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Abstract

A novel and efficient algorithm for computing the maximum likelihood
estimates of multiple signals observed by an array of sensors is presented.
The algorithm provides estimates of parameters related to the directional
patterns of the sources as well as estimates of the location parameters of
the sources. Furthermore, the algorithm is equally applicable to wideband
sources and narrowband sources and does not require a knowledge of the
statistical properties of the signals.
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I - Introduction

The localization of radiating sources by a passive array of sensors is a

problem of considerable importance, occuring in a variety of fields ranging

from radar, sonar, oceanography and seismology to radio-astronomy. Therefore,

this problem has received considerable attention in the literature, resulting

in a variety of estimation schemes, most of which are suboptimal or limited to

special cases. A comprehensive literature survey, including more than 120

references is included in [1]; see also [2] for many other references not

discussed in [1]. Here we concentrate on maximum likelihood estimation

inspired by the recent work of Ziskind and Wax [3], and Feder and Weinstein

[4]. Unlike [3], our approach is not limited to narrowband signals radiated

by omnidirectional sources, and in contrast with [4], we do not assume known

signals or random signals with known statistics. However, our approach can be

considered as a modification of a special case of the EM

(Expectation-Maximization) algorithm for unknown deterministic signals [5].

This modification enables the algorithm to converge considerably faster than

the EM algorithm.

II - Problem Formulation

Consider N radiating sources with arbitrary radiation patterns observed

by an array of M sensors. The signal at the output of the m-th sensor can be

described by

N

x (t) = as(t-T mn) + Vm(t) ; m = 1,2,---,M . (1)

n=l

-T/2 < t < T/2
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where {Sn(t) are the radiated signals, {v(t)} are additive noise

processes, and T is the observation interval. The intensities a and the
mn

delays TM are parameters related to the directional pattern and relative

location of the n-th source and the m-th sensor.

A convenient separation of the parameters to be estimated is obtained by

using Fourier coefficients defined by

T/2

X m(Wt) {- xm(t)e dt

-T/2

where A = T ( 1+L)· t = 1,2,---,L, and L1 is a constant. In principle the

number of required coefficients tends to infinity. However, since we consider

only finite bandwidth signals, we can use only L < o coefficients. Taking the

Fourier coefficients of (1) we obtain:

N -jW Tmn
Xm((OL) = a e L Sn( ) + Vm(t) (2)

n=1

where S (at) and Vm(WL) are the Fourier coefficients of s n(t) and vm(t)

respectively. Equation (2) may be expressed using vector notation as follows:

X(tL) = A(wt)S(wL) + V(wL) = 1,2,--,L ; (3)

where

T

S(uL) = [s(u). s2(&). A)S(YL)I

A(wt) [V1(.,), Y2(@t).---.Vx(@t)]

A(W,) = [aL(e), at(02 )' a,(eN)]

[a'-jo ji t 2n -jTL-]T

a n) = 1n
e a 2n e ,- , e --- e
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We use 0 to represent all the parameters of interest associated with the n-th
-n

signal, namely m and Our main goal is to estimate the set

{n}N . Note that if the spectrum of the signals is concentrated around w1,

with a bandwidth that is small compared to 27r/T, then (3) reduces to a single

relation between the observation vector X(w1) and the parameters, i.e. L = 1.

In this case, it is customary to use many short observation intervals or

simply time samples, and the model becomes:

X(j) = AS(j) + V(j) ; j = 1,2,---,J , (4)

where the dependence on the single frequency w1 is suppressed, and j denotes

the index of the different samples. Note that the main difference between the

narrowband case and the wideband case is that A is the same in all the J

equations specified by (4) while A(Gt) is different in each of the L equations

given by (3). However, the estimation procedure discussed here is equally

applicable in both cases. In this communication we concentrate on the

narrowband case. The modification for the wideband case is straightforward

and is described in [5].

Under the assumption that the number of sources is known, the least

squares estimates of {0} is given by:

^ ~~~~N A J~2
{o} = arg min Q ; Q = ! jx(j) - A(j)| ; (5)

0n=l { e 0 j=i

where 11- denotes the Euclidean norm and 0 is the given parameter space.

Equation (5) also represents the maximum likelihood estimates under the

assumption that the noise vectors {V(j)) are i.i.d. zero-mean Gaussian with

covariance a2I.
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III - The Estimation Procedure

The minimization required in (5) is not trivial since the vector S(j) and

the matrix A are not known to the observer. However, whenever A is known Q is

minimized by choosing

S(j) = (AHA) AH X(j) (6)

as the estimate of S(j) for j = 1,2,---,J, where (.)H denotes the

Hermitian-transpose operation. Relation (6) enables us to update the

estimates S(j) whenever we have a new estimate for A. The main principle of

the algorithm is to perform successive minimization operations on each column

of A, holding all the rest of the columns and the associated components of

S(j) fixed. For example, suppose that we want to perform a minimization with

respect to the k-th column vector, then Q can be rewritten as

J

Q = [I j? ][k(j) - ak)k 112 (7)

j=l

where a(Ok) is the k-th column of A, Sk(j) is the k-th component of S(j) and

yk(j) is given by

yk(j) = X(j) - ASk(j) , (8)

where S k(j) is simply S(j) with the k-th component replaced by zero.

The minimization of (7) with respect to a(k, using (6) with A replaced

by a(Ok), is given by

J

a(0k) = arg min [ yk(j) - (k ) (0k)a( 0k) (H k) (i)l 
k e j=1

which is equivalent to

a(ek) = arg min 11 a(k ) 11-2 1 ](yk(j))Ha(pk)12 (9)

-k e e j=l
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M

Note that I1 a(k) I2 a mk. Since there is an extra degree of freedom

m=l

(due to the estimation of both {amn} and {S(j)}), there is no loss of

generality in assuming that |I _a(ok) 112 = 1. This simplifies (9)

considerably. Now note that a(Ok) may be decomposed as follows:

a(Ok) = Fr(k)ak (10)

where

'k = (alkk a2k.. ) '-k)

-iLTlk -J'LT2k LMkFr(k) = diag(e , e ,---,e )

k= (Tlk' T2k.'".TMk )

Using (10) in (9) we obtain

J

a(k) = arg max Tak{ r(k)X(j)(yk(j)) r(T)}k (11)
I1%1k = j=l

Since ak is a real vector the solution of (11) is given by:

Tk = arg max X iRkJ (12.a)

.Ik

-k ax (12.b)

where max {Rk} is the largest eigenvalue of the matrix Rk given by:

J
Rk = Re{ r H(_Tk)Yk(j)(k(j))HF(k )} (13)

j=l

and Umax is the associated normalized eigenvector.

The maximization described by (12.a) can be performed by a simple search

over the space of Tk, induced by all possible individual source locations, or

by a simple gradient subalgorithm.
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The algorithm is summarized as follows:

(a) Initialization: Select A = A (O). Set k = 1.

(b) Compute S(j) according to (6).

(c) Compute Rk according to (8), (13).

(d) Find ZTk' ak according to (12).

(e) Update A with the new a(Ok); set k = k+l; if k > N then k = 1.

(f) Check the convergence of A; if yes: done; if no: go to (b).

Observe that at each updating step (i.e. steps (b) and (e)), we decrease

the cost function Q defined in (5). Since Q 2 0 the algorithm will converge

at least to a local minimum of Q. Depending on the initial estimate of A and

on the structure of Q, the local minimum may or may not coincide with the

global minimum.

IV - An Example

To illustrate the behavior of the algorithm, let us consider an example.

Specifically, consider a uniform linear array of 5 sensors separated by half a

wavelength of the actual narrowband source signals. The sources are two

narrowband emitters located in the far-field of the array. In this case, if

7n denotes the bearing of the n-th source, n = 1,2, relative to the

perpendicular to the array baseline, the differential delay is given by

Tmn = (m-1)w sin(Qn). The first source at a bearing of 10 degrees was

T 
observed with the intensity vector a = [1,.8,.6,.4,.2]; the second source at

T
a bearing of 30 degrees was observed with 2T = [1, 1, 1, 1, 1]. In this case

the difference in intensity may be viewed as caused by the directional pattern

of the sensors rather than the directional pattern of the sources. We
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generated 50 independent samples at a SNR of 30 dB. The initial guess was

1(0 ) = 3 ° 2(0 ) = 42 ° , (0) 2(0) = [1, 1, 1 1, 1]T The algorithm
1 - -2 2 - 112

converged to within one degree of the right result in 16 iterations as shown

in Table 1. Note that the residual relative errors in a1 and a2 are

respectively 4.8% and 12.3%. (The relative error is defined by

I i - a. ||/11 ai II' ) This result is rather impressive if we consider that

110 independent parameters ({an} {in}, S(j)) have been estimated

simultaneously.

V - Conclusion

We have presented a general algorithm for obtaining maximum likelihood

estimates of superimposed signals. Perhaps one of the most distinctive

features of the algorithm is its ability to obtain estimates of the intensity

vectors {an}. These estimates may be useful in their own right, but also

their estimation is essential even if one is only interested in the delays in

cases where it is not appropriate to assume omnidirectionality. For example,

whenever a source is in the near field of the array, its radiation pattern can

rarely be assumed omnidirectional. This is also important in applications in

which it is unrealistic to assume that the radiation pattern of each sensor is

accurately known (this usually requires frequent calibrations and a large

memory).

Other features of the algorithm, including its application to array

processing of wideband signals, correlated signals (multipath), and cases when

only few time samples are available, and its application to spectrum

estimation of superimposed signals, are discussed in [5].

·--- · ~-------------~~I-`^ ~ c~ ~--1~1--~1--^~-11~1~~ 8



As mentioned in the introduction, the algorithm may be viewed as a

modification of a special case of the EM algorithm proposed in [4]. According

to the theory of the EM algorithm, the estimates generated in the M-step

should be used in the E-step. This may be applied to the present algorithm as

follows. Instead of updating S(j) using (6) in step (b), S(j) is updated by

replacing only its k-th component by the estimate, aH(0k)Ykj ), which can be

computed in step (d), following the computation of Tk and ak. Note that

H(k)Yk(j) is simply the value of Sk(j) that minimizes (7) whenever a(0k) is

known. It is clear that the last procedure typically will require more

iterations than the proposed procedure since the updating of S(j) is done

without using all the currently available information.

Finally, we would like to emphasize that the algorithm will converge to

the right result only if the initial estimates are good enough. Fast initial

estimates can be obtained by using simpler methods such as MLM, MEM, or MUSIC

procedures (see, for example, [1]).
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^ ^T ^ ^T
Iteration 1 al y2 2

No. degrees degrees

0 3.00 (1, 1, 1, 1, 1) 42.00 (1, 1, 1, 1, 1)
1 12.22 35.01
2 11.41 33.91
3 11.24 33.31
4 11.16 32.87
5 11.15 (1,.83,.63,.38,.15) 32.51 (1,.69,.62,.76,.85)
6 11.10 32.22
7 11.09 31.98
8 11.06 31.78
9 11.04 31.61
10 11.02 (1,.84,.63,.39,.15) 31.46 (1,.81,.75,.81,.87)
11 11.01 31.34
12 10.99 31.23
13 10.97 31.13
14 10.96 31.09
15 10.94 31.02
16 10.93 (1,.84,.63,.39,.15) 30.98 (1,.86,.83,.86,.91)

Table 1.

Evolution of the algorithm for the example.
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