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The emergence of wavelets has led to a convergence of linear
expansion methods used in signal processing and applied mathe-
matics. In particular, subband coding methods and their associated
filters are closely related to wavelet constructions. We first review
such constructions with a signal processing perspective. We then
discuss the idea behind signal adapated bases and associated
algorithms before showing how wavelets and subband coding
methods are used in signal compression applications.

I. INTRODUCTION

A. Linear Expansions in Signal Processing

Signal expansions, that is methods of writing a signal
as a linear combination of elementary “atoms” or building
blocks, are central to signal processing theory and appli-
cations. That is, we write a signal f belonging to a space
S as

f= Zanbz— ()

where the set {1;}icz is complete in S. We will concen-
trate on the case where the set is actually a basis, that is,
the vectors v; are linearly independent.!

For example, discrete-time signal processing is based on
representing band-limited signals (signals having a Fourier
transform supported between —= /T and =/T) by a linear
combination of sinc functions. In terms of (1), ¥;(t) =
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I'The case where the set is overcomplete leads to frames [1]. Frames
are often obtained as sampled versions of continuous transforms like the
continuous wavelet transform (CWT) or the continuous short-time Fourier
transform (STFT), and they are discussed elsewhere in this issue [2].

sin(w(t/T—14))/w(t/T —1) and o; = f(«T). The frequency
27 /T (that is, twice the maximum frequency present in
f(t)) is called the Nyquist sampling frequency.

Another standard example is the Fourier series expansion
of periodic signals with period 7' in terms of sine and
cosines of frequencies 2ri/T,i € Z.

In what follows, we will be mostly concerned with signals
that belong to Ly(R) (the space of square integrable func-
tions) or l3(Z) (the space of square summable sequences).
In that case, orthonormal or biorthogonal bases play a key
role. In the former case, there exists a complete set {¢); }iez
such that

(Y, ¥5) = 85 )

where (-,-) is the usual inner product in Ly(R) or I2(Z)
and 6, ; = 1 if ¢ = 4,0 else. Equation (1) becomes

f= iji, s ®3)

where the convergence is in the square norm sense. In the
latter, biorthogonal case, there exists a dual set {¢;}icz
such that

(i, 15) = i 5 @
and (1) becomes

f=3 200 i =3 D ©)

i

Usually, both for analytical and computational reasons, only
structured bases are of interest. Historically, the Fourier,
local Fourier and the Haar basis are typical examples [3].
That is, all the basis functions 1; are obtained through
a small set of transformations from a prototype function
1. These transformations typically include the shift, the
modulation, and the scaling operation. In this case, the
atoms used to write the function f are closely related to
each other.
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B. Time-Frequency Localization

A key concept in signal analysis is the notion of “local-
ization” in time and frequency. Given a suitable measure
of spread in time and frequency (e.g., second moment
in time and frequency of the function normalized to unit
energy [4]), one can define a region in the time/frequency
plane where the function is concentrated. Each atom in an
expansion has a particular localization, and in a structured
expansion, these localizations are related to each other
through simple transformations. The result is a tiling of
the time-frequency (TF) plane which depends on the set of
transformations. Typically, the short-time Fourier transform
leads to a rectangular tiling, while the wavelet transform
leads to a dyadic tiling.” If a signal is expanded using
a particular set of atoms, one gets a good picture of
the TF localization of the signal by considering the tiles
corresponding to the largest coefficients (in absolute value).
Obviously, certain tilings will be better suited for capturing
the TF content of certain signals, which leads to the concept
of “best bases” discussed in Section IV.

C. Multiresolution Signal Representations

An intuitive concept is that of multiresolution, or the
idea that one can consider a signal at different levels of
resolution. This notion is particularly evident in image
processing and computer vision, where coarse versions of
images are often used as a first approximation in computa-
tional algorithms. In signal processing parlance, a lowpass
and subsampled version of signal is often a good coarse
approximation for many real life signals.

It turns out that this intuitive paradigm is also the mathe-
matical framework for wavelet constructions, as formalized
by Mallat and Meyer [5], [6]. The wavelet decomposition is
a successive approximation method which adds more and
more projections onto “detail” spaces, or spaces spanned
by wavelets and their shifts at different scales.

In addition, this multiresolution approximation is well
suited to many applications. For the sake of example,
we will briefly discuss an obvious case where successive
approximation is useful, namely in browsing through image
databases as done for instance on the worldwide web.
Rather than downloading each full image, which would
be time consuming, one only downloads a coarse version,
which can be done speedily. Then, one can fetch the rest,
or additional detail, if the image seems of interest. This
indicates that the coarse version is probably more useful
than the detail. In communication applications, this leads to
transmission methods where the coarse version of a signal is
better protected against transmission errors than the detail
information [7].

D. Best Bases

Since one of the main applications of wavelets and
subband coding is compression, it is important to discuss
the difference between such methods and the more standard
transform coding methods like the Karhunen-Log&ve trans-

2For a picture of these tilings, see the article by Cohen and Kovadevié
in this issue.
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form (KLT) and its close cousin and approximation, the
discrete cosine transform (DCT). It should be noted that the
optimality of the KLT for compression can only be shown in
some limited cases (stationarity, fine quantization, [, error
measure [8]). For example, in low bit rate cases, and using
perceptual criteria, it is unclear what method would be best.
More generally, in the nonstationary case, there is no known
superiority of the DCT over wavelet/subband methods.

An interesting case is when an adapted basis is chosen,
that is, the transform depends on the signal. This is the case
for best bases, which try to find a tiling of the TF plane that
gathers most of the energy in the fewest possible number
of coefficients. An important feature is that no model of
the signal is assumed a priori.

E. Overview of the Paper

We start by reviewing the construction of structured bases
for [3(2) using multirate filter banks in Section II. The clas-
sic constructions of filter banks are presented. While this is
standard signal processing material, it comes with a twist,
since these constructions will be used to derive wavelet
bases for Ly(R) through Daubechies’ iteration algorithm
in Section III. This section presents the basic construction
of wavelet bases from filter banks, as well as variations on
that theme. Section IV addresses the construction of best
bases, especially with an eye on compression. The idea
of picking a basis that is suited to a particular signal is
appealing, but requires efficient algorithms that are also
presented. The impact of wavelet and subband methods on
signal compression is covered in Section V.

I. STRUCTURED BASES FOR [5(Z) AND
MULTIRATE FILTER BANKS

A. Filter Banks

Assume a sequence of real or complex samples®
z[nlnez in [3(Z), the space of finite energy sequences,
Snez |z[n]|?<oco. An orthonormal basis is a set
of sequences {i;[n]};cz such that (i;[n],9;[n]) =
Ynez YIn] - ¥;n] = & ; where x stands for complex
conjugation and the set is complete in [2(Z).

Structured bases are obtained when a finite set g;[n],i =
0.-- N—1isused to generate the infinite basis, for example
through shifts by N k

1/)i+kN[n]:gi[n—/cN], keZ, ¢=0,1,---N—-1.

©®

Expansion in such a basis can be computed using multirate
filter banks. Start by convolving the signal with filters
having impulse responses h;[n] = g;[—n]* followed by
subsampling by N. This first operation, commonly called
an analysis filter bank [10], [3], computes the expansion
coefficients. A synthesis filter bank, consisting of upsam-
pling by N followed by interpolation filters with impulse

3 We adhere to the signal processing convention that uses squafe brackets
for discrete-time sequences [9].

4The change of sign in the index is needed because convolution involves
time-reversal. :
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responses g;[n],4 = 0.--N — 1 calculates the linear
combination of the basis vectors, that is, the reconstructed
signal. The overall scheme is shown in Fig. 1 for a two-
channel case. Note that the output of the ith interpolation
filter is the orthogonal projection of the input signal onto
the space spanned by {g;[n — kN]}iez. Therefore, the
analysis/synthesis system computes projections onto N
orthonormal subspaces Sg,Si,---,Sny—1, followed by a
summation. Because the filter impulse responses g;[n] and
their translates by integer multiples of N form an orthonor-
mal basis, we have

So®S:1®---dSv_1 =k(2). ©)

where @ denotes the direct sum.

B. Design of Filter Banks

How do we design such an orthonormal filter bank?
We will concentrate on the two channel case with real
impulse responses, because it is the simplest and most
important case in practice. The problem consists in find-
ing a sequence go[n] which is orthonormal to its shifts
by two. The sequence g;[n] can then be easely found.
Taking a z-transform’ of the sequence go[n] or Go(z) =
Ynez go[n]z~", we can write the orthonormality condition
in z-domain as

{90[n], goln — 2k]) = 6 & F(P(2) + P(=2)) =1 (8)

where P(z) = Go(2)Go(z™ 1) is the deterministic autocor-
relation of the sequence go[n]. This relation is shown by
noting that the even terms of the autocorrelation are zero
except the central one, and expressing this in z-domain
using the subsampling formula [3]. On the unit circle (8)
becomes

IGO(ejwlz + IGO(ej(w+7r)’2 =9 )

that is, the filter is power complementary [10]. Such filters
are also called quadrature mirror filters (QMF’s).?

Given a sequence go[n] satisfying (8), one can show that
a sequence g1[n] with z-transform

Gi(2) =27 A(2)Go(=2"1), where
ADA* (z )y =1 and  A(z) = A(-2) (10)

is orthonormal with respect to even shifts, as well as
orthogonal to goln — 2k],k € Z. Together, {go[n —
2k], g1[n — 20]},1c z form an orthonormal basis for l»(Z).

A case of great importance is when the sequence go[n]
is of finite length L, that is, the filter is FIR. In that case,
the filter g;[n] is trivially related to gp[n] since A(z) in

(10) is simply z2!,1 € Z, or an even shift. Then, by taking -

SWe assume that the sequences we consider have sufficient decay so
that convergence on the unit circle z = e7“ is insured.

6 Actually, the original quadrature mirror filters [11] were linear phase
and nonorthogonal but satisfied a similar quadrature formula.
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Fig. 1. Two channel filter bank. (a) The two channels, with
filtering using h;[n], subsampling, upsampling and interpolation
filtering with g;[n]. (b) Spectrum splitting between low and
highpass filters.

the inverse z-transform of (10), g1[n] = (=1)""1go[—n —
2 +1)7

For the filter impulse response to be orthogonal to its even
translates, L must be even, or L = 2M. In order to satisfy
(8), P(z) must be a symmetric polynomial of the form

M-1
Pz)=1+ Z Pong1 (22T 4 z_(2"+1)) an

n=0

and P(z) must satisfy P(e’) > 0 since it is an autocorre-
lation function. Thus one way to design an orthonormal FIR
filter bank is to find an autocorrelation sequence satisfying
(8), and then to take its spectral factor. This last step
involves a choice in the phase of the factor (choice of zeros
inside or outside the unit circle) and a possible delay factor.

The above method has been used in the first designs of
orthonormal filter banks by Smith and Barnwell [12], [13]
and Mintzer [14] using traditional signal processing criteria
for the filter design (e.g., good out-of-band signal rejection).
Daubechies [15] used a different criterion leading to the
design of maximally flat filters that can be used to generate
wavelet bases (see Section III). In this design, the length
L = 2N filter is forced to have N zeros at z = —1, that
is, P(z) has the form

P(z) = (1;Z)N<1+2Z-1)N Rz  (12)

where R(z) = ro 4+ XN, (2" + 27") is chosen so that
the resulting P(z) satisfies (8). The case of the minimal
degree R(z) (having powers going from —N +1to N — 1)
leads to the shortest filters with N zeros at w = 7.

Given that the lowpass filter has N zeros at w =
m, the highpass filter G;(z) will then have N zeros at

7This can lead to noncausal filters. However, if go[n] is FIR, a finite
even shift of gy [n] will make it causal. The same holds true for the analysis
filters (which are time-reversed versions of the synthesis filters) and thus
in the FIR case, causality is not a problem if one can tolerate a finite delay
between input and output of a filter bank.
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w = 0 [see (10)]. Thus from the moment property of
the Fourier transform, it has N zero moments, and the
polynomial sequences {n*},n € Z,k = 0,1,---N ~1
are zeroed out by this filter. This zero moment property
has a certain importance in compression applications, since
smooth signals can be modeled approximately as a linear
combination of low order polynomial sequences, and will
thus lead to zero or at least small highpass components.
Note that the lowpass filter, by complementarity [see (9)],
is maximally flat at w = 0.

Fig. 2 shows the comparison between a signal processing
based design [13] and a wavelet oriented design [15] for an
FIR orthogonal filter. Note the good out of band rejection
in case (a) and the flatness and monotonicity in case (b).

One more design technique is based on the fact that
one can associate a unitary operator with an orthogonal
filter bank [10], [3]. Write the filters Go(z) and G4(z) in
terms of their even and odd components [called polyphase
components G;(z)]

Gi(2) = Gi(2%) + 271G (2, i=0,1. (13

It can be shown that the associated matrix of polyphase

components
_ (Goo(z) Goi(z)
G(Z)“<G3§(z) Gfi(z)) a

is unitary on the unit circle, and more generally, paraunitary
or

G(2)G(2) = G(2)G(z) =1 (15)

where the © stands for transposition and replacing z by
271 (as well as conjugation of the coefficients if they are
complex). The interest in such a polyphase representation
is that paraunitary matrices possess complete factorizations
in terms of elementary matrices of degree zero (rotations)
and one (diagonal matrix with delays) [16], [17]. Thus one
can optimize such a factorized structure to find a filter bank
meeting specific constraints. Note that the constraint of a
large number of zeros at w = = (as required for wavelet
designs) is difficult to enforce in this form.

C. Variations on the Filter Bank Theme

So far, we have discussed the two-channel orthogonal
filter bank case. An obvious extension is obtained by
cascading elementary two channel filter banks in a binary
tree structure. As to be expected, any such tree is again
an orthogonal filter bank. Such general tree structured filter
banks are often called wavelet packets [18] because the
resulting basis functions often resemble a localized train of
waves or wavelets.

The two most important representatives are the full tree
and the wavelet tree. In the full tree case, each band is
further split into two bands, and so on, leading to a balanced
tree. In the wavelet tree case, only the lowpass channel is
further split, leading to an unbalanced tree. Assume for
this discussion that each two channel bank performs an
ideal split-into a half-band lowpass and highpass channel,
respectively. Then, the full tree leads to an evenly spaced
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Fig. 2. Comparison of a traditional signal processing design
and a wavelet based design of an orthogonal lowpass filter.
(a) Length-eight Smith and Barnwell orthogonal filter and (b)
length-eight Daubechies orthogonal filter. ~ .

frequency analysis (each channel keeps 1/2%th of the
spectrum, where k is the tree depth) and we obtain an
approximation to a short-time Fourier analysis. In the TF
plane, a rectangular tiling is obtained. In the wavelet tree
case, only the lowpass part of the spectrum is further
analyzed, leading to an octave-band or constant relative
bandwidth analysis typical for wavelet schemes. Therefore,
such a filter bank is often called a discrete-time wavelet
transform. The tiling of the TF plane is a dyadic tiling, with
fine frequency resolution at low frequencies, and good time
resolution at high frequencies.

If one is interested in the actual basis functions of
such tree structures, one can use some simple multirate
identities and derive the equivalent filter impulse responses.
In particular, note that filtering with F(z) followed by
upsampling by two can be written as upsampling by two
followed by convolution with F(z?). Using this relation,
one can verify that a cascade of k stages of upsampling by
two and filtering by Go(z) is equivalent to upsampling by
2% followed by a convolution with

G (2) = Go(2)Go(22)Go(2%) -+ Go (22 1) Go (22 71).
(16)
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Fig. 3. Iterated two channel synthesis fiiter bank. The two equivalent impulse responses of the
lowest channel (iterated lowpass filters) and the first bandpass channel (one highpass followed by
iterated lowpass filters) will lead to the scaling function and the wavelet, respectively, as shown

in Section III.

This filter corresponds to the lowpass impulse response in
a wavelet tree. The next impulse response, corresponding
to the first bandpass channel, is found similarly to have a
z-transform given by

Gik} (Z) = GO(Z)GQ(ZZ)GO(Z4) eee Go(z2h—2)G1(22’“_1)'
an

These two impulse responses will play a critical role in the
construction of scaling functions and wavelets in the next
section. The equivalent synthesis filter bank is shown in
Fig. 3.

Instead of tree structured filter banks, one can design
multichannel filter banks directly. While the principles are
similar to the two channel case, the analysis and design are
somewhat more involved [10]. It is to be noted that block
transforms like the KLT or the DCT are particular cases
of N channel filter banks. Simply, the filters have a length
restricted to the block size N, which corresponds to the
subsampling factor. :

Another possibility is to relax orthogonality, and consider
biorthogonal FIR filter banks [19], [20]. In that case, the
analysis and synthesis filters satisfy a relation similar to
(8), namely

Ho(2)Go(z) + Ho(—2)Go(—2) = 2 (18)

where now Hq(z) is not necessarily a time reversed version
of Go(2). An attraction of biorthogonal solutions is that
linear phase (or symmetry/antisymmetry of the impulse re-
sponse) FIR filters are now possible, whereas it is excluded
in the orthogonal case (except for the trivial Haar filters,
where Go(z) = 1//2(1 4 2~1)). Thus biorthogonal filters
have become quite popular in image coding [21], [22].
The lack of orthogonality complicates quantization and
bit allocation between the bands (there is no conservation
of energy anymore) [23]. However, smooth filters can be
obtained: in particular, one can find synthesis filters which
lead to smooth wavelets. This in turn leads to smooth
approximations which are often more pleasant in image
compression. )
If finite impulse response is not required, then infinite
impulse response (IIR) filters can be designed. In the
orthogonal IIR case, because of time-reversal, causality
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will be violated in either analysis or synthesis (or both).
However, solutions like orthogonal linear phase filter banks
are now possible [24], [25]. The lack of causality is not
problematic in image processing, where the signal is finite
in size, and convolution can be applied in either direction
[26].

III. BASES FOR L(R) FROM ITERATED
DISCRETE-TIME BASES

A. Fourier-Like Bases

We are now concerned with functions or signals
in Ly(R), that is having finite squared norm
J |z(#)? dt < co. Again, structured bases are of greatest
interest. Historically, Fourier series are an important class
of structured bases, and they are useful for periodic signals
or signals of compact support. An obvious extension,
consisting in slicing an infinitely supported nonperiodic
signal into nonoverlapping adjacent pieces and- writing a
Fourier series for each piece, can be done.® The TF analysis
achieved using such a piecewise Fourier series (assuming
pieces of equal size 7") corresponds to a rectangular tiling
or a short-time Fourier transform with a square window.
However, the frequency resolution is not very good due
to the order (1/w) decay of the Fourier transform of the
window. Unfortunately, there are no better Fourier-like
local bases, as demonstrated by the Balian—Low theorem
[15]. An important feature is that, given the square
window, all the basis functions are obtained through
shifts (by multiples of T) and modulation (by complex
sinusoids of frequency 27k/T"). An excellent review of
such Fourier-like bases, also called Weyl-Heisenberg
wavelets, can be found in [27].

B. Wavelet Bases

A very different family of orthonormal bases is obtained
when choosing a family based on a single prototype but
using now shifting and scaling (instead of modulation)

Ymn(t) = 2”m/2w(§—;m£) (19)

8There are convergence problems at the boundaries due to the implicit
periodization of each piece.
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Fig. 4. First four iterations of the length-four Daubechies orthogonal filter. (a) k =1, (b) k = 2, -

© k = 3, and (d) k =

where the prototype function (t), called a wavelet, sat-
isfies a number of conditions so that the family is an or-
thonormal basis for L2(R). The frequency domain analysis
has constant relative frequency resolution and inverse time
resolution, which leads to a dyadic TF tiling. Historically,
the two most important wavelet examples are

» The Haar wavelet, with (¢) = 1,0 < t<1/2,%(t) =

—1,0 < t<1/2,0 else.

. The sinc wavelet, with Fourier transform V(w) =

1w <|w| < 27,0 else.

The first has very good time resolution and the second
very good frequency resolution. However, their resolu-
tion in the other domain is poor. The Haar construction
was considered somewhat of a curiosity, until the general
wavelet constructions of the 1980°’s were found. These
constructions can be roughly divided into two classes.
First, there are the direct constructions by Battle [28], [29],
Lemarié [30], Meyer [6], and Stromberg [31] which consist
in “smoothing” the sinc wavelet in the Fourier domain so
that the time domain function has faster decay. Then, there
are indirect constructions pioneered by Daubechies [15] and
based on discrete-time filters banks. These can be seen as
smoothed versions of the Haar wavelet, leading to better
frequency resolution. That is; all new wavelet constructions
can be seen as exploring the range between the two extreme
cases of the Haar and sinc wavelet.

Given our interest in signal processing, the Daubechies
construction is more relevant, since it leads to imple-
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mentable exact algorithms with finite complexity.” Let us
review this construction very briefly. We restrict ourselves
to orthogonal filter banks with finite length filters go[n] and
g1[n] of length L(g;[n] = 0,n ¢ [0--- L—1]). Consider the
k-times iteration of such a filter bank as in a discrete-time
wavelet transform leading to equivalent filters gé }[ ] and
{ }[n] [see (16) and (17)]. We can associate two piecewise
constant approximations to these impulse responses

n n+1
¢ (1) = o{" ], 55 St <2k,>7 k=1,2,
' 20)
n n+1
P00 =), 2<i<BXL po1y
@

Fig. 4 shows the iteration process for a length-four
Daubechies filter. As the iteration progresses, the piecewise
constant approximation resembles more and more a
continuous function, and indeed, the limit is continuous
[15]. Fig. 5(a) shows a family of scaling functions obtained
from length-four orthogonal filters.

From properties of the underlying filter banks, it can
be verified that the functions ¢{*}(¢) and 4 {¥}(¢) are
orthogonal to their integer shifts, as well as to each other
(also with integer shifts). Since the g;[n]’s are of finite

°The direct constructions lead either to algorithms with unbounded |
complexity, or finite complexity approximations.
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Amplitude

amplitude

Fig. 5. Examples of scaling function families based on four tap
filters. (a) Orthogonal family based on lowpass filters with one
zero at w = 7. At one end, one obtains the Daubechies scaling
function, while at the other, the Haar solution is obtained (the box
function). (b) Biorthogonal family based on symmetric length four
filters with impulse response [1, &, &, 1] and « going from —3 to
3. At one end (o = 3) is a quadratic spline, while at the other
(a = ~3) is highly irregular. For @ = 0 there is actually no
convergence of the iteration scheme. ’

length, the length of ¢{¥} () and 1%} (¢) remains bounded,
namely they are supported on the interval [0, L — 1].

Of great interest is the limit of ¢{*}(#) and 4{*}(¢)
when & — oo. We will not discuss convergence issues
here [15], [1] but simply mention that under relatively mild
conditions, we can consider infinite products in the Fourier
domain which correspond to the Fourier transforms of ¢(t)
and 1(t). |

Because the g;[n]’s are of finite length, G;(e’*) are
trigonometric polynomials. A necessary condition for con-
vergence of (20) is that Go(efw)L,,:,r = 0 which implies,
because of (9), that |G,(0)| = v/2. It will be convenient to
work with a renormalized version of Gg(e’*)

1
V2

1+ el

MO (w) = 3

Go(e/) = ( )NMa(w) 2)

where N is at least one because of the necessary con-
dition of at least one zero at w = w in Go(e’“). Note

RAMCHANDRAN ef al.: WAVELETS, SUBBAND CODING, AND BEST BASES

that both My(0) and M{(0) equal one because of the
renormalization.

Using the function Mo(w), it can be verified that as
k — o0, the Fourier transform of (20) becomes

P(w) = ﬁ My () (23)

=1

which is called the scaling function in a wavelet scheme.
The span of {¢(t—n),cz } defines a space called V. Equa-
tion (21) leads to, using the notation M; (w) = G1(w)/v/2

¥(w) = Mi(w/2) [] Mo(5) 24)
=2

which is the waveler. The space spanned by {¢)(t —n)ncz}
is called W.

The particular form of these products leads to interesting
properties of the associated functions. For example, the
scaling function satisfies a two scale equation property,
since

B(w) = Mow/2) [] Mo(57) = Mo(w/2)0(w/2) @5)

which in time domain equals

L-1
$(t) = V2 golk]g(2t — k). (26)

k=0

In terms of spaces, if we call V_; the span of {4(2t —
n)ncz} then Vo C V_; because of the two scale equation
(25). Further, it can be verified that V_; = Vi ® Wo.
Calling W; the space spanned by {1/2¥/24(2/t — n)}nez,
it turns out that the direct sum of W;,n € Z is Lo(R).!°
That is ¥, (t) as in (19) generates an orthonormal basis

for Ly(R).
A study of the infinite product in (23) shows that zeros
of Mo(w) at w = = play a key role. For example,

for V to contain polynomials up to degree M requires
My(w) to have M + 1 zeros at w = m, which is known
as the Strang-Fix condition. Conversely, more zeros at
w = w lead to smoother scaling functions. A key result
by Daubechies [15] was to show a sufficient condition on
the discrete-time sequence go[n] such that ¢(¢) is regular,
that is, it is continuous, differentiable, etc. This regularity
is obtained by placing a maximum number of zeros at
w = 7 while maintaining the orthogonality condition
(g0[n], go[n — 2k]) = 6j. This leads to a family of filters
first described in [15] and thus called Daubechies’ filters.
We show the first few scaling functions in Fig. 6.

The result is striking, because a very simple condition
imposed on the discrete-time sequence go[n] leads to strong
propetties of the associated scaling function ¢(¢).

Is regularity important in practice, especially considering
the fact that real implementations of wavelet expansions

10The exact conditions under which this holds true is the basis of
multiresolution analysis [5], [6].
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Fig. 6. Four scaling functions obtained from Daubechies filters. (a) Length-five scaling function
obtained from a six tap filter. (b) Length-seven scaling function obtained from a eight tap filter. (c)
Length-nine scaling function obtained from a 10-tap filter (only part from zero to seven shown). (d)
Length-11 scaling function obtained from a 12-tap filter (only part from zero to seven shown).

are often done in discrete-time using a finite iteration of
a filter bank? It is true that if no approximation is used,
such a scheme is simply a discrete-time orthonormal basis,
and regularity is not necessary. However, in most cases,
one is looking for a good approximation even if not all
coefficients of the expansion are retained, or only coarse
approximations of the coefficients are used. This is the case
in compression applications. Then, regularity becomes an
important feature. It is easiest to consider the case when
higher frequency (or fine scale) coefficients are dropped.
This corresponds to a truncated wavelet series, and thus
the signal is approximated by linear combinations of the
low frequency or coarse scale basis functions. If these are
smooth, the approximation is smooth, while if the filter is
not regular, the approximation is likely to be very jittery.
This intuitive argument can be verified in practice, for ex-
ample in real compression systems, where a certain degree
of regularity of an iterated filter bank is necessary [32].

C. Variations on Wavelet Constructions from Filter Bank

As to be expected, the Daubechies’ constraction can be
used with other filter banks as well, like biorthogonal,
multichannel, and multidimensional ones.

Take a biorthogonal filter bank with filters {ho, A1, g0,
g1}, where hg and go satisfy (18). We now consider the
iteration of both the analysis and the synthesis filter banks
(which are now not related by time reversal anymore).
Both filters need at least one zero at w = 7 or z. =
—1 for convergence of the iteration scheme, and thus
Ho{1)Go(1) = 2. Assuming that Ho(1) = Go(1) = v/2
(otherwise, rescale appropriately), we can define Mo(w) as
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in (22) and introduce
. N :
. 1 . 14ei\Y
M()((L)) = ﬁﬂo(ej ) : (——2——> Mol(w) Q@7
Then ®(w) and ¥(w) are as in (23) and (24) but in addition,
we define similarly ®(w) and W(w) based on (27) and
M;i(w) = Hy(w)/v/2. It can be verified that, if the infinite
products converge in Lo(R), then ¥(w) and ¥(w) generate
a biorthogonal basis through shifts and scales, and

7= ), g

An interesting question arises, namely that of the regularity
of the analysis versus that of the synthesis. They can be
very different and still form a valid biorthogonal expansion.
However, when a truncated series expansion is considered
as in a compression application, then a regular synthesis
will lead to smoother approximations, which is preferable
in practice. In particular, the perceptual quality is much
higher when a very regular synthesis filter is used.

Fig. 5(b) shows a biorthogonal scaling function family
which corresponds to length-four biorthogonal filter banks.
The difference in regularity is obvious.

The next class of possible wavelet constructions involves
multichannel filter banks. The easiest case is based on tree
structured filter banks, which generates wavelet packets.
One can think of this construction as correspondihg to the it~
eration of lowpass filtering and subsampling, followed by a
finite tree structured filter bank. The iteration part generates
a scaling function, which only depends on the lowpass filter,
while the final tree structured bank generates linear combi-
nations of this scaling function. The regularity is thus given
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by the lowpass filter. Consider the example of a depth-two
full tree filter bank. This will generate one scaling function
and three wavelets. The scaling function and the first
wavelet are as in the usual two channel case, and there are
two additional wavelets or wavelet packets. The key differ-
ence is that now, the scale change is by four instead of two.

More general wavelet packets are obtained from multi-
channel filter banks. In that case also, the regularity of the
lowpass filter is the key. Very similarly to the two channel
case, the N-channel case requires the lowpass filter to have
a sufficient number of zeros at the N-th roots of unity
(except one), that is at w = 27k/N,k = 1,2,---N — 1.
Then the iterated scheme can be applied to this filter
bank [33]. An advantage of this construction is that one
can obtain simultaneously finite support, orthogonality and
linear phase, since such filter banks do exist in the case of
more than two channels.

The multidimensional case is more open at this point.
While Daubechies’ construction can be applied in this
setting as well (including nonseparable filters and non-
separable lattices), a family of regular orthonormal filters
similar to the 1-D Daubechies’s filters has yet to be found.
The generalization of the Haar case to multidimensional
lattices is studied in [34] and nonseparable wavelet bases
are investigated in [35], [36]. An orthonormal compactly
supported wavelet basis for the quincunx lattice (nonsepa-
rable subsampling by two in R?) constructed in [36] was
shown to be continuous [37].

Finally, time-varying filter banks can be used to generate
multiwavelets, a new class of wavelets where a finite
number of wavelets and their shifts and scales are used [38].
This construction poses some interesting design questions,
since the infinite product in (23) becomes an infinite matrix
product.

D. Interaction of Continuous and
Discrete Time Computations

The construction of continuous-time wavelets based on
iterated discrete-time filters creates an interesting and new
link between continuous-time and discrete-time signal pro-
cessing. Another such link is the computation of the wavelet
series expansion using filter banks. This is known as
Mallat’s algorithm [5]. Assume we have the projection
of the original signal onto Vg, or z{%[n] = (é(t —
n),xz(t)), N € Z. Next, we wish to compute the projection
onto Vy, or

M) = <%¢(% - n),a:(t)> (29)

Using the fact that ¢(¢) satisfies a two-scale equation (26),

one can rewrite ¢(t/2) in terms of ¢(t) and its shifts. Using

the orthogonality of ¢(¢) and its translates, it then follows
- that

2 Mn] = Zgo [k — 2n]z {0 [k] = Z ho[2n — K]z O} [k]
k k

(30)
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where the last equality follows since ho[n] = go[—n]. Thus
once an initial projection'! is available, one can use a
discrete-time algorithm to compute the expansion coeffi-
cients. Thus an exact computation of wavelet expansion
coefficients is possible thanks to the two scale equation
property.

IV. ADAPTED BASES

A large class of compression algorithms exploits the fact
that applying a linear transformation to the input signal
can result in coding gain. Transform coding works on the
principle that if « is the input signal vector, and A a “good”
linear transform, then y = A - = is “easier” to compress
(due to better energy compaction and decorrelation of
the transformed signal [8], [39]), i.e., Cost(y) < Cost(z),
a cost metric Cost(.). For compression, the appropriate
metric is J = D+ AR of a quantized version § of the vector
y, trading off coding rate R for quantization distortion D at
a quality factor determined by the Lagrange multiplier A.

The traditional approach in compression is to use a
fixed transformation A (e.g., commercial image and video
compression standards like JPEG and MPEG use the DCT)
and then choose a quantization strategy matched to the
properties of the input process and the fixed transform A.
For example, in image coding, the DCT is popular because
it is a good approximation to the optimal KL T of Markov-
one processes with high correlation, a fairly good model
for images. The quantization strategy, i.e., for allocating
bits to the elements of y is typically based on a model
for their probability density functions, or in the absence
of an analytical model, from training over a large class of
“typical” possible signals z;.

One choice for (a fixed) A that has attained popularity in
image coding due to its recent superior performance is the
discrete wavelet transform. The wavelet transform gives
a logarithmic decomposition of the frequency axis: this
gives good frequency selectivity at lower frequencies and
good time selectivity at higher frequencies. This trade-off
is well suited to many signals which exhibit long-duration
low-frequency events and short-duration ‘high-frequency
events. When coupled with a quantization strategy that
exploits this characterization (e.g., zerotrees [40] and space-
frequency quantization [41]), the wavelet-transform has
achieved significantly improved performance over other
transforms like the DCT and represents the current state-
of-the-art in image compression.

While coding algorithms that use a fixed transformation
A can be useful if the class of signals z; is well suited
in some sense (e.g., in TF characterization) to the fixed
transform A, this may not be adequate for dealing with
arbitrary classes of signals with either unknown or time-
varying characteristics. For example, for signals or signal
segments having high frequency stationary components
(e.g., localized textures, stripes, etc. in images or other
periodic high-frequency phenomena), the wavelet transform

'This initial projection still involves integrals or has to be approxi-
mated.
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Fig. 7. The single tree algorithm finds the best tree-structured wavelet packets basis for a given
signal. (a) The algorithm starts from the full STFT-like tree, and prunes back from the leaf nodes to
the root node until the best pruned subtree is obtained. (b) At each node, the split-merge decision
is made according to the criterion: prune if J(parentnode) < [J(child1) 4+ J(child2)].

is a bad fit. This motivates us to consider an alternative,
adaptive, and more robust approach to dealing with a large
class of signals of either unknown or, more typically, time
(or space-) varying characteristics. In this approach, the goal
is to make the transformation signal-adaptive, i.e., to make
A vary with z. That is, we seek to find

reriln Cost(A - z). 31
To minimize this over all possible A is obviously infeasible,
since, even if the signal is of finite length, there are an
infinite number of N x N matrices. What if however we
constrain A to be a member of a very large (but finite) and
useful library of transforms? And what if this large library
has the added attraction of being easy to search? Then, this
is clearly a more desirable transform than the original fixed
transform, and it is certainly possible to find a lower cost
description of the signal than when A is fixed (especially if
the “old” fixed transform is included in the “new” menu of
choices). Of course we must be careful to ensure that we can
afford to pay for this flexibility (in terms of the overhead
cost needed to identify which library entry is chosen). For a
“universal” representation framework we must include the

cost L(A) of sending a description of the winning basis, -

thus the best possible cost outcome would be

Crain = mjn(Cost(A -z) + L(4)). (32)
For most image coding applications, the contribution of
L(A) to the total cost is small enough to have negligible
effect on the minimization, and it can be upper bounded as
an overhead of a fixed number of bits, being the logarithm
to the base two of the number of elements in the library. If
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the overhead Z(A) is not negligible, a suitable framework
such as Rissanen’s minimum description length (MDL) [42]
{or a more practical version thereof) must be chosen in
which the sum total of the bits needed to describe the model
(overhead) plus the data coded with respect to the model
needs to be minimized at a target coding quality. For this
discussion, we will ignore the role of L(A). 4

It deserves emphasis that we are interested in the best
expansion for an arbitrary fixed signal and a fixed cost
function. This is very different from the case of finding a
transform A that minimizes the expected value of Cost(A-
x) over an ensemble of signals (e.g., the Karhunen-Logve
transform minimizes the mean squared error cost for Gauss-
ian random variables using scalar quantizers). The main
advantage of this approach is that no models are assumed
and no training required (as in vector quantization meth-
ods), but restrictions to linear mappings of a constrained
kind need to be made, and complexity is increased.

The idea of searching for good representations from a
large library has something in common with the method
of matching pursuit [43]. The idea of adapting the repre-
sentation to the signal is related to the field of universal
coding [42]. Tree structured representations have also been
examined in a vector quantization context [44]. Quadtree
spatial segmentations for coding have been explored in [45].

In building our library of useful signal expansions, we
will take advantage of the recent insight that filter bank
structures merely represent different ways of constructing
bases for signal expansion. The advantages of using filter
banks trees as opposed to general linear expansions are
that they are efficiently implementable, and the set of all
possible trees based on some filter set provides a very large
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library of possible expansions (a 2-D decomposition of
maximum depth of five has a library of about 5.60 x 1078
bases!). More important, due to the tree-structure of these
bases, there are efficient tree-pruning algorithms to search
for the best basis for a desired input and (additive) cost
function. Note that we will consider orthogonal transfor-
mations, since then the MSE of the quantized coefficients
equals that of the reconstructed signal, enabling examina-
tion of quantization effects directly in the transform domain
[46], [8]. This is critical to the speed of the search for the
least cost best basis, when the cost includes quantization
distortion, as for compression applications.

As a first step toward attaining an adaptive transform,
it is clear that an improvement can be found if we search
over the whole set of binary trees for a particular filter set,
instead of using the fixed tree of the wavelet transform.
A fast algorithm to do this was employed by Coifman and
Wickerhauser [47] based on measures like minimum distor-
tion or minimum number of nonzero coefficients above a
certain threshold, etc. None of these is optimal for compres-
sion, where the appropriate cost function is rate-distortion
(R-D), i.e., a cost function which minimizes the coded
rate for a target quality level or equivalently minimizes the
quantization distortion for a target coding bit rate. Further-
more, the scheme of [47] does not address the important
task of optimizing the quantization scheme, which is key
to the lossy compression problem. The rate-distortion (R-
D) optimized best basis search was done by Ramchandran
and Vetterli in [48], where the quantization and best basis
choice were jointly optimized in an operational R—D sense
using the single tree algorithm, which is summarized now.

A. Single Tree Algorithm

A brief description of the single tree algorithm follows
[48]. The aim of the algorithm is to search for the best
basis (in compression efficiency sense) for the whole un-
segmented signal from the library of wavelet packet bases.
In order to achieve this, two entities are needed: a cost
function for basis comparison and a fast search algorithm.

Let us first address the cost function. The compression
problem is a constrained problem of minimizing the quan-
tization distortion D for a target bit rate R and is easier
solved by being converted to an unconstrained problem that
involves minimizing a cost function that involves both D
and R. This is the Lagrangian cost function J = D + AR,
which trades off rate for distortion at a “quality” factor
given by the Lagrange multiplier A > 0, which represents
the absolute slope of the R-D curve. The optimal slope \*
for a specific coding goal has to be matched to the target
rate R and involves a search in the )\ space, but this turns
out to be a very fast search due to the convexity of the R-D
function. Arbitrary (finite) quantization choices are assumed
available to quantize the WP coefficients in each tree node,
with both rate (R) and distortion (D) being assumed to
be additive cost metrics over the WP tree: i.e., R(tree) =
Y R(leaf nodes) and D(tree) = ¥ D(leaf nodes). Note
that first-order entropy and MSE measures for R and D
satisfy this additivity condition.
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Turning now to the fast search problem, one possible
approach to finding the best tree is the “greedy tree grow-
ing” algorithm, which starts at the root and divides each
signal in two if it is profitable to do so (if the cost of the
subsignals generated is less than the cost of the signal they
come from). It terminates when no more profitable splits
remain. It is easy to determine that this, however, does not
find the globally optimal tree, which is found by starting at
the deepest level of the tree, and pruning pairs of branches
having higher total cost than that of their parent.

We now describe the details using a 1-D case for simplic-
ity (See Fig. 7). The idea is to first grow the full (STFT-like)
tree (see Fig. 7(a)) to full depth (or some maximum fixed
depth in practice) for the whole signal. Note that due to the
tree structure of the bases, we now have available the WP
coefficients corresponding to all the bases on our search list.
That is, if we grow the coefficients of a depth-five tree, we
know the coefficients associated with all subtrees grown to
depth-five or less.

The next step is to populate each WP tree node with
the minimum Lagrangian cost over all quantization choices
for that tree node. This minimum cost at each node is
associated with the quantizer which minimizes the rate-
distortion tradeoff (for a fixed “quality factor” X)

J(node) = min [D(node) + AR(node)].

quantizer

Note the implication of this step—we do not yet know
if an arbitrary tree node will be part of our desired optimal
subtree choice, but we do know what quantization choice
to use for that node if it is part of the best basis subtree.
This is particularly satisfying because it has enabled us to
decouple the best quantizet/basis choice without sacrificing
optimality.

We now have remaining only the unfinished business of
finding the best basis. The special tree structure of the basis
can be exploited in formulating a fast tree-based search
strategy. The idea is to use a bottom-up recursive “split-
merge” decision at each node, corresponding to whether it
is costlier, in the Lagrangian sense, to keep the parent node
or its children nodes. This fast dynamic programming (DP)
based pruning method is also optimal because the signal
subspace spanned by the parent node is the direct sum of the
signal subspaces spanned by its children nodes thanks to the
orthogonality of the filter bank. We now describe the details.
Assume known the optimal subtree from a tree node n
“onwards” to the full tree-depth log N. Then, by Bellman’s
optimality principle of DP [49], all surviving paths passing
through node n must invoke this same optimal “finishing”
path. There are only two contenders for the “surviving path”
at every node of the tree, the parent and its children, with the
winner having the lower Lagrangian cost. That is, starting
from the full tree, the leaf nodes are recursively subjected
to an optimal split-merge decision, following a policy of

J(parentnode) < [J(child1) + J(child2)]

where J(childnode) corresponds to the cost of the cheapest
path that “goes through” the child node. Using this, we

Prune if:
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begin at the complete tree-depth n = log N and work our
way toward the root of the tree, using the above split/merge
criterion at each node, making sure that we record the
optimal decisions along the way, until we arrive at the
tree root. At this point, the best basis is known by simply
backtracking our way down the tree using our recorded
decisions at each tree node. In fact, both the best basis and
the best quantization choice are now known!

Of course, this corresponds to a particular choice of
A, which was fixed during this tree-pruning operation.
Unfortunately, this A may not be the correct one: we
want the one that corresponds to the target bit budget R.
However due to the convexity of the rate-distortion curve,
the optimal slope A* matched to the desired £ can be easily
obtained using standard convex search techniques, e.g., the
bisection method or Newton’s method or other standard

root-solving methods. An important point of note is that -

the Lagrangian method can only obtain solutions that reside
on the convex-hull of the rate-distortion curve, and thus,
a target rate whose optimal operating point is not on the
convex hull will be approximated by the nearest convex-
hull rate. In practice, for most practical coding applications,
the convex hull of the R-D curve is dense enough that this
approximation is almost exact.
We will now summarize the single tree algorithm:

» Grow a full balanced (STFT-like) tree to some desired
fixed depth (i.e., find all the WP coefficients associated
with all bases in the library);

« For a fixed A, populate each node of the full tree with
the best Lagrangian cost D + AR over all quantizer
choices (i.e., find the best quantizer choice for each
node); '

* Prune the full tree recursively, starting from the leaf
nodes (i.e., find the best basis subtree);

o Iterate over A using a convex-search method to meet
the target bitrate (i.e., match the best subtree/quantizer
choice to the desired bit budget).

The name for this algorithm is derived from the fact that
a single (frequency) tree is optimally pruned. For a signal
of size N, the computational complexity of this algorithm
is O(Nlog N). It is straightforward to extend the single
tree from 1-D signals to 2-D images, and it can be shown
by a simple inductive argument that the number of 2-D
bases S(d) searched by a single tree of depth-d is given by
the recursion: S(d) = [S(d — 1)]* + 1 with S(1) = 2. For
example, a depth-five 2-D wavelet packet decomposition
has a library of 5.60 x 107® bases!

B Adaptive Waveler Packers

The single tree algorithm finds a signal-adaptive best
basis (like the Karhunen—Logve basis) in a computationally
attractive framework and is a considerable improvement
over the fixed basis paradigm for handling signals with
diverse or unknown TF characteristics. However, the single
tree effectively finds the best “static” frequency decompo-
sition for the unsegmented signal taken as a whole. If the
signal is nonstationary or exhibits time-varying behavior,
the algorithm will choose a basis that is best in an average
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Fig. 8. A full double tree of depth-two for a 1-D signal. Dotted
lines represent the spatial tree, whereas solid lines represent the
frequency tree. ’

sort of way for the whole signal, but cannot adapt the
tree locally to different signal segments. A number of
signal classes in applications like speech, images, and
video typically exhibit time-varying characteristics that are
better handled if the frequency decompositions can be
made dynamic. For image representations, adaptivity can be
obtained, for example, by spatially segmenting the image
and finding the best WP (frequency) tree for each spatial
segment. This leads to the paradigm of adaptive wavelet
packets, i.e., wavelet packet decompositions that adapt
spatially in order to best match the signal’s locally varying
time- or space-frequency characteristics.

An algorithm that attacks this problem of segmenting the
signal in time and in frequency was introduced in [50] as the
double tree algorithm, which addresses the joint fast search
for binary time-segmentations of the signal, along with
the best WP frequency decomposition for each segment.
The double tree thus represents a hierarchical extension of
the single tree to accommodate binary time splits, so as
to better address time-varying signal characteristics using
time-varying filter banks.

1) Double Tree Algorithm: The basic idea of the double
tree algorithm is simple and is based on the single tree
algorithm described in the previous subsection. We explain
the double tree structure again through a 1-D. example
in Fig. 8, while the (separable) extension of the double
tree structure from 1-D signals to 2-D images is obvious.
Suppose the signal consists of four quarters labeled as
A, B, C, and D, respectively, in Fig. 8. We can grow a
single tree on the whole signal (ABCD), or we can first
segment the signal into two halves (AB and CD), and then
grow individual single tree for each half, or we can further
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segment the halves into quarters (A, B, C, and D) before
growing single trees for the quarters, and so on. In the end,
we have a redundant double tree structure for representing
the original signal, allowing both tree-structured time-
segmentations and frequency decompositions.

Basically, this algorithm calculates the best single-tree for
the whole signal and stores the cost. It then calculates the
best single-tree for the first and second halves (segmented in
time) and stores the costs. It then calculates the best single-~
trees for the signal segmented in time into quarters and so
on. These costs are written in a binary tree which is pruned
using the single-tree algorithm one more time, to find the
best binary time-segmentation jointly with the best WP fre-
quency decomposition corresponding to each time segment.

The name here is derived from the two kinds of trees that
are pruned, frequency trees (corresponding to the solid-line
trees of Fig. 8) associated with each dyadic segment of
the original signal, and temporal trees (corresponding to
the dashed-line trees of Fig. 8) associated with the time-
segmentations of the signal. The computational complexity
of the double tree algorithm can be shown to be of
O(N(log N)?) for a size N signal.

It can shown that the number of 2-D bases D(d) searched
by a double tree of depth-d is given by the recursion

D(d) = [D(d - 1)]* + S(d) - S(d - 1) +1

with D(1) = 2, where S(d) is the number of bases searched
by a single tree of depth-d. For example, a depth-five 2-D
double tree decomposition has a library of 6.5 x 10%¢ bases.

An example of a double tree space-frequency tiling for
an image coding application for the House image is shown
in Fig. 9.

Note that the side-information needed to inform the
decoder of the winning basis is more than that of the
single-tree but is still negligible for most practical im-
age coding scenarios. For example, for a double tree of
maximum depth-d, the number of bits in representing the
tree-structured side information is L¥=¢"! 4% bits, with
each bit specifying the spatial/frequency split decision at
each node of the best double tree. For a depth-five split for
a 512 x 512 image, the side information for conveying the
best double tree amounts to about 0.0013 b/pixel, certainly
negligible for most applications.

2) Boundary Filters: When the filter bank tree changes
over time, special treatments are necessary at the boundaries
between signal segments. One way to handle boundaries is
to use circular extensions. But circular extension usually
causes undesirable high frequency artifacts at boundaries.
Another approach, which does not introduce boundary arti-
facts, is to use symmetric extensions. However, symmetric
extensions require that the filters be symmetric, a condition
that is incompatible with having finite length orthogonal
filters in the two-channel case [15] (except for two-tap
filters). Since orthogonality has to be preserved across
segment boundaries, symmetric extensions cannot be used
in this case. So, the problem of designing an orthogonal
basis across boundaries in such a time-varying system is
an interesting one, and can be solved in a number of ways
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Fig. 9. Coding results using the double tree algorithm on the
“house” image. (a) Original image (b) Double tree segmentation
and tiling for the house at 1.0 b/p: dark lines represent spatial
segments, while light lines the frequency boundaries of the wavelet
packet tree. Note that the upper left corners are the lowpass
bands in each spatial segment. The maximum double tree depth
is five, and 341 b are sent as side information to convey the tiling
information.

[51], [52]. The double-tree algorithm uses the boundary
filters designed in [53].

3) Improvements to the Double Tree: The double tree-
algorithm represents a first step toward an adaptive
representation framework using time-varying bases, but
it exhibits an “unbalanced” TF tree in the sense that
it explores the choice of best frequency tree for every
binary time-segment of the original signal (so-called nodes
of the “time” tree), but it ignores the choice of time
segmentation of frequency decompositions (so-called nodes
of the “frequency” tree). See the double tree example of
Fig. 8, where it is clear that every node of the time or
spatial tree (dashed-line tree) is the root of a frequency
tree (solid-line tree) but not vice versa. This limitation has
been recently addressed in [54] and [55] where a balanced
TF tree representation that is a generalization of the double
tree has been defined together with a fast way to search
for the best basis, and has been successfully applied to

553



image coding using a space-frequency tree data-structure.
A simplified version of the TF-tree algorithm for the special
case of block transforms is considered in [54], while a
similar approach was used in [56] to search for the best
wavelet packet basis and in [57] for the best Walsh basis.
Thus there has been an evolutionary trail in the quest
for adaptive representations using linear expansions, from
the fixed wavelet tree to the (full-signal) adaptive single
wavelet packet tree to the (unbalanced time-segmented)
double tree to the (time-and-frequency segmented) balanced
TF-tree. While this is certainly an impressive evolutionary
tree (no pun intended), these algorithms all have the draw-
back that the segmentations they consider are binary (or
M-ary in general), which can be restrictive. To highlight
this point, suppose that we are given a signal with the
statistical characteristics of its first quarter A significantly
different from the remaining three quarters B, C, and D,
then this signal should be segmented into two subsignals,
with the first one consisting of just the first quarter A, and
the sécond one the rest three quarters BCD. However, when
a binary tree-structured spatial segmentation is attempted on
this signal, as in the double or TF-tree algorithm, in order to
have the first quarter of the signal as a segmented subsignal,
the original signal has to be segmented into two halves (AB
and CD) at the first level of the tree, which is inefficient for
the given statistics of the signal. Furthermore, as a direct
consequence of this, the best bases obtained from these tree
algorithms are very sensitive to time shifts of the original
signal, an undesirable property in most situations.
Recently, a way of mitigating this shift-variance problem
has been tackled through the proposal of a more flexible
spatial segmentation paradigm [58], [59] that is consid-
erably less sensitive to time shifts. In this approach, the
binary time segmentation constraint is relaxed, at the cost
of additional complexity, and a fast dynamic programming
based algorithm is applied to search for the best “flexible”
spatial segmentation tree (with the binary splits in the
frequency tree remaining due to the use of two-channel
filter banks, although this too can be generalized to the
M-channel case). This flexible spatial -segmentation tree
represents another evolutionary step in the generalization of
the existing trees, and its library of bases is a superset of all
previously considered ones. More importantly, by allowing
flexible segmentations, the algorithm of [59] overcomes
what may be perceived to be the real shortcomings of
these existing bases: the stationary nature of the wavelet
and single tree bases, and the constrained nature of the
time variation in the double tree and the TF tree. This
flexible representation is achieved by permitting time seg-
mentations of resolution L, i.e., time-segments ‘can begin
at any arbitrary integer multiple of the chosen L. For a
1-D signal of length N, a maximum of M = N/L time
segments (numbered from zero to M — 1) are permissible.
‘While an exhaustive search for the best segmentation would
require a complexity of O(2™), the approach of [58] uses
a fast dynamic-programming based algorithm whose search
complexity is only O(M?), assuming that the cost metric is
additive over disjoint spatial segments, which holds for an
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orthogonal basis and additive rate constraint, as achieved by
using the boundary filters of [50] and a first-order entropy
rate measure. We refer the reader to [59] for details of the
algorithm due to lack of space in this overview article. The
main idea is to find the optimal segmentation for signal
[0, kL — 1] recursively, based on those for all its admissible
subsignals. Computational saving is achieved by using the
known optimal segmentations for all previous subsignals in
a recursive manner, thus avoiding an exhaustive search.
Note that all the adaptive representations addressed so
far (the single tree, the double tree, the TF tree, and the
DP based segmentation) are constructed (and implemented)
using adaptive filter bank tree structures. In all these
constructions, the trees are assumed to be based on a fixed
filter kemnel (i.e., the low-pass/high-pass filter pair in-the
filter bank tree). An obvious question is: what about making
these filters also signal adaptive in addition to the tree
topology? Signal-adaptive filter design for subband coding
has been addressed in the literature [60], [61], where fast
algorithms are formulated to find the optimal design of
filters (FIR of a desired length) that optimize the cost
function (e.g., the coding gain). A globally optimal filter
bank design technique based on linear programming to
maximize coding gain has been recently described in [62].
A promising avenue for future research that represents
a universal approach to adaptive signal representation in
this framework consists in the jointly optimal formulation
of adaptive filters and adaptive tree structures using a
framework such as Rissanen’s MDL [42] to 'optimize the
trade-off between model complexity and performance.

V. APPLICATIONS TO SIGNAL COMPRESSION

This section gives a brief overview of the state of affairs
in compression using wavelet and subband techniques.
There is no attempt at exhaustivity given the space limi-
tations [63].

A. Successive Approximation Source Coding

Wavelet or subband techniques have had a significant
impact on the practice of signal compression. These tech-
niques have made it into standards that are now widely used
(for example, the MUSICAM standard used in CD quality
audio) and are also used in state of the art image coders.

One feature that makes such coders attractive is the
possibility to decode only part of the bitstream in order
to get a first approximation of the signal. This is useful
in applications that involves both ‘compression -and com-
munication, in particular in joint source-channel coding
methods. :

While successive approximation coding is not always the
best approach [64], in many instances, the best practical
coders also happen to be successive approximation coders.
Actually, if transmission issues are taken into account,
successive approximation coding together with appropriate
communication schemes can be best both in theory and in
practice, as will be discussed below.

Subband and wavelet techniques, through the concept
of best bases discussed in Section IV, are also a step in -
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the direction of universal coding, since no model of the
signal to be compressed needs to be assumed. Instead,
the expansion “fits” the signal. Together with adaptive
quantization and adaptive entropy coding, one achieves an
adaptive transform coder which can outperform fixed coders
(for example based on the DCT) in many instances. The
development of such a “universal transform coder” is a
topic of current research.

B. Successful Examples of Subband and Wavelet Coding

1) Wavelet/Subband-based Compression for 1-D Signals:
Among the most important 1-D signals to be compressed
are speech and audio signals. While the nature of these sig-
nals is different, the receiver is in both cases the human ear.
Inquiries into the psychophysics of hearing lead to models
which are essentially filter banks with some nonlineari-
ties (called masking effects). The filter bank has constant
bandwidth filters at low frequencies and constant relative
bandwidth at high frequencies. In our parlance, it behaves
like a short-time Fourier transform up to approximately 500
Hz, and like a wavelet transform above 500 Hz.

1t is thus natural to use filter banks to code speech and au-
dio signals. In the case of speech, because of the possibility
of using a sophisticated speech production model, methods
other than subband coding are used (e.g., adaptive linear
prediction) but in the case of music, all proposed methods
are variations of subband coding. The basic music coder is
the MUSICAM standard [65], [66], also sometimes referred
to as the MPEG-audio. Its basic form is a 32-channel short-
time Fourier transform and a perceptual model to allocate
bits in the channels. Variations on this theme have lead
to more sophisticated coders, using for example changing
window sizes [67]-[69]. This leads to an adaptive change
of time and frequency resolutions and allows to capture
transients (attacks) precisely with short windows, while
giving good compression of stationary parts using long
windows. For the design of filter banks better matched to
the auditory systems, see [70], and for the use of wavelet
packets for audio coding, see [61].

2) State-of-the-Art in Wavelet/Subband-Based Image Com-
pression: In recent years, the application of wavelets to
image compression [71], [40], [72]-[75] has drawn more
interest than any other application. Early wavelet-based
image coding algorithms were patterned after standard
transform-coding principles in that they were designed to
exploit (only) the wavelet transform’s ability to decompose
an image into statistically distinct frequency bands (i.e., to
compact energy into low frequency coefficients). Coding
gain was achieved by optimizing quantizers (scalar and
vector) for the statistics of each subband [72], [76]. These
early subband coding algorithms demonstrated modest im-
provements in coding efficiency over standard transform-
based algorithms. .

A new class of algorithms developed in the recent past
has achieved significantly improved performance over the
previous class [71], [40], [41], [77]-[79]. The distinctive
attribute associated with this new class of coding algo-
rithms is that while previous ones focused on only the
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Fig. 10. Optimal spatial segmentation and WP frequency decom-
position double tree in (a) and of the DP-based algorithm in (b)
for zero-mean AR first-order Markov signal. The first quarter has
variance = 100.0, and p = 0.1, the second and third quarters have
variance = 100.0 and p = 0.9, and the fourth quarter has variance
= 1.0, and p = 0.1. Note that the double tree degenerates to a
single tree while the DP algorithm correctly segments the signal.

frequency compaction properties of the wavelet transform,
the new algorithms exploit the wavelet’s space-frequency
compaction properties: the wavelet is able to both “fre-
quency compact” energy into a small set of low frequency
coefficients, and also to “spatially compact” energy into a
small set of high-frequency coefficients. In order to exploit
the spatial compaction property, these coders use spatial
data-structures which effectively serve as “pointing” mech-
anisms to identify where spatial energy is localized. While
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several researchers have made active contributions to this
new class of coders, we have insufficient room in this article
to pay homage to them all, and we will concentrate on an
illustrative few.

The most popular spatial mechanism in current state-of-
the-art wavelet-based image coders is the zerotree data-
structure that was introduced by Lewis and Knowles in [71]
and popularized by Shapiro’s embedded zerotree wavelet
coder [40]. The zerotree data structure is conceptually
very simple: it is a mechanism to indicate that a spatial
region corresponding to a tree-structured set of wavelet
coefficients has insignificant energy. The tree structure
is evident from the spatial localization property of the
wavelet transform. Following Shapiro’s work in 1993,
several researchers have explored the zerotree data structure
for image compression. An improved modification and
implementation of Shapiro’s embedded zerotree coder has
been recently described by Said and Pearlman [80]. A
jointly optimized (in the rate-distortion sense) application
of spatial (zerotree) quantization and frequency (scalar)
quantization has been introduced by Xiong et al. [41] as
a wavelet-based space-frequency quantizer -(SFQ), which
has obtained significant rate-distortion gains over Shapiro’s
coder. A novel unification of the wavelet and fractal image
compression frameworks based on the wavelet zerotree
data-structure has been described by Davis in [81].

The zerotree data-structure is but one mechanism to
exploit the spatial compaction (or clustering) property of
the wavelet representation. It accomplishes this by ef-
ficiently identifying spatial regions of insignificance (or
zeros), thereby implying the clustering of significance in
the remaining regions. Other mechanisms for exploiting
the spatial localization of energy in the high-frequency
bands have been explored by researchers, and these have
resulted in high-performance coding algorithms. Servetto
et al. [78] have proposed an image coder based on a mor-
phological clustering data-structure that exploits the spatial
localization of energy in high-frequency subbands. Joshi et
al.-[791 have introduced a spatially adaptive quantization
of image subbands using block classification. There have
been other image coding frameworks built around filter
banks including model-based, region-based, and nonlinear
approaches. Nonlinear filter bank decompositions have been
proposed by Egger and Li in [82], and recently a hierar-
chical nonlinear filter bank based image coding algorithm
has been introduced by de Queiroz ez al. [83]. Kossentini
et al. [84] have described a subband image coder using
entropy-constrained residual vector quantization.

Finally, as a brief illustration of the incorporation of more
powerful quantization strategies into adaptive transforms
based on filter banks, adaptive image representations based
on wavelet packets and spatially adaptive wavelet packets
have been addressed in [85] and [86] using extensions of the
SFQ framework of [41] to wavelet packet trees and adaptive
wavelet packet trees using the single tree and double tree
algorithms, respectively (see Section TV and Fig. 9).

3) Video Compression and Other High Dimensional Signal
Compression: The problem of video compression, that is,
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the compression of a sequence of images with high cor-
relation between the images, remains an active area of
research. Subband and wavelet methods ‘are either used as
a replacement of the DCT in standard motion compensated
coders [87], or directly when 3-D transforms are used. The
former method will not be further discussed here, since it is
a variation on a classic method. Three-dimensional subband
coding was proposed in [88] and has since enjoyed a certain
popularity due to its simplicity and multiresolution nature.

One approach that keeps both the multiresolution nature
of subband coding as well as the advantage of motion
compensation is pyramid coding of video [89], [90]. This
lead to a scheme for high quality coding of HDTV and
digital broadcast.

True 3-D subband coding methods have been further
investigated with interesting recent results [911-[93]. The
inclusion of motion models within 3-D subband coding is
not easy [94], [3].

Another signal with high dimensionality that requires
high quality compression is multispectral imagery as gen-
erated by remote sensing. See [95] for an investigation
of transforms and subband coding for this case. Similarly,
some medical imaging applications like tomography or nu-
clear magnetic resonance imaging require high dimensional
high quality compression, and three dimensional wavelet or
subband coding is a possible scheme.

C. Joint Source/Channel Coding

One of the important applications for the above-
mentioned source coding methods, using wavelets and
their adaptive extensions, is for transmission of images or
video signals over transport channels like the telephone line
or the terrestrial broadcast channel or over heterogeneous
networks like asynchronous transfer mode (ATM) or the

" Internet. Most transmission schemes are designed using

separately designed source coding and channel coding
techniques. This tradition of separating the source and .
channel coding tasks arises from the solid theoretical
foundation of Shannon’s celebrated separation principle
of source and channe] coding, which basically states that
this separation is optimal. For example, in a.point-to-point
transmission using a known, time-invariant channel (such
as a telephone line), one can design the best possible
channel coding method to approach channel capacity: i.c.,
achieve a rate R bits/second such that R < C where C
is the channel capacity in bits/second [96]. Then the task
of the source coder is to simply do the best job it can in
compressing the input source signal so that the compressed
bit rate will match the rate of the channel. No scheme can
do better theoretically in this scenario.

There are, however, several reasons not to adhere bhndly
to the separation principle. For one thing, the key word
under which Shannon’s results hold is “theoretically.” This .
actually implies having infinitely long and complex codes
which are obviously practically infeasible in real finite-
complexity systems having strict finite delay constraints
(e.g., for video). However there are other, even theoretical,
reasons to consider doing joint source and channel coding. -
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If the channel is time-varying or when multiple users are
present as in broadcast or multicast, it is even theoretically
better to jointly design the source and channel coder.

The detailed treatment of this topic is obviously beyond
the scope of this overview article on wavelets (if the
reader is wondering how they are even remotely related,
we beg for some patience) and falls under a well-studied
branch of information theory called multiuser information
theory [97]. We will simply illustrate through examples
how multiresolution source coding fits naturally into joint
source-channel coding principles. We will use the examples
of digital broadcast and of packet video. An important
concept in the transmission or channel coding scheme will
use a principle that we coin multiresolution transmission,
which can be construed as a dual of the multiresolution
source coding ideas described earlier.

Multiresolution transmission is based on the idea that
a transmission system can operate at different rates, de-
pending on the channel conditions, or that certain bits will
have better noise immunity than other bits in the case of
adverse channel conditions. Such a transmission system can
be achieved using different techniques, depending on the
transport medium. For example, unequal error protection
codes can be used, making the important bits more robust
than others in the case of a noisy channel. The combination
of such a transmission scheme with a multiresolution source
coder is very natural. The multiresolution source coder
segments the information into an “important” part which
reconstructs a coarse, first approximation of the signal (such
as the lowpass channel in a subband coder) as well as a
part which gives the additional detail signal (typically, the
higher frequencies). The coarse approximation is now sent
using the highly protected bits and has a high probability
of arriving successfully, while the detail information will
only arrive if the channel condition is good. The scheme
generalizes to more levels of quality in an obvious manner.
This intuitive matching of successive approximation of
the source to different transmission rates depending on
the quality of the channel is called multiresolution joint
source-channel coding.

1) Digital Broadcast: As a first example, we consider
digital broadcast. This is a typical instance of a multiuser
channel, since a single emitter sends to many users, each
with a different channel capacity. One can of course design
a digital communication channel that is tailored for the
worst-case situation, but that is somewhat of a waste for
the users with better channels. For simplicity, consider
two classes of users U; and U, having “good” and “bad”
channels, with capacities C; > Cs, respectively. Then, the
idea is to superimpose information for the users with the
good channel on top of the information that can be received
by the users with the bad channel (which can also be
decoded by the former class of users) [97]. Interestingly,
this simple idea improves the joint capacity of both classes
of users over simply multiplexing between the two channels
(sending information at rate R; < C to U; part of the
time, and then at rate Ry, < Cs to Uy and Us the rest
of the time). See Fig. 11(a) for a graphical description
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Fig. 11. Digital broadcast. (a) Joint capacity region for two
classes of users with channel capacities C; and Ca, respectively,
and C; > Cy. Any point on or below the curves is achievable, but
superposition outperforms multiplexing. (b} Example of a signal
constellation (showing amplitudes of cosine and sine carriers in a
digital communication system) using superposition of information.
As can be seen, there aré four clouds at four points each. When
the channel is good, 16 points can be distinguished, (or 4-b of
information), while under adverse conditions, only the clouds are
seen (or 2-b of information).

of the joint capacity region and Fig. 11(b) for a typical
constellation used in digital transmission where information
for the users with better channels is superimposed over
information which can be received by both classes of users.
Now, keeping our multiresolution paradigm in mind, it is
clear that we can send coarse signal information to both
classes of users, while superposing detail information that
can be taken by the users with the good channel. In [7],
a digital broadcast system for HDTV was designed using
these principles, including multiresolution video coding
[90] and multiresolution transmission with graceful degra-
dation (using constellations similar to the one in Fig. 11(b)).

2) Time-Varying Channels: The principles just described
can be used for transmission over unknown time-varying
channels. Instead of transmitting assuming the worst case
channel, one can superpose information decodable on a
better channel, in case the channel is actually better than
worst case. On average, this will be better than simply
assuming worst case all the time. As an example, consider a
wireless channel without feedback (i.e., the receiver knows
the state of the channel but not the transmitter). Because of
the changing location of the user, the channel can vary
greatly, and the worst case channel can be very poor.
Superposition allows to deliver different levels of quality,
depending on how good the reception actually is. An
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example of multiresolution joint source channel coding for
the case of time-varying channels without feedback using
the idea of embedded constellations of Fig. 11(b) can be
found in [98].

When there is feedback (as in two-way wireless com-
munication), then one can use a channel coding optimized
for the current channel [99]. The source coder then has to
adapt to the current transmission rate, which again is easy
to achieve using multiresolution source coding. A study of
wireless video transmission using a two resolution video
source coder can be found in [100].

3) Packet Video: Amnother example of application of mul-
tiresolution coding for transmission is found in real-time
services such as voice and video over ATM networks.
The problem is that packet transmission can have greatly
varying delays as well as packet losses. However, it is
possible to protect certain packets (for example, using
priorities). Again, the natural idea is to use multiresolution
source coding and put the coarse approximation into high
priority so that it will almost surely be received. The
detail information is carried with lower-priority packets and
will only arrive when the network has enough resources
to carry them. Such an approach can lead to substantial
improvements over nonprioritized transmission [101]. In
video compression, this approach is often called layered
coding, with the layers corresponding to different levels of
approximation (typically, two layers are used) and different
layers having different protections for transmission.

4) Multicast Over the Internet: It can be argued that be-
cause of increasing interconnectivity and heterogeneity,
traditional fixed-rate coding and transmission will be more
and more replaced by flexible multiresolution source cod-
ing and multiple or variable-rate transmission. The main
advantage is the added flexibility, which will allow users
with different requirements to be interconnected through a
mixture of possible channels. '

An example of such flexible codmg and transmission is
the video coding scheme and protocol described in [102] for
multicasting or broadcasting over the internet. This is built
on top of a multicast facility on the internet called MBone.
The Internet or rather the collection of networks that con-
stitutes the Internet is a very heterogeneous environment.
Some users might have access to MBone at several hundred
kb/s, while others might only get 64 kb/s (ISDN) or even
only 28 kb/s (modem).

Just like in the digital broadcast scenario discussed ear-
lier, multicasting can then be done either at the lowest com-
mon bitrate or using multiresolution techniques. In the for-
mer case, the least possible quality is given to all users. In
the latter case, each user gets the best possible quality given
his bitrate. The coder in [102] uses some simple biorthog-
onal subband/wavelet coder with high robustness to packet
loss to achieve a discrete set of bitrates to which users can
subscribe, depending on their particular channel capacities.
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