lightpaths otherwise. Therefore, the cost
of the design constructed by RPA is 50% less than the design
constructed by the trivial algorithm.

D. Special Cases

In this section, we study some special cases of the MCRPD
problem. Due to space limitations, proofs are omitted in this
section.

1) Optimal Cases:Since the MCRPD problem is NP-hard
(Theorem 1), it is natural to try and find restricted families of
topologies for which it can be solved in polynomial time. Un-

fortunately, we actually proved in Theorem 1 that the MCRPD
problem is NP-hard for every family of topologies that con-
tains cycles with unbounded length (e.g., rings). Since trees do
not support ring partition designs, this implies that the problem
is NP-hard for every family of topologies that is of interest in
this setting. This observation motivates the question of finding
polynomially solvable classes of instances of the problem when
taking into account not only the topology of the network but also
the initial set of connections.

The induced graphIG for a set of connec-
tions in is the subgraph of that includes all the edges and
nodes of that are used by at least one connection in.

A natural question is whether applying restrictions on the in-
duced graph suffices to guarantee efficient optimal solution to
the problem. We answer this question negatively by showing
that the problem remains NP-hard even for the most simple case
where the induced graph is a chain.

Theorem 4: The MCRPD problem is NP-hard even if the
induced graph for the set of connectionsin is a chain (or a
set of chains).

Proof: See [6].
Next we show that if, in addition to an induced graph with no

cycles, the network topology satisfies a certain condition (with
respect to the initial set of connections), then RPA finds a min-
imum cost ring partition design.

Theorem 5: RPA OPT for every instance
, which satisfies the following two properties.

1) No Cycles.The induced graph IG is a
forest.

2) Completion.For every plain virtual path over , there
is a simple cycle in that contains the route of ,
as a subpath.

Proof: See [6].
We discuss below some cases in which the conditions in The-

orem 5 are satisfied. A perfectly connected graph (PC) satisfies
that every simple path in it is included in a simple cycle. Clearly,
if a graph is perfectly connected, then the completion property is
satisfied for every initial set of connections. This property also
guarantees that there is a ring partition designfor everyini-
tial set of connections . A natural question is to characterize
perfectly connected graphs. We give a full characterization of
perfectly connected graphs by proving that a graph is PC iff it is
randomly Hamiltonian. Randomly Hamiltonian graphs are de-
fined and characterized in [4].

Theorem 6: A graph is perfectly connected iff it is one of
the following: a ring, a complete graph, or a complete bipartite
graph with equal number of nodes in both sets.

Proof: See [6].
We note that RPA does not have to be modified in order to

give an optimal result for instances that satisfy the conditions
in Theorem 5. However, we can benefit from recognizing in ad-
vance such instances since in these cases, the procedureAdjust-
Partition can be skipped. The recognition can be done easily for
specific topologies (e.g., rings) and in polynomial time in the
general case.

2) Bounded Length Connections in Rings:We analyze the
performance of RPA in the case of a ring physical topology
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when there is a bound on the length of connections in the initial
set.

Theorem 7: RPA OPT , for
every instance of MCRPD , if for every connec-
tion , for any constant

.
Proof: See [6].

Note that RPA does not guarantee that the same bound on the
length holds also for connections in the ring partition design that
is constructed. Indeed, the case where the length of connections
in the solution must be bounded is inherently different, and the
main results in this paper do not hold for it.

3) Approximations Based on the Load:Let the load of
an edge be the number of connections in that use
, and . Recall the definition of an induced

graph IG for a set of connections in
(Section IV–D1). We add to this definition a weight function

that assigns a weight for every edge that is equal
to its load. Although in the worst case the load of an instance
is equal to the number of connections , usually it is substan-
tially smaller. Therefore, it is interesting to bound the cost of a
design as a function of the load.

For this purpose, we assume that the route of every virtual
path is a subpath is some simple cycle in(i.e., the comple-
tion property). Let . Now consider the weighted
induced graph IG for . Let be a
maximum-weight spanning tree in IG
and . Following is a description of a
modified version of RPA, termed RPA. We temporarily remove
all connections that use edges that are not in . Next, we
find a ring partition design for the remaining set of connections
(using RPA). Lastly, we reinsert the removed connections and
complete each one of them to a virtual cycle by adding a new
connection. We prove that the cost of the resulting ring partition
design is larger by at most 2 than the optimal one.
(Note that an improved heuristics might be to repeat the same
process with the remaining set of connections.)

Theorem 8: RPA OPT , for every
instance that satisfies the completion property.

Proof: See [6].
For the case of a ring physical topology, it holds RPA

OPT . A slightly better bound is given for this
case in [9].

Note that there might be a set of connections with size
smaller than such that the induced graph for the re-
maining set is a forest. However, we prove in Proposi-
tion 9 that finding a minimum set of connections whose removal
leaves us with an induced graph with no cycles is NP-hard.

Theorem 9: Find a minimum set of connections in a
graph such that the induced graph for the remaining set
does not contain cycles is NP-hard.

Proof: See [6].

V. SUMMARY AND FUTURE RESEARCH

In this paper, we studied the MCRPD problem for which
the input is an initial set of lightpaths in a network and the
goal is to augment this set by adding lightpaths such that the

result is a ring-partition design with minimum cost. We have
shown an approximation algorithm for this problem that guar-
antees Cost OPT , where
is the number of lightpaths in the initial set, and OPT is the
cost of an optimal solution. Moreover, we have shown that un-
less NP, there is no approximation algorithm for this
problem that guarantees Cost OPT , for every con-
stant . The main open question here is whether the con-
stant can be improved.

Ring-partition designs are necessary for the near-term future
of optical networks since they support a SONET/SDH higher
layer network that is configured in the form of rings. However, it
is claimed that the core network architecture will have to change
and that SONET/SDH will give way to a smart optical layer. In-
corporating new technologies, it might be possible to reroute
lightpaths dynamically. In these cases, other less restrictive sur-
vivability conditions might be considered. While less restrictive
survivability conditions might be less expensive to implement,
the price to pay is of a more complex protection mechanism that
is executed for every failure. The challenge here is two-fold:
first, to study the gain in the cost of the network when less re-
strictive survivability conditions are considered, and second, to
study the algorithmic and technological issues of implementing
protection mechanisms in the optical domain based on these
conditions.
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