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We present a general framework for constructing transforms in
the field of the input which have a convolution-like property. The
construction is carried out over the reals, but is shown to be valid
over more general fields. We show that these basefield transforms
can be viewed as “projections” of the discrete Fourier transform
(DFT). Furthermore, by imposing an additional condition on the
projections, one may obtain self-inverse versions of the basefield
transforms. Applying the theory to the real and complex fields,
we show that the projection of the complex DFT results in the
discrete combinational Fourier transform (DCFT) and that the
imposition of the self-inverse condition on the DCFT yields the
discrete Hartley transform (DHT). Additionally, we show that the
method of projection may be used to derive efficient basefield
transform algorithms by projecting standard FFT algorithms from
the extension field to the basefield. Using such an approach,
we show that many of the existing real Hartley algorithms are
projections of well-known FFT algorithms.

1. INTRODUCTION

The discrete Hartley transform (DHT) has been proposed
as a real transform with a convolution property and is thus
an alternative to the discrete Fourier transform (DFT) for
the convolution of real sequences {1]. While the Hartley
transform offers no advantages over the Fourier transform
in terms of computational complexity, it does offer certain
structural advantages over the Fourier transform owing to
the fact that the Hartley transform is a real transform that
is also involutionary (self-inverse). This property avoids
the storage of both the forward and the inverse trans-
forms in applications where resources are scarce. Since
its introduction by Bracewell in 1983, much work has
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gone into the analysis of the properties of the Hartley
transform and its fast implementation [1], [2], [8], [10],
[26]. Much of this work draws on the close relationship
between the Hartley and Fourier transforms. A cursory
examination of the two transforms reveals that the kernel
of the Hartley transform is the difference of the real and
imaginary parts of the Fourier transform kernel. While that
is true and goes a long way toward developing the theory
of the Hartley transform, it does not tell the whole story.
There is in fact a deeper connection between the Hartley
and the Fourier transform that unifies the two transforms
along with other real transforms such as Ansari’s discrete
combinational Fourier transform (DCFT) [7]. In this paper,
we will attempt to draw out the relations between these
various transforms. Our approach will be from the point
of view of field extensions and projections. This approach
not only demonstrates the intimate connection between
the various transforms, it also presents a framework for
developing Hartley and other basefield transforms over
fields other than the reals. Moreover, the approach permits
easy development of fast algorithms based on standard FFT
algorithms.

Uses of the Hartley transform as such are the same ones
as those of the Fourier transform, the strongest difference
being its involutionary property. Hence, the specific uses are
not described in the paper. Several properties of the Hartley
transform were obtained by trigonometric manipulations,
which were at first thought to be specific to the Hartley do-
main. The strength of the approach explained in this paper
is that not only does it show that these properties should
be shared with the Fourier domain, but it also provides a
way of deriving them. This is true for the fast algorithms
where the search for FFT’s with a reduced complexity when
the data are real-valued was an active research area for
a long time. The task of eliminating the redundancies in
the computation while keeping a simple structure of the
algorithm was quite involved. In this paper, we show that
the real version of the Hartley Prime Factor Algorithm,
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while difficult to obtain in a direct manner, can be straight-
forwardly derived using a projection method described
later. Moreover, the spirit of the method can be applied to
other domains: transforms which exist only in an extension
field compared to the domain where the data are defined
have applications, for example, in error-control coding.

We will confine the details in this paper to the real
case. However, the discussion will purposely be left general
so that the technique is easily extended to other fields
of interest. In Section II, we set up the framework for
our discussion with a quick summary of fields and field
extensions. We will discuss the notion of a normal basis
and a dual basis and present the trace function as a linear
functional on the extension field. In Section HI, we will
use the apparatus developed in Section II to derive the
discrete basefield transform (DBT) and its inverse as the
“projection” of the Fourier transform from the field of
complex numbers into the field of real numbers. It will
be seen that the discrete basefield transform is essen-
tially Ansari’s discrete combinational Fourier transform.
In Section IV, we will show that by imposing the “self-
inverse” condition on the DBT, we obtain a class of
involutionary transforms that includes among them, the
conventional Hartley transform. In Section V, we will
derive the convolution property of the Hartley transform via
the method of projection. We will show that by mapping
sequences between the Fourier and Hartley domain, one
can deduce effortlessly Bracewell’s Hartley Convolution
Theorem. In Section VI, we will explain the use of the term
“projection” and show why normal bases are the natural
settings for expressing conjugacy relations. In Section VII,
we consider fast algorithms for the Hartley transform. We
will show that all existing fast Hartley transform algorithms
may be derived as projections of existing fast Fourier
transform algorithms. The technique bypasses the usual
trignometric derivations and produces, in the Prime Factor
case, a variant of an existing algorithm. Finally, in Section
VIII, we briefly sketch how the technique presented may
be extended to other fields of interest.

Due to the technical nature of the subject and our desire
to maintain mathematical rigor, precise mathematical terms
are used throughout the paper. In order to avoid disrupting
the flow of the presentation, the definitions of many of the
terms are given in the Appendix rather than in the body of
the text. Such terms are italicized the first time they occur.

II. FIELDS AND FIELD EXTENSIONS

In this section, we will review some simple facts from
Algebra regarding fields and field extensions. By casting
the DFT, the DCFT, and the DHT in the setting of fields,
we will be able to draw out the connections between these
heretofore unrelated transforms. That fields are the proper
settings for discussing the various transforms will be seen
in Section VIII, where we use the framework developed
here to construct the counterparts of the aforementioned
transforms in more general fields. We will confine our
development here to the real/complex case with a brief
mention of the general case at the end of the section.
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Let R be the real numbers and C the field of complex
numbers. Then in addition to being an extension of R of
degree 2, C is also a vector space of dimension 2 over R.
As such, there exist 2 vectors g and « such that {ag, 1}
is a basis for C over R (notation: CpR). The canonical
basis for Cp is, of course, the usual basis {1,¢} (hence all
elements in C may be written in the form e + b, a,b € R).
{1,4}, however, is not the only possible basis—any basis
consisting of two linearly independent vectors over R will
do just as well. Of particular importance to us are bases
of the form {a,a*}, i.e., the basis elements are complex
conjugates of each other. Bases of this form are called
normal bases. Examples of normal bases are {1+4¢,1 — i}
and {e + i, e — im}. More generally, it can be shown that
all normal bases for Cg are of the form

{o,a"} = {a + ib,a — b}, a,be R, ab#0. (1)

Normal bases are important because (as we shall see later)
they provide the natural setting for expressing conjugacy
relations.

Considering Cp as a vector space, a linear functional on
Cp is a linear map ¢ from C to R. As we will show in
the next section, all linear functionals on Cg are given by
the trace function

@(Q) =Tr(¢) =C+ ¢,

The trace function, in addition to being linear, is also
invariant under conjugates, i.e.

Tr(¢) = Tr(¢%),

The trace function will play the important role of a projec-
tion operator in subsequent constructions.

Given a basis {ao,a1} for Cp, the dual basis of
{ao,0n} is defined as the basis {Bg, 1} such that o;
and (; are trace-orthogonal for all % and j, i.e.

Tr(aiﬂj) = 6ij, V@,] (4)

V(eC. 2)

V¢ eC. 3)

It can be shown that the dual basis is unique. Moreover,
if {e, @1} is normal then {8y, 81} will be normal as well
[17], [18]. It was shown above that the normal bases of
Cp are of the form

{a,a*} = {a +ib,a — ib}, a,b€ R,ab#0.
Applying the trace-orthogonality relation above (4)
Tr (i) = a3 + o} B} = 6i;

we fing that the dual normal bases of Cp are of the form

Gl 11
{ﬁ’ﬁ}_{tla Z4b’4a+z4b}’ a,be R,ab#0.
(5)

Summarizing the facts relevant for later discussion, we
have:

1) The trace function is a conjugate-invariant linear
functional on Cp, i.e.

a) Tr(()e R VY¢eC
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b) Tr (i€ + c2(2) = a1 Tr((1) + e Tr((2)
Ve; € RV € C
c) Tr(()=Tr(¢*) VY¢eC.

2) The normal bases of Cp are of the form
{a,a"} = {a + tb,a — ib}, a,b € R,ab # 0.

3) The respective dual bases of the normal bases above
are

1 11

* . .1
{ﬁ,ﬁ}_{ﬁ_zﬁaﬁ+l4_b}y a,bER,&b#O.

We will conclude this section with a quick discussion of
the general case. If F is a field and K is an extension of F
of degree m = [K : F] < oo, then K is a vector space of
dimension m over F' [21], [22]. As with the real/complex
case, there exist m vectors g, a1, - - -, @ —1 in K such that
{a;} is a basis for K over F (notation: K F)- A basis {o;}
for K is called a normal basis if the «;’s are conjugates
of each other with respect to the basefield F. In contrast
to the real/complex case, where normal bases are abundant,
only under certain conditions on the field extension K do
normal bases exist. If a normal basis {c;} can be found,
then its dual normal basis {3;} will also exist. The dual
normal basis {f;} is defined as the basis {;} such that

Tr (ai,@j) = 5,']‘, VZ,]
where Tr (-) is the linear function on Kpp defined as

Tr(¢) = Z conjugates of ¢, V(eK

III. BASEFIELD TRANSFORMS AND CONJUGATES

Before we proceed to derive the Hartley transform from
the Fourier transform, let us cast the Fourier transform in
the setting of fields and field extensions.

Let F be a field. Let {z,}_ be a sequence in F. Then
the Fourier transform of {x, })_! defined as

N-1
Xp=)Y z. Wi k=01, ,N-1
n=0

exists iff Wy, and element of order N (i.e. N is the lowest
power of Wy such that WI{}' = 1), exists in F'. If F' contains
Wy, then the Fourier transform can be computed in F and
the Fourier coefficients {X,, }Y-1! will reside in F. If F
does not contain an element of order NV, then it is necessary
to go an extension field K of F' which contains such an
element in order to compute the Fourier transform. Whether
such an extension field exists depends on the value N and
the characteristic of the field F. If such an extension field
can be found, then the Fourier coefficients { X}V ! will
reside in the extension field but are constrained to satisfy
a certain conjugacy relation.

To be specific for the field of immediate interest to us,
if F is the field of real numbers, then F' contains only
elements of order 1 and 2 (1 and —1). Thus in order to
compute a Fourier transform of size N > 2, it is necessary
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to go to an extension of R which contains an element
of order N. The extension of R which contains such an
element is the complex field C. Over the field of complex
numbers, the elements of order N are

{e‘i(Z‘Ir/N)m [1<m < N,(m,N)= 1}

where (m, N) denotes the greatest common divisor of m
and N. Thus for N > 2, the Fourier transform of a real
sequence is complex. However, because W/ and W;k
are conjugates of each other, the Fourier coefficients are
constrained to satisfy the conjugacy relation [28]

Xt =X_y, Vk 6)

It is worth noting that for the reals it is sufficient to go
up to the complex field to find elements of every order. For
more general fields, however, there may not be an extension
that contains the element of the desired order. And even
if the desired extension can be found,, the extension will
be different for different values of N. The motivation for
constructing the Hartley and other basefield transforms is
that since the input sequence is in the basefield F', it would
be desirable (as well as esthetically pleasing) to have a
transform in which the transform coefficients would be in
the same field. That there is such a transform is suggested
by the conjugacy relaticn that the Fourier coefficients of the
basefield sequence must satisfy. The conjugacy constraint
implies a lack of freedom in the choice of the Fourier
coefficients and hence a degree of redundancy which may
be exploited.

Consider for a while the input as being members of
the extension field. If we expand each input element with
respect to a basis which contains 1 as a member, then
each input element has m — 1 components equal to zero.
Once transformed, each transform coefficient has in general
no zero components. But due to the conjugacy constraint,
one output characterizes a whole conjugacy class (i.e.,
m outputs in the most simple case). Thus in terms of
independent components, there are just as many degrees
of freedom in the transform domain as there were in the
original basefield domain: the redundancy still exists and
has only been changed. As a result, the transforms that we
seek can be obtained by grouping the m outputs belonging
to a conjugacy class, and combining them to obtain m
basefield elements. Let M be the corresponding mapping.
A basefield transform related to the Fourier transform can
be obtained by applying to the output of a Fourier transform
an operator P which is a direct sum of the operators M on
the individual conjugacy classes of {X,,}. By appropriately
permuting and/or repeating the elements of {X,}, the
operator P can be written as

M
M

M

Schematically, the procedure is as shown in Fig. 1.
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Fig. 1. Relations between{z }, DFT{z»}, and DBT{zn }.

In the figure, the input sequence is denoted by {z,},
the Fourier transform of the sequence by ~{Xn}, and the
(yet undefined) basefield transform by {X,}. Note that
{zn} and {X,} reside in the basefield F while {X,} is
in the extension field K of F. The function F between
{z,} and {X,} is the usual DFT mapping. The function
B is the basefield transform that we seek. Shown also is
an intermediate map, P, between {X,} and {X,}. Since
F and B (if it exists) are bijections, clearly the basefield
transform exists iff the intermediate map P exists. It suffices
therefore to construct the map P from {X,} to {X,}, then
the composition of F and P will yield a basefield transform.

This transform will have an inverse basefield transform
if the map P is itself invertible. Since

M
M

M—l
Pl

it suffices that the mapping M be invertible.

How should we choose the mapping M ? By construction,
M must map the extension field to the basefield. Moreover,
in order that B = P o F be linear, we will require that P
be linear. Thus M should be a matrix with elements in K.

Indeed, algorithms searching to eliminate the redundancy
in the computation of the DFT of real-valued sequences
already implicitly used this approach. If one chooses to
compute separately the real part and the imaginary part
of a set of conjugate pairs X, and X_j (done in early
papers such as [15]), this amounts to considering the above
scheme with M defined as

(25) =) = (a5 50s) (32
X /)™ X_x ) \i0.5 —i0.5 X_ /)
Other choices of M are possible. See, for example,
[12]-[14].

However, it is clear that not all choices of the matrix
M will lead to structured transforms; some choices will
invariably look contrived. Good choices of M will certainly
be more mathematically structured. To that end, it is natural
to search for an M which represents a separable mapping on
the conjugacy classes. Ideally, M should induce the same
linear functional on all X3, viz. Xz = o(Xx) VX4.
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Fact 1: @ is a linear functional on C iff there exists
an o € C such that

¢(¢) = Tr (aQ),

Proof: (<=) By the linearity of the Trace function

discussed in Section II Tr (o) is a linear functional on C
for any a.
(=) If ¢ is a linear functional on Cp, then ¢ is
completely determined by its action on a basis of Cp.
Let the action of ¢ on the canonical basis {1,i} of Cp
be p(1) = c and (i) = d, where c and d are arbitrary
elements of R. We will show that there is an element
a = a+ib € C such that (1) = Tr(al) = ¢ and
(1) = Tr(ai) = d.

V(e C.

Tr(el)=a+a*=2a=c = a:%
d
Tr(ai) =ai—a'i=-2b=d = b=__2.,
Thus
c id
a=-—i=
2 2
is the desired element. O

We have thus determined that the function ¢ must be of
the form

¢(¢) = Tr (af),

for some a € C. Applying it to the Fourier coefficients
{X.}, we have

Vel

o(Xg) =Tr(aXy) =aXp+a’X;, 0<k<N-L

The corresponding form of the matrix M is easily found.
Consider the action of ¢ on a conjugacy class { X%, X_x}
of {X,}

o(Xi) = Tr(aXy) = aXp + o* X,
o(X_p)=Tr(aX_g)=aX_r+a"X,.
Since {X,} is the Fourier transform of a real sequence,
it satisfies the conjugacy (6), thus the above equations can
alternately be written as
(X)) =Tr{aXy) = aXp + X _;
o(X_k) =Tr(aX_x) = "X + aX i

or, in matrix form

(+ 0) ()= ()
o o J\X_k) T \e(X_p) )

We still have not specified the element a. « should be
chosen so that P can be inverted. For the complex field,
this places a rather mild constraint on «. Since (7) implies
that P is invertible iff M is invertible, the restriction on
the choice of « is simply that it must render the matrix M

nonsingular. The following simple fact gives the precise
condition on the element «.
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Fact 2: The matrix
a a* a+ib a—1ib
M = (a" @ ) = (a—ib a+ib)

is invertible iff ab # 0, i.e., iff (a)déf{a, ax} is a normal basis
Of C R

The first part of the fact is easily verified by considering
the determinant of M. The second part of the fact follows
from the discussion of normal basis in Section II. The
second part may seem an unnecessary formalism; it is
included mainly to suggest the result for fields other than
C and R.

By taking o to be a generator of a normal basis of Cp,
then, the map

o Xp+— X = Tr (@ Xy)

defines a one-to-one correspondence between {X,} and
{Xn}.

To summarize, we have shown that this requirement for a
more structured mapping allowing a one-to-one correspon-
dence between each member of the conjugacy class and a
basefield element involved the trace function discussed in
Section II. Furthermore, the requirement for this mapping
to be invertible was that the element « involved in the trace
function generates a normal basis for the complex over the
reals.

As a result of the imposed mathematical structure, the
mapping P, originally defined in a blockwise manner, also
corresponds to a “pointwise” one. Using P, the basefield
transform B can be obtained as follows:

Consider the DFT of {z,}

N-1
Xi = Z T, W
n=0

where z,, € R and Wy has been choosen in its general
form Wy = e"*C*/Nm 1 <m < N, (m, N) = 1, rather
than restricting to the usual case m = 1. Since B = po F,
composing the two functions using o = a + b yields the
following real transform:

= z, Tr (aWRF) (8)

= Tn [Qa cos 2Wﬂ-nmk + 2bsin %nmk} ()]

We note that, for the classical choice of the element of
order N, i.e., m = 1, this reduces to Ansari’s discrete
combinational Fourier transform
N-1
~ 27 27
Xp = Ty |20 cos —nk + 2bsin —nk|.
k Z "{ N N
n=0
We now consider the structure of the inverse transform.
From the discussion above, the inverse mapping P!,
combined with the inverse Fourier transform, completely
defines the inverse basefield transform. The question now
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is about the structure of the inverse of the matrix M, and to
which one-to-one mapping between the basefield elements
and the conjugacy class it corresponds.

Fact 3: If
(%)
o o«

where a = a + b is a generator of a normal basis {a) of

CR, then
8 B
M~
= %)
where
1 1
=t 'n

is the generator of the normal basis (3) dual to (c).
Proof:

(& ) 5= (R

- 7)

where the last equality follows from the trace-orthogonality
of the two bases. a
It follows that

( k ) ( *) ( :k )
X_& ﬁ* ﬁ X_k ’
consequently,

I:Xkl—»Xk

o)

= BXi + B X .

Since B = po F, B~! = F~1 o ¢~ Composing ¢~
and F~! yields

1

1
=¥ Z B+ F*X )Wy
n=0
1 N-1 N-1
=W(Zﬂx W]Gnk‘i'Zﬂ*X —nk)
n=0 n=0
1=,
=« 2 Xn(BWR™ + B W)
v
= & 3 X Tr(pWEm) (10)
n=0
N-1
1 1 2T 1 27
=N nz;O X, [50—, cos ank + % sin —nmk]

Thus the inverse to the basefield transform (9) is

uMZ

1 27
[— cos — nmk+ 2b Nnmk].
an

As before, for m = 1, this reduces to the inverse discrete
combinational Fourier transform

1 = 1 . 2r
:YV-; [—cos—nk+2b nﬁnk].
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IV. THE SELF-INVERSE PROPERTY

In this section, we will show that the Hartley transform
is the basefield transform of the previous sections with the
added proviso that the transform be involutionary.

We begin by restating the basefield transform equations.
Over a general field F, the basefield transform pair, is given
by

N-1
Xi =Y o Tr(aWiF) (12)
n= O

NZ

((8) and (10)), where Wy is an element of order NV in a
suitable extension K of F and « and [ are generators of a
set of mutually dual normal bases of K p. Clearly, if a set
of mutually dual bases can be found such that

Tr(aWh) = Tr (BWR), W (14)

Tr (BWR™) (13)

then the transform above would have the self-inverse prop-
erty.

While (14) is difficult to apply for general fields ¥ and
K (though a brute force search is possible for some fields),
for the real and complex fields, it is surprisingly easy to
use. It yields, among other things, the conventional Hartley
transform.

Recall that the real transform pair
Xom 3 an20c0s Pk + 2bsin ek 15

k—;zn[acoanm + smNnm] (15)

2a N 2 N

((9) and (11)) is obtained by specializing (12) and (13) to
the real and complex fields using the bases

{a,a"} = {a + ib,a — ib}

. 1 11 .1
8.5} = {@ ‘%’@“@}
with a, b € R, ab # 0. Condition (14) stipulates that, in

order for the transform to have the self-inverse property,
we must have

N-1
= (1 2 1 2
T = 1 Z Xn[ cos —Trnmk'-i— — sm—7rnmk} (16)
0

2T . 27 1 2T
2a cos —ﬁml + 2bsin le =5 cos ﬁml
+ i sin 2—7rml
2b N

for all L. It is easy to verify that this is satisfied iff
1 1
=4_- d b=+-.
e==3 o 2

Substituting these values of a and b into (15) and (16) yields
the following self-inverse real transforms:
e 27 27
Xi= 2 Zn [(i)cos Nnmk + (%)sin ﬁnmk] a7n
N-1
1 ~ 2T 2
Tp= nZ=O X, {(ﬂ:)cos ﬁnmk + (£)sin Fﬂnmk} . (18)

=|
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There are thus 4¢(N) self-inverse transforms permissible
under this type of construction (where ¢ is the Euler
Totient function). Of these, the case m = 1, a = b =
1/2 corresponds to the conventional Hartley transform,
representing the bases

1 1

1

2

(o) = {5 +i
, +i1}

1
2
1 1
2
V. THE CONVOLUTION PROPERTY

.y ={5-i

It would be difficult to derive the convolution property
of the basefield transform directly from the transform
equations (12) and (13). However, the convolution property
can be deducted easily with the aid of the intermediate map
. Since convolution has a simple expression in the Fourier
domain, we can obtain the convolution property in the
basefield domain as follows: map the convolving sequences
to the Fourier domain (via ¢~1), perform the convolution
in the Fourier domain (pointwise multiplication), then map
the result back to the basefield (via ).

To be specific, let us specialize to the reals. Let {2, } and
{h } be real sequences, of basefield transforms X_; and
H_;, respectively. Let {y,} be the convolution of {z,}
and {h,}. Then

X =y (
H;, = (

X)) =pBX+ 08X,
Hy) = BH, + B*H_;.
Therefore,
Yy = He Xy, = BBH Xy + BA" Hi X _i
+BB*H_ 1 Xx + B*B*H_ X _i.
To express Y in terms of Hy, and X, we “project” Y}, to

the reals by taking its trace with c. This yields the following
convolution formula:

Vi = oi(Yi) = Tr (a¥i)
= Tr(a,Bﬂ)f{ka + Tr (aﬁﬂ*)flkf(_k
+ Tr(afB8*)H_ Xx + Tr(af*B*)H_ X _i

173 a\ ~ = 1/1 a
‘§(E‘b_2)H’“X"+§<Z{+ﬁ)
-(f[kj(_k-‘rg_kf(k—H_kX_k)

where the coefficients are derived using the mutually dual
normal bases for Cp presented previously,

(o) = {a +ib,a —ib}

1 101 .1
(ﬂ)—{'éﬁ—l&—b,ﬁ'i‘lﬁ}, a,bER, ab#o

1
To carry the specialization one step further, recall that the
conventional Hartley transform corresponds to choosing the

normal bases
1 11 1
<°‘>—{§“§’§‘Z§}
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and '
1 11 1
<ﬂ>-{5"§’§“§}-

Setting @ = b = 1/2 in the convolution equation above

yields
5 Xk + X—k 0 Xk - ka
= L —. H .| —————~
= XS 4 A, X,

The equation is the original convolution equation given by
Bracewell [1], [26].

VL. THE BASEFIELD TRANSFORM AS A PROJECTION

We have used the term “projection” several times in the
preceding sections but somewhat loosely. In this section, we
will try to give a precise meaning to the term. As before,
the discussion will be confined to the real case, though the
idea is applicable to other fields as well.

Consider the Fourier coefficients {X,}. Since these co-
efficients reside in the complex field, they have unique rep-
resentations with respect to any basis of Cp. Let {y0,71}
be an arbitrary basis of C'p. Then for all &

Xi = X% + Xm (19)

for some X 1501)’ X ,gl) € R. If «a is a generator of a normal
basis {a,a*} of Cp, then by the linearity of the trace
function
Xk = o(Xr) = Tr (e Xx)
= )A(,(co) Tr (ayo) + f(,(cl) Tr(ay1)- (20)
Consider what happens when {yo,v:1} is chosen to be

the (unique) dual basis {3, 3*} of {a,«™}. Equation (20)
becomes

X=X Tr(af) + X Tr(ep) = X0 @D

where the last equality follows from the trace-orthogonality
relation of the two bases (4). R
Consider now the quantity X_j = Tr(aX_;). We have

X..k =Tr (aX_k)

=Tr(a*X*,) (22)
=Tr(a* Xy) (23)
_ %O * (1) * %
=X, Tr(a’B) + X, Tr(a" ")
=x" (24)

where (22) follows from the conjugate-invariant property
of the trace function (3), and (23) from the conjugacy
relation of the Fourier coefficients (6), and (24) from the
trace-orthogonality relation of the two bases (4).
Combining (19), (21), and (24) we see that, with respect
to the dual basis {3, 3*} of {a, a*}, the basis components
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of the Fourier coefficients of a real sequence {z,} are the
basefield coefficients of {z,}

X = XpB+ X_1B", Vk. (25)

The function ¢ thus-picks out the (-component of the
expansion; it is for this reason that we call ¢ a “projection.”
The terminology is used to draw an analogy between the
action of ¢ and that of the familiar projection operators in
Hilbert spaces. It should be noted, however, this analogy is
not exact. The function ¢ is not a projection operator in the
usual sense of the term. It is easy to verify, for instance,
that @2 # .

We will conclude this section with a discussion of why
normal bases are the natural settings for expressing conju-
gacy relations. Consider the conjugacy class { Xz, X_¢}.
From the discussion above we have that the expansion of
X and X_; with respect to a normal basis is

X = XpB+ X_18*
X k=X B+ Xp0".

Note that the basis components of the conjugates are
permutations of each other. In extracting the B-component
of the conjugates, we thus have all the information required
to reconstruct them. The above is an example of a more
general fact that applies to all fields: with respect to a
normal basis, the basis components of the elements of a
conjugacy class are permutations of one another. For this
reason, normal bases are particularly useful for expressing
conjugacy relations.

VII. FAST ALGORITHMS

In this section, we will consider fast algorithms for the
discrete basefield transform. We will show that for any
fast algorithm for the discrete Fourier transform, there
is an equivalent fast algorithm for the discrete basefield
transform. Moreover, the fast algorithm for the basefield
transform may be obtained by projecting the equivalent
Fourier algorithm from the extension field to the basefield.
The technique may be briefly stated as follows: if A is a
fast algorithm for the Fourier transform, then by an abuse
of notation,

p(A) = Tr(aA) (26)

will be a fast algorithm for the basefield transform. The
strengths of this technique lie in that it takes advantage of
the well-developed area of fast Fourier transform algorithms
and that it is applicable to all fields of interest.

We will demonstrate the above technique by deriving
a few familiar fast algorithms for the conventional real
Hartley transform. It will be seen that the technique is easy
to apply and that it circumvents the use of trignometric
identities endemic in the development of fast Hartley trans-
form algorithms. Other standard algorithms such as Rader’s
and Winograd’s algorithms may be derived the same way.

The subsequent discussions require new notations (the
coefficients of the expansion of the various variables with
respect to different bases), which we introduce now by
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recapping the classical real Hartley results in terms of the
previous discussion.

The real Hartley transform is obtained from the basefield
transform by setting m = 1, @ = b = 1/2. As pointed out
earlier, this is equivalent to choosing the order-N element
Wx = e~i27/N) and the set of bases

1
; 2}

+_1
i=
2

Thus if WZF is expanded with respect to the basis { o, 4}
= {B,5*}, then

Wit =l o83
(1) ,8 +’~U_nkﬁ1

27 . 27 1 1

= (COS Nﬂk + sin ﬁﬂk) (5 — 1,5)
27k — sin 2k l.,.l
+ Coan s1 Nn 2 z2

)

1 1

{ag,n} = {a,0*} = { +12,
1

2

1
2
(o) = 16,6} = {3 -i2. 3

Tr (@W ) = wll) = wl,, @7
27 . 27
= cos ﬁ”k + sin -]Vnk, (28)
Consequently
N-

= Z o Tr (aW5E 29

n=0

N-1

w' (30)

I
E“

23
o
- o

I

Tn {cos gj\;nk + sin z—;nk] . (31)

Il
=)

n

In addition to the set of bases above, we will need another
basis with which to expand the twiddle factors. While the
transform kernel must be expanded with respect to a normal
basis, the twiddle factors can be expanded with respect to
any basis. The particular choice {vo,v1} = {1, —i} yields
the familiar fast Hartley transform algorithms. Using this
basis, the twiddle factor W% has the expansion

( 2r .. 2w
W]’\“, = w,(c )70 + w,(c )'yl = cos Nk —isin —ﬁk 32)

The following equations relating the three bases are easily
verified. They are stated here for future reference

Tr (@v0B0) = Tr{am B1) =1 (33)
Tr(av180) = Tr(avefB1) = 0 (34)
Tr(efofo) = Tr (afofh) = % (35)
Tr (af161) = —1/2 (36)

Tr(afB;) = 6;. (37

The general procedure which will be used for obtaining
a fast Hartley transform algorithm from its Fourier coun-
terpart is as follows: Starting from the basic equation of
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the FFT algorithm, expand each kernel involved in terms
of the dual basis {3, 51}, and the twiddle factors (if any)
in terms of the familiar basis {y9,~;}. Finally, “project”
the algorithm into the reals by the trace function based on
« to obtain the Hartley coefficients.

A. Radix-2 (DIT) Algorithm

The Radix-2 Decimation-In-Time (DIT) Fourier trans-
form algorithm is given by!

N/2-1 N/2-1
Xe= ) z2aWifa + WE D zanna Wik,
n=0 n=0

Expanding W;’;z with respect to the basis {3, 51} (since it
is used as a kemnel in the DFT of length N/2) and W,’f, (the
twiddle factor) with respect to the basis {vo,7v1}, we have

N/2—1 N/2—1
Xy = Z T2n Zw(])ﬁj+zw T z T2n+1 Zu/(])

1 N/2-1 11»/21

DD ETEI Sh DI )

7=0 n=0 1,j=0 n=0
Projecting the equation into the reals via ¢ yields
1 N/2-1

Xe=3" Y zonwl) Tr(ap;)

3=0 n=0

+ Z Z I2n+1wf,]k)wk)Tr(a’Ylﬁg)

1,j=0 n=0

The values of the trace terms are given by (33), (34), and
(37), thus the previous equation can be simplified to

N/2-1
Xi = Z T nw(O) ( )
N/2 1 N 2-1
Z z2n+1wn;c +w Z I2n+1w( )
n=0
N/2-1
= Z .'I,'ans;c) + w( )
N/2-1 N/2-1

: Z $2n+1w533+w;(c1) Z 1'2n+1w§),)lk

where the second equality follows from (27). Note that
the first summation corresponds to the N/2-point Hartley
transform of the even sequence and the second and third
summations correspond to the IV/2-point Hartley transform
of the odd sequence (see (30)). Denotmg the two half-
sized transforms by X, {=ven) and X, (°4d) " respectively, and
substituting the expresions for the twiddle factors (32), we
have

o - (even o (odd 2 dd
X = X 4 x§ )(cosﬁk) + X% (sin N(3)8)

I'This is generally written as two equations, one for & and the other for
k+ (’\//2) [4], [9], [25]. We have chosen to write it as one equation,
however, in order to retain Bracewell’s original formulation.
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which is the original radix-2 (DIT) algorithm proposed by
Bracewell [2], [26].

B. Radix-2 (DIF) Algorithm
The Radix-2 Decimation-In-Frequency (DIF) Fourier
transform is given by [4], [9], [25]
Nj2-1

Xor = Z (xn+zN/2+n)W17\;,;2
n=0

Nj2-1

Z (Zn — TN/24n) WA W, V/Z
n=0

Xoks1 =

Expanding the kernel W;\j’/“2 with respect to the basis
{Bo, 1} and the twiddle factor W5 with respect to the
basis {v0,7v1}, we have

Nj2-1
Xok = Y (Tn +Tn/24m) Zwm
n=0 7=0
Nj2-1 1 L
Xok41 = Z (Tn —mN/2+n)Zw7(f)’YlZwS£ﬂj
n=0 1=0 =0
1 N/2-1
=Y wBi Y, (@ — nj2en) 0w 9
1,j=0 n=0
N/2-1
0
= Z w8; Y (@n = onjren) P,
1,j=0 n=0

where the last equality follow from (27). The projection of
the first equation (X2 yields

N/2-1
Xor = Z (xn +$N/2+n)w£3€) 39
ns0

which is the Hartley transform of the N/2-point sequence
{zn + zN/Hn}fﬁ)_l. Projection of the second equation
©(X2k41) yields

Xokt1 = Z Tr (emf3;)
1,j=0
N/2-1
0
: Z (xn_‘”N/2+n)w$1l)w§—)1)1nk'
n=0

The trace terms, as before, are given by (33), (34), and (37).
Hence, the above equation reduces to

Nj2-1
X2k+1 = Z (1: — TN/24n )’U}(O)'w(o
n=0
N/2-1
R SRR UMY
n=0

Note that the first summation is the kth Hartley coefficient
of a modulated half-size sequence and the second summa-
tion is the —kth Hartley coefficient of another modulated
half-size sequence. By substituting the variable n for —n in
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the second summation, we can combine the two half-size
transforms into one transform. Doing so and plugging in
the values for the twiddle factors (32), we arrive at

N/2-1 o
Xoks1 = ,;, {(azn — T N/24n)COS (Fn)

2
+H(ZNj2—n — TN_n)sin (Fﬂn)]wfgc) (40)

Equations (39) and (40) can be seen to be the radix-2 (DIF)
algorithm of Sorensen et al. [8].

C. Prime Factor Algorithm
If N = Ni1N, with N; and N, relatively prime, then
the one-dimensional Fourier transform can be written as a

twiddle-factor-free two-dimensional Fourier transform [4],
[25], [10]

Ny -1 N;—-1
n1k nak
Xieyky = Wt Trn, WNZ2.
1 2
n1=0 n2=0

Expanding W"‘k1 and W"zl62 with respect to the normal
basis {ﬂo,ﬁl} ‘we have

Ni-1 1

€)) @)
Z anlklﬁj Z Tning anz’w
nl=0 7j=0 ny=0 j
N;-1

Na—
= Z /33,6[ Z ww(mjl)kl Z wnlnzwfgb

J,l 0 n;=0 ne=0

N;-1
= Z ﬂ]ﬁl{ Z w( 1)]nlkl

7,1=0 n1=0

No—1
ning (_l)lnzkz

na=0

Kbk, =

where the last equality follows from (27). Note that the
parenthesized term is a two-dimensional twiddle-factor-free
Hartley transform (see (30)). If we denote this term by X,
then the above equation can be written more simply as

1
Xiyky = Z BiBiX (—1)iky (—1)ky -

7,1=0

Projecting this equation into the reals via ¢ yields

1
Xiakz = ), Tr(aBiB)X(“1yiy (~1)ka-

31=0

Finally, substituting the values of the trace terms from (35)
and (36), we arrive at the following prime factor Hartley
algorithm:

- 1 4 . . N

Xk1k2 = E(thkz +X—k1,k2 + Xkl,—kz - X—k1ﬁk2)'
(41)

This is a new algorithm which is a variation of an existing

algorithm due to Sorensen et al. [8].
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VIII. GENERALIZED BASEFIELD TRANSFORM

Although we have confined the details of the discussion
to the familiar real case, we have purposely kept the
presentation general in order to facilitate the extension
of the techinque to more general fields. We will, in this
section, sketch the construction of basefield transforms over
an arbitrary field. All the necessary ingredients have in fact
been presented. We will merely put things in the proper
context and detail some of the differences and difficulties
in the general case vis a vis the real case. A more detailed
treatment can be found in [16], [29].

The first problem that one has to address in constructing
a basefield transform of a particular length N is that of
finding the correct field extension. In the real case, there
is one extension which will work for all N, namely,
the algebraically closed complex field. This is a property
peculiar to the reals that is not shared by other fields.
For an arbitary field ¥ there may not be an extension K
which contains the requisite element Wy . Furthermore, for
different values of NV, the extension fields will be different.
Whether an extension exists which contains the required
element of order N depends on the characteristic of the
field F [18]-[20].

It can be shown that if the characteristic of the field F
divides N, then F' does not admit an extension containing
an element of order N [18]-[20]. In this case, neither the
Fourier nor the basefield transform exists. If the characteris-
tic of F does not divide N, then it will be possible to find an
extension K that contains an element of order NV [18]-[20].
For technical reasons we will take K to be the smallest of
all such fields, namely the Nth cyclotomic extension of F.
In the cyclotomic extension K, the elements of order N
are simply the primitive Nth roots of unity.

Having found the proper extension of F containing an
element of order IV, one can obviously compute the Fourier
transform of an F sequence. The formula is as in the real
case

N-1

Xi =Y z, Wik

n=0

Because Wy resides in K, { X} will reside in K as well.
The question then arises as to whether there is redundancy
in the K sequence {X,} that one may exploit as the
real case. The answer is yes; and as with the real case,
the redundancy is manifested in the form of a conjugacy
relation that the sequence { X3} must satisfy. To state this
conjugacy constraint, we need to consider the Galois group
associated. with the fields F and K. If F is a field and K is
a finite extension of F, then the Galois group of K and F',
Autp K = {0;}, is the group of field automorphisms of K
which leave F fixed. The effect of Autp K on the primitive
Nth roots of unity is to permute them. Thus is Wy is a
primitive Nth root of unity in K, then

O'i(WN) = WJ]\;
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for some integer j; relatively prime to V. It follows from
this that

N-1 N-1 )
0i(Xx) = ) waoi(Wa)™* = Y 2, Wik
=0

n=0
hence the conjugacy constraint on { X} can be expressed
as
0i(Xi) = Xij,.- 42)
Example 1: For K = C and F = R, AutpC =

{00,01}, where
go:a+itb— a+1b
g, :a+ibr— a—1b.
Clearly, jo = 1 and j; = —1, therefore
)()c = Uo(Xk) = ijo = Xk
X; = Ul(Xk) = ijl = X_k
as expected. O
Example 2: For K = GF(q™) and F = GF(g),

Autr K is the cyclic group generated by the Frobenius
automorphisim o : a — af, i.e.

gi=0:a — aqi, 1 =0,1,---,m—1.
Thus j; = ¢' and we have
Xg'=0’,(Xk)=Xk]‘l=qux, i:O,l,---,m—l

which is the conjugacy relation for finite field sequences. O

For elements in { X}, define X; ~ X; if 0;(X}) = X;
for some o; € AutpK. It is easy to verify that ~ is an
equivalence relation on { X }. Thus ~ partitions { X} } into
disjoint equivalence classes which are the conjugacy classes
of {Xi}. The conjugacy class of a particular element X
is simply its orbit under Autp K

Orb(Xk) = {Ui(Xk) | o; € AutpK}.

Having specified the field extension K (the Nth cyclo-
timic extension of F') and established the conjugacy relation
(0i(Xk) = X4;;) and the conjugacy classes (Orb(X})) of
the Fourier transform of a basefield sequence, it remains to
be shown that K g admits a normal basis and that there is
a “projection operator” ¢ from K to F in order to carry
out the construction outlined in the previous sections. We
address each of these questions in turn.

A normal basis of K p is, as before, a basis consisting
of an element a« € K along with all its conjugates
with respect to the basefield F'. A normal basis can be
written as {o;(c)}. While normal bases are abundant in
CR. the existence of a normal basis is not even assured
in general field extensions. For one thing, in order for
{oi(a)} to be a normal basis for K, the cardinality
of the automorphism group must be the same as that
of the extension degree [K : F| (since K is a vector
space of dimension K : F] over F), a condition thst
is not satisfied in general. Fortunately, for cyclotomic
extensions, the condition does hold [18]-[20]. Furthermore,
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because cyclotomic extensions are finite extensions, the
equality of |AutpK| and [K : F] not only is necessary,
but also sufficient to guarantee the existence of a normal
basis. Cyclotomic extensions are finite Galois extensions,
i.e., finite, separable, normal extensions [18]-[20]. By a
classical theorem in Algebra (the Normal Basis Theorem),
all such extensions admit a normal basis [18]-[20].

Finally, we turn to the question of a linear functional on
K . In Section I, we loosely defined ¢ as

Tr(¢) = Z conjugates of (.

A more precise definition is
Tr¢ =) ai(().

The difference between the two definitions is a small
but important point; it has to do with the size of the
conjugacy class of . Given an element ( € K (assume
[K : F] = |Autp K|), the cardinality of the conjugacy class
of ¢ divides [K : F] (e.g., [C : R] = 2 => the conjugacy
classes are of sizes 1 or 2). Thus the first definition would
include only |Orb (¢)| terms in the sum whereas the second
(correct) definition would include [K : F] terms.

We now have all the ingredients necessary to construct a
basefield transform. Given a sequence {z,} in F, find its
Nth cyclotomic extension K. The extension is necessarily
finite and Galois over F. By the Normal Basis Theorem,
there exists an element & € K such that {o; ()} is a normal
basis for K . Let 3 € K be the generator of the dual basis
{o:(8)} of {o;(a)}. Then, the basefield transform is given
by

N-1
X = Z T, Tr (aWRF),

n=0

0<kE<N-1
N-1 _

oe=N"T'Y X, Tr(BW3™), 0<k<N-1
n=0

IX. CONCLUSION

In this paper we have attempted to draw out the close
connections between various transforms widely reported in
the engineering literature. We have shown that the discrete
combinational Fourier transform may be obtained as a
special case of the projection of the Fourier transform
from the complex field to the real field. We have shown
that by imposing the self-inverse condition on the discrete
combinational Fourier transform, one arrives at the con-
ventional Hartley transform. We have also shown that by
projecting existing fast Fourier transform algorithms, one
can derive the known fast Hartley transform algorithms
without resorting to trignometric identities. While the de-
velopment was confined to the familier real case, we have
cast it in a general framework which we believe illuminates
the relationship between the various transforms and also
provides a foundation for the extension of the technique to
more general fields. This has three main uses: First, by using
the tools developed in this paper, it is possible to derive the
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Hartley equivalent of almost any Fourier domain property
or algorithm. Thus one could devise, for example, slid-
ing Hartley transforms, pruned Hartley algorithms, power
spectrum computations, and so on. Second, the generality
of the approach makes it possibe to find applications in
situations where transform computations are performed in
an extension field of the basic field where the data are given.
Such situations occur, for example, in the area of error-
control coding. Finally, the projection method provides an
effortless way to develop efficient computational algorithms
over any field.

X. APPENDIX
DEFINITIONS OF MATHEMATICAL TERMS

This Appendix contains the definitions of some of the
mathematical terms that were used in the paper. The
definitions may be found in any standard textbook on
Algebra [19]-[22].

Injection, surjection, bijection: A function f : A — B
is said to be an injection if it is one-to-one. f is said to be
a surjection if it is onto. If f is both an injection and a
surjection, then it is called a bijection.

Involutionary: A function f is said to be involutionary
if it is its own inverse, ie., f~! = f.

Euler’s totient function: Euler’s totient function is the
function which assigns to each positive integer n the
number $(n) defined as the number of integers between
1 and n that are relatively prime to n.

Characteristic: If F is a field and Fg is the minimal
subfield contained in F, then Fg is isomorphic to @ (the
field of rationals) or Zp, p prime (the field of integers mod
p). If Fo is isomorphic to @, then F is said to be a field
of characteristic 0. If Fo is isomorphic to Zp, then F is
said to be a field of characteristic p.

Basefield, extension field: 1f F is a field and K is field
containing F', then F is called the base or the ground field
and K is called an extension field or simply an extension
of F.

Automorphism, Galois group, orbit: If K is a field, an
automorphism of K is a field isomorphism of K into itself.
If K is an extension of F, the set of all automorphisms of
K which leave the subfield F' fixed forms a group called
the Galois group or the automorphism group of K over F
(notations: Gal (K/F') or AutpK). If Gal (K/F) = {¢:}
and o € K, then the orbit of o under Gal (L/K) is the
set {pi(a)}.

Minimal polynomial, algebraic extension, algebraic clo-
sure: Let K be an extension of F and let a € K. If
there exists a nonzero polynomial f(z) € F[z] such that
fla) = 0, then « is said to be algebraic over F. The
unique monic polynomial of the minimal degree such that
f(a) = 0 is called the minimial polynomial of o. If no
polynomial exists such that f(a) = 0, then « is said to be
transcendental over F. If every element in K is algebraic
over F, then K is said to be an algebraic extension of F.
A field F that admits no proper algebraic extensions is said
to be algebraically closed.
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Separable, normal, cyclotomic and Galois extensions: Let
K be an algebraic extension of F. If for every a € K the
minimal polynomial of a has distinct roots in a splitting
field, then K is said to be a separable extension of F. If
every irreducible polynomial in F[z] that has a root in K
splits over K then K is called a normal extension of F.
An algebraic extension that is both normal and separable
is called a Galois extension (of F). Examples of Galois
extensions are the cyclotomic extensions which are the
splitting fields of the polynomials z™ — 1, n € Z.

Finite extension, trace orthogonality, dual and normal
basis, generator: If K is an extension of F, then K is
a vector space over F. If, as a vector space, K is finite-
dimensional, then K is said to be a finite extension of F.
Given a finite Galois extension K of F' of dimension m,
there exists ag,01, - * -, @m—1 in K such the {a;} is a basis
for the vector space K over F. The dual basis of {«;} is
defined as the basis {{3;} such that

(o) = b Vij
where tr(-) is the linear function from K to F' defined as

Q= > (0.

¢,eGal (K/F)

In other words, the bases {0;} and {o;} are frace-
orthogonal. If the basis {o;} consists of the orbit under
Gal (K/F) of a single element o € K, ie., {a} =
{¢i(a)|¢; € Gal (K/F)} for some « € K, then {¢;, (a)}
is called a normal basis and « is called the generator of
the basis.

Conjugates, conjugacy class: Given an element « in
K, an element 3 in K is said to be a conjugate of « over
F is a and (3 have the same minimal polynomial over F.
The set of all elements in K that are conjugates of « over
F is called the conjugacy class of c.
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