
On PAC Learning of Functions with Smoothness 
Properties Using Feedforward Sigmoidal Networks 

Nageswara S. V. Rao and Vladimir A. Protopopescu 
Center for Engineering Systems Advanced Research 

P. 0. Box 2008 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831-6364 
{ raons , prot opopesva}@ornl. gov 

"The submitted manuscript has been 
authored by a contractor of the U.S. 
Government under contract No. DE- 
AC05-84ORZ1400. Accordingly, the 
US. Government retains a nonexclu- 
sive, royalty-free license to publish or 
reproduce the published form of this 
contribution, or allow others to do so, 
for U.S. Government purposes." 

Paper submitted to Proceedings of IEEE journal. 

tResearch sponsored by the Engineering Research Program of the Office of Basic Energy Sciences, of the 
U.S. Department of Energy, under Contract No. DE-AC05-840R21400 with Martin Marietta Energy Sys- 
t em,  Inc. 



On PAC Learning of Functions with Smoothness Properties Using 
Feedforward Sigmoidal Networks 

Nageswara S. V. Rao and Vladimir A. Protopopescu 
Center for Engineering Systems Advanced Research 

P. 0. Box 2008 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831-6364 
{ raons,protopopesva} @ornl.gov 

Abstract 
We consider Probably and Approximately Correct (PAC) learning of an unknown function 

f : [0, lId H [O, 11, based on finite samples using feedforward sigmoidal networks. The un- 
known function f is chosen from the family F n C([O, lid) or F r7 P ( [ O ,  lid), where F has 
either bounded modulus of smoothness or bounded capacity or both. The learning sample is 
given by (XI, f ( X l ) ) ,  ( X z ,  ~ ( X Z ) ) ,  . . e, (X,, f ( X , ) ) ,  where X I ,  X2, * e ,  X, are independently 
and identically distributed (iid) according to an unknown distribution Px. For simplicity, we 
consider the feedforward networks with a single hidden layer of 1/( 1 + e-Tz)-units and bounded 
parameters, but the results can be extended to other neural networks where the hidden units 
satisfy suitable smoothness conditions. We analyze three function estimators based on: (i) near- 
est neighbor rule, (ii) local averaging, and (iii) Nadaraya-Watson estimator, all computed using 
the Haar system. It is shown that given a sufficiently large sample, each of these estimators 
approximates the best neural network to any given error with arbitrarily high probability. This 
result is crucial for establishing the essentially equivalent capabilities of neural networks and 
the above estimators for PAC learning from finite samples. The practical importance of this 
“equivalence” stems from the fact that computing a neural network which approximates (in the 
above sense) the best possible one is computationa!ly difficult, whereas the three estimators 
above are linear-time computable in terms of the sample size. 

1 Introduction 
Retracing the modern history of research on machine learning, Vapnik [24] identified four major 
turning points: (i) the first learning machines based on Rosenblatt’s perceptron (the 60’s); (ii) the 
foundations of the theory based on Vapnik-Chervonenkis’ and Chaitin’s results (the 70’s); (iii) the 
neural networks tide (the 80’s); and (iv) the return to the origin including alternatives to neural 
networks and refocussing on small (vs. asymptotic) samples (the 90’s). The search for alternatives 
has been prompted by a series of drawbacks of the neural network approach to machine learning 
and, in particular, to learning of functions. Indeed, despite notable successes in specific applications, 
general learning theory has not been advanced by neural networks and the performance analysis 
of neural network learning methods is still under development - with many issues unresolved. 
In particular, when the sample is finite (and small) most neural network learning algorithms are 
either not proven to converge or, when convergent to a local minimum, shown to perform poorly. 
From a practical viewpoint, fitting a neural network to data is still an artful, non-systematic, time- 
consuming, and often frustrating operation, while the complexity of computing a neural network 
remains high. Due to their wide use for learning and approximation [19] it is therefore crucial to 
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better understand and improve upon the performance of neural network algorithms. In this paper, 
we address two aspects of neural network algorithms for function learning, namely: (i) learning 
from finite samples and (ii) efficient computational alternatives. 

We address these issues in a statistical formulation along the lines of Cheng and Titterington 
[5] ,  in particular in the framework of Probably and Approximately Correct (PAC) of Valiant [all. 
Given independently and identically distributed (iid) points and the values of an unknown function 
chosen from a family 3, we consider the function estimation using feedforward neural networks. 
The unknown function is assumed to be continuous or essentially bounded with a bounded modulus 
of smoothness. We consider feedforward networks with a single hidden layer of 1/( 1 + e-Yz)-units 
and bounded weights. The results can be extended to neural networks with more hidden layers if 
units satisfy suitable smoothness conditions. 

We provide PAC results for three function estimators based on: (i) the nearest neighbor rule, 
(ii) local averaging, and (iii) the Nadaraya-Watson estimator, all computed using the Haar function 
system. We then show that for a sufficiently large sample, each of the above estimators approximates 
the “best” neural network to any given error, with any desired probability. 

Another aspect - perhaps a more important one from a practical view point - is the lack 
of algorithms with efficient finite sample performance to train a neural network. Experimentation 
with several widely employed gradient search methods, e. g. backpropagation, do not seem to yield 
very good rate of convergence in a number of applications. The existing guarantees of asymptotic 
convergence or finite sample results are conditioned on a number of smoothness and/or martingale 
conditions (White [25], Nedeljkovic [12], Rao et al. [lS]) that are very difficult to verify in practical 
cases. To overcome this difficulty, we specialize the three estimators above by employing Haar ker- 
nels. Our choice of Haar functions based estimators is dictated by their computational convenience 
and their ability to yield finite sample results. As a result, the estimated function value at a given 
point can be computed in O ( n )  time, for all three cases. With preprocessing, the second and third 
can be computed in O((logn)d) time using a range-tree precomputed in O(dn(logn)d) time. The 
practical implications of the equivalence of these estimators to neural networks could hardly be 
overestimated since these estimators are linear-time computable in terms of the sample size. 

Apart from providing computationally efficient approximations to neural networks, our finite 
sample results for the three estimators could be of independent interest as function estimators. 
Recent advances in PAC estimation of functions established that a function that achieves small 
empirical error on an iid sample yields a PAC approximation, under the finiteness of a combinatorial 
parameter such as the fat-shattering index [3,2]. Our results differ from those based on capacity (or 
related combinatorial parameters) in two directions: (a) under mild smoothness conditions on the 
function and/or the density, we can obtain stronger guarantees for the error between the function 
and the estimator; and (b) our estimators can be computed in linear time, unlike the general PAC 
solutions that usually require solving NP-hard problems. Despite their long history, we are unaware 
of any previous finite sample results for the above three estimators. Computationally our methods 
are similar to the regression tree [4], but their results are only asymptotic. 

The paper is organized as follows, Preliminaries and background material are presented in 
Section 2. The finite sample results for the three estimators are presented in Section 3. The 
equivalence results between these estimators and feedforward neural networks is discussed in Section 
4. 
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2 Preliminaries 
We consider a feedforward network with a single hidden layer of E hidden nodes and a single output 
node. The output of the j t h  hidden node is a(bTx + t j ) ,  where 2 E [0,lId, bj E ?Rd, t j  E 92, bTz 
is the scalar product, and o : [0, 11 H [0,1] is called an activation function. The output of the 
network corresponding to input x E ?Rd is given by 

1 

j=1 

where a = (a l ,  a2, . . . , .I) E 82‘ and w is the weight vector of the network consisting of a, b l ,  b 2 , .  . . , bl 
and t l ,  t 2 ,  . . . , t i .  We consider neural networks with bounded weights such that w E E-W, +W]1(df2) 
for some fixed positive W < 00. We consider hidden units of the particular form b(z)  = 1/(1+e-TZ), 
for y, z E 8. Let 3~ denote set of all functions implemented by neural networks of the above kind, 
with fixed d and m, and various values of w. 

A traking n-sample of a function f : [0, lId H [0,1], chosen from a family 3, is given by 
( X I ,  ~ ( X I ) ) ,  (X2 ,  f ( X 2 ) ) ,  . . . , ( X n ,  f ( X n ) )  where X1,X2,.  . . ,Xn ,  X i  E [0, lJd, are iid according to 
an unknown distribution Px ( X  = [0,lId).  The function Eearning problem is to estimate a function 
g : [0, lJd H [0,1], based on the sample, such that the expected error defined as 

is minimized over the class G of estimators. Consider D = 3~ and let f: E Fpv minimize I(.), i. e., 
fc is the best possible neural network in the sense of (2.1). In general, f; cannot be computed since 
both f and Px are unknown. Furthermore, since no restrictions are placed on Px, it is not always 
possible to infer fz (with probability one) based on a finite sample. Consequently, most often only 
an approximation g to fz is feasible. We consider conditions under which an approximation g to 
f;C satisfies 

for arbitrarily specified E and 6, 0 < E , S  < 1, where P = P t  is the product measure on the set of 
all iid n-samples. Thus the approximation “error” of g is to be bounded by E with a probability of 
1 - 6 (given a sufficiently large sample). 

P [ W  - I(f9 > €1 < 6 (2.2) 

n 

;=1 
Let j,,, minimize the empirical risk function Iemp(g) = Ig(z;) - f(z;)l over all g E Fw. 

By making use of the bounded capacity of Fpv (or using other characterizations, see Anthony [l], 
Haussler [9]), one can show that f w  satisfies the condition (2.2) given sufficiently large sample. 
However, the computational problem of obtaining f emp  by using neural networks is riddled with 
difficulties. In practice the training algorithm is terminated after a certain number of iterations 
which results only in a (sometimes poor) approximation of fern,. We show here that both the 
nearest neighbor rule, f, and the regressogram, f, provide such approximations. In particular, we 
show that, given sufficiently large sample, we have P [ l ( g )  - I(fz) > E] < b for both g = f and 
g = f. 

We consider another cost functional defined by 

and show that the Nadaraya-Watson estimator , f ,  PAC approximates, along the lines of Ey. (2.2), 
to the best possible neural network under this cost functional. 
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Let Q = [ O , l I d ,  and let C(Q)  and P(Q) denote the classes of continuous and essentially 
bounded functions defined on Q, respectively. For f E L"(Q), we have 

II f IIm= esssu~{If(z)I : 2 E 8). 
The modulus of smoothness of f f L"(Q) is defined as 

wm(f; .) = SUP (ess SUP If(. t h)  - f(.)I) 
Ihlm<t Q(h) 

where Q(h)  = {z E Q : z + h E Q }  and lhlm = max(lh11,. . . , l h d l ) .  We note that for continuous 
functions, f E C(Q), the modulus of smoothness coincides with the ordinary modulus of continuity 
defined as 

wm(f ;  .) = SUP If(.> - f(Y)l. 
I ~ - Y l o o < ~ t  ~ , Y E Q  

For a family {&},€r, A, E A, and for a finite set {al, a2,. . . , a,} 5 A,  we have [22]:  

II{Al}({a17a27...7an}) = { { ( % 7 u 2 7 - - . 7 % }  nA,},€F7 

n{A-,}(n) = alEzan ln{A-,}({u17a27 * -.,an>>l. 

i f n s k  { 2n < 1.5g if n > k. The following identity is established in [22]: lI{A,}(n) = 

Notice that for a fixed k, the right hand side increases exponentially with n until it reaches k 
and then varies as a polynomial i n  n with fixed power k. This quantity k is called the Vapnik- 
Chervonenkis (VC) dimension of the family of sets A,. 

For a set of functions, the capacity [23] is defined as the largest number h of pairs (xi, y;) that 
can be subdivided in all possible ways into two classes by means of rules of the form {O[(y - 
f ( ~ ) ) ~  + ,B]}( j ,p)  where (f,P) E F x 82 and O ( z )  is the Heaviside step-function defined as 

1 i f .z>O 
O(z) = { 0 f z < 0 .  

Thus the capacity of a family of functions F is the VC dimension of the set of indicator functions 
M Y  - f(xN2 + Pl) ( f ,P)€m?* 

For rn = 0,1,. . ., let Qm denote a family of diadic cubes such that [0, 1Id = U J, J n J' = 0 

for J # J', and the d-dimensional volume of J ,  denoted by IJI, is 2-dm. Let 1j(x) denote the 
indicator function of J E Qm: ~ J ( Z )  = 1 if z E J ,  and ~ J ( z )  = 0 otherwise. For given m, we define 

JEQm 

Pm : .Cm(Q) H Cm(Q) by 

for z E J and J E Qm [SI. Consider a kernel given by P,(z,y) = Z d m  ~ J ( z ) ~ J ( Y )  for z, Y E Q. 
JEQm 

Then an estimator for a density p E ,Cm(Q) based on n-sample is given by (Ciesielski [SI) 

l n  
j=1 

j m , n  = - pm(z7xj) 

which can also be written in the form Pm., = n(J)hJ(z) with n ( J )  = i l { j  : Xj E J}I and 
JEQm 

h ~ ( z )  = k l j ( z ) .  
The following result, due to  Ciesielski [6], will be used in the construction of the PAC learning 

algorithms. 
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Lemma 2.1 [6] Let 0 < cy 5 1 and f E C(Q) or f E Lm(Q) be given. 
u ( f ; r )  = O ( r a )  as r --f O+ implies 

Then the condition 

11 f - Pmf /loo= C / Y m  as m -j 00 

for some C > 0. 

3 Function Estimation: Finite Sample Results 
The unknown function f is chosen from the family ’ 3 n C([O, lid) or 3 n P ( [ O ,  lid), where F 
has either bounded modulus of smoothness or bounded capacity or both. We consider three types 
of function estimators for class of continuous functions (the case of essentially bounded functions 
follows directly). The first one is based on the nearest neighbor rule applied to each cell of Qm. The 
second is a local estimator based on “averaging” the function values within each cell of suitably 
chosen Qm. When the functions have bounded moduli of smoothness, these estimators provide 
distribution-free results. The third estimator, called Nadaraya-Watson, applies to a more particular 
case where the density exists and also satisfies some smoothness properties. Not surprisingly, the 
Nadaraya-Watson estimator based on the Haar system provides better guarantees under the cost 
.loo(.). 

3.1 Local Nearest Neighbor Rule 
Based on the n-sample ( X I ,  f ( X , ) ) ,  (X2 ,  f ( X 2 ) ) ,  . . ., ( X n ,  f ( X n ) ) ,  the nearest neighbor estimator 
for the function f is given by 

fm,n(z) = lJ(.)JVJ(.) 
JEBm 

where for z E J ,  &(z) yields f ( X ; )  such that X ;  E J is closest to z in sup norm. As shown later, 
this estimator has a higher computational complexity than the other two when preprocessing is not 
allowed and also provides a weaker performance guarantee. The trade-off is that it only requires a 
bounded modulus of smcothness and does not require bounded capacity. 

Theorem 3.1 Consider a family of continuous functions F C([O, 1Id), with range [O, 11 such that 
for every f E 3, we have ww( f; r )  5 kr as T -+ 0. Suppose that the size of the sample, n, is larger 
than 

where m = log(2C/~) is larger than a suitable constant mo. Then for X distributed according to 
Px and any f E F, we have P [ E l f ( X )  - f ; ,n(X)I  > E ]  < 6. 
Proof: First we consider 

P [ E I ~ ( x )  - fm,n(X)I > €1 5 P[EI~(x) - ~mf(x)I > ~ / 2 ]  + P [ E I P ~ ~ ( x )  - f m , n ( ~ > I  > ~ / 2 ] .  
Under the hypothesis o,(f; r )  5 kr we have 11 f - P, f llw5 Clam due to Lemma 2.1 for m 2 mo, 
for suitable constants mo and C. By choosing rn such that Clam 5 ~ / 2 ,  the first term on the right - 

hand side becomes zero. The second term is upperbounded by 
r 1 

’Some additional measurability conditions are required on F, which are assumed to be satisfied throughout the 
paper, and are not repeated here since they do not play a direct role in our proofs; see Pollard 1131 for details. 
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Now we note that f E F has bounded modulus of continuity in each J E Bm with a constant k. 
By the mean value theorem, lh 1 f ( z )dz  - f(z)I 5 k/2" for z E J ,  and 

J 

From Rao [17], we have the following result: let FL(~) denote the set of functions f : [0, lId H [0,1] 
that are Lipschitz with constant k, i.e. for every f E 3 ~ ( k ) ,  we have If(.) - f ( y ) l  5 klx - yloo for 
all z, y E [ O , l l d .  Given a sample of size at least 

4k2d3e €2 ln2 (-) + 2 ,  

r 1 
E l f i v ~  - f l  > E < 6, where f N N  is the nearest neighbor rule. By suitably J 

applying this result to each individual J E Bm such that f is replaced by Jf(z)da: due to the mean 

.value theorem above, we obtain (after a lengthy but straightforward calculation) 
J 

which yields the required bound on the sample size. 0 

3.2 Local Averaging 

Based on the n-sample, the first estimator of the function f is given by 

ghich evaluates to  w, for x E J .  Estimators of t h k  general structure are called regres- 
X i G J  

sograms [16] (this estimator, however, is not identical to the traditional regressogram). The next 
theorem provides a finite sample result for this estimate. 

Theorem 3.2 Consider a family of continuous functions F 2 C([O, 1Id), with range [0,1] and 
capacity h such that for every f E 3, we have woo( f; T )  = O(ra)  as T + 0 ,  for 0 < Q 5 1. Suppose 
that the size of the sample, n, is larger than 

max [ 2 (2;;:) - l'h , ( h22;+l2)] 

where m = klog(BC/~) is larger than a suitable constant mo. Then for any X chosen according to 
the distribution Px and any  f E F, we have P [ I f ( X )  - fm,n(X)I > €1 < 5. 

Proof: We have for any X chosen according to the distribution Px, 

P [If(x) - fm,n(X)I > e] 5 P [ I f ( X )  - Pmf(X)I  > 6/31 -I- P [ I f 'mf (X)  - Ef(X)I > €/3I 

+P [IE~(x) - fm,nI > ~ / 3 ]  * (3.3) 

6 



Under the hypothesis w,( f ;  r )  5 O ( P )  we have 11 f - P, f ll,5 C/2m due to Lemma 2.1 for 
m 2 mo, for suitable constants rno and C. By choosing m such that C/ZCym 5 ~ / 3 ,  the first term 
on the right hand side becomes zero. 

By Chebyshev's inequality the second term is upperbounded as follows 

The third term is upperbounded as follows 

Let FJ = {f(Z)lJ(Z)I  f E 3). The capacity of FJ is upperbounded by that of F. By Vapnik's 
result (1223, pp. 190), we have for any f(.)lj(.) E FJ, 

1 > E  <9- (2nIh e-n2 ,4 
XifJ I J l  ] h! 

-nP 
Combining the results we have P [I f(X) - f,,+(X)I > E] 5 + 2m+h9dezm+s. h! The first term 
is bounded by 6/2  if m = +log(4C/~6) is larger than a suitable mo. This condition also ensures 
that C/2am 5 6/3 which in turn assures that the first term in Eq. (3.3) is zero. The second term 
is bounded by 6/2 as follows. Consider that 6 = anbe-nc for suitable values of a,  b and c. First, 
we obtain n = 2 [ln(2/6) + blnn]. By choosing n 2 ( 2 ~ / 6 ) ' / ~ ,  the required sample size is given by 
n 2 2/cblnn. This latter condition can be ensured by n 2 4/c2b2. Thus the required value of 6/2 
can be ensured under the sample size n = max ((2u/6)I/*,  4b2/c2). The theorem follows. 0 

3.3 Nadaraya-Watson Estimator 

We now present a third type of estimators that provide a better guarantee under additional con- 
ditions on the densities (similar in some sense to [20]). Based on the n-sample, the estimator is 
defined by 

for 
(Prakasa Rao [IS]). Here we use the kernels generated by the Haar functions (see also Engel [7]). 

Theorem 3.3 Consider a family of functions F C C([O, lid) with range [0,1] and capacity h < 00 

such that w,( f ;  r )  = O ( r f f )  as r --+ 0, for 0 < cy 5 1. We assume that: (i) there exists a family of 
densities P C([O, lid); (ii) for each p E P,  w,(p; r )  = O(rQ)  as r ---f 0, for 0 < CY 5 1; and (iii) 
there exists p > 0 such that for each p E P ,  p ( x )  > p. Suppose that the sample size, n, is larger 

E J .  Estimators of this general structure are called Nadaraya-Watson kernel estimators 

than 
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l / d + l / a - l / h f i  I/d+I/a-I/2afi where 0 < ,B < &/2(a + d ) ,  m = 

Then for any f E F, we have P 

and X = b ( 3 )  + b ( - )  
If(.) - fm,n(z)I > E]  < 6. 

f ( X . 1  $ E +  
X j € J  1 -w X j € J  X j f J  

Proof: We have fm,%(z) - where the denominator jm,+(z) = & for z E J is 

the density estimator of [6]. Under the conditions of the theorem, Nadaraya [ll] shows the following 
decomposition: 

We use Ciesielski's estimate [6] to bound the second and third terms by the application of the 
following: 

+P [SUP X lPmP(.) - P m , n ( 4 1  > 4 2 1  - 
The first term is made zero by choosing C/aam 5 z/2 and the second term is upperbounded by 
b(2/z)1/d+11a-'/2afi for suitable constant b (from proof of Theorem 3.13 of [SI). Now we have the 
first term of Nadaraya's decomposition bounded by 

+P [SUP X l4n(4 - EnfP(z)l > Y/2] * 

The first term in the right hand side can be made zero by suitably choosing rn, and the second 
term is estimated using the finite capacity: 

Note that for z E J ,  Pmfp(z) = hJf(z)p(z)dz which is the expectation of f ( z > l ~ ( x ) .  Then 
J 

n 
fm,n(z) = E f(Xj) = f(Xi)lJ(Xi) is the empirical mean of the the function f ( x > l ~ ( z ) .  

Xi (5.7 i=l 
As in the case of Theorem 3.1, we apply Vapnik's bound to obtain 

n e  h -nc2/22m+' 
X h! 

l/d+l/a--1/2ap l /d+ l /a - l /2a@ . The rest is as in Theorem 3.2. 0 + where X = b (?) 
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3.4 Computing the Estimates 
Computation of fm,n(z) or Fm,,(x) at given x involves obtaining the local sum of f (X i ) ' s  that are 
contained in J containing z. The range-tree (see Preparata and Shamos [14]) can be constructed to 
store the cells J that contain at least one Xi ;  with each such cell we store the number of the Xi's that 
are contained in J and the sum of the corresponding f (X;) 's .  This computation can be achieved 
by known methods [14], and the values of J containing x can be retrieved in O((logn)d)  time, and 
then fm,n(x)  or fm,n(z )  can be computed in additional constant time. This same structure can be 
used to store the training sample of each J; once J containing x has been identified, fm,n(x)  can be 
computed in linear time. The following result directly follows from the results on range-tree [14]. 

Theorem 3.4 Based on a preprocessing in O(n(logn)d-l)  time, resulting in a structure of size 
O(n(logn)d-l) ,  the estimator fm,n(z )  or fm.n(x) for given x can be computed in O((logn)d) time. 
With no preprocessing, for given x ,  fm,n(x), f; ,+(x),  and fm,n(z) can be computed in O(n) time. 

3.5 LC"-F'unctions 

Similar results can be shown for functions in P ( [ O ,  lid). Recall that C([O, lid) c Lc"([O, lid) and 
the latter allows for discontinuities in the functions. Only minor changes to the proofs of last 
section are needed to establish the following result. 

Theorem 3.5 Consider a family of functions 3 C .C"(Q), with range in [0,1] except on a set of 
measure aero and capacity h < 00 such that for every f E 3, we have woo( f ;  r )  = O ( r a )  as T +. 0 ,  
for 0 < cy 5 1. For any X chosen according to distribution Px, we have for any f E 3 

for the sample sizes given in Theorem 3.1 and 3.2 respectively. Under the conditions of Theorem 
3.3 with C(Q) replaced by  .C"(Q), for any f E 3 and for suficiently large n like in Theorem 3.3, 
we have P [\I f - fm,n IlW> e] < 6. 

4 Approximation to Neural Networks 

Consider that 3w 3, i. e. the class F includes all functions approximated by feedforward networks 
of the form defined in Section 2. We now show that the nearest neighbor rule and regressogram 
provide approximations to the best possible neural network in the sense of Eq. (2.2). We show a 
technically stronger result that can be illustrated as follows for fm,n: 

P[I(fm,n) - I(f) > €1 < 6 
and I ( f c )  2 I ( f )  = 0, which implies P[l(fm,n - I ( f c )  > E] < 6. This result means that the 
nearest neighbor rule can PAC approximate the unknown function f with parameters E and 6 even 
when the best neural network fails to (but, fm,n can do no worse than f: in the PAC sense with 
parameters E and 6). Same reasoning applies to regressogram. 

Theorem 4.1 Consider a family of continuous functions 3 C([O, lid), with range [0, 13 such that 
for every f E 3, we have urn( f ;  T )  5 kr as T -+ 0, for 0 < cy 5 1. Further let k = where 
a = m- /ail and b = mw lbijl. Then the nearest neighbor rule f;,n approximates the best possible 
feedforward network f: such that 

'13 
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given a sample of size 

22mda2 €2 b212d3e ln2 ( 23mda2b212d3e) S€2 

where m = dlog(4C/d) is larger than a suitable mo. Consider that 3 has capacity h < 00 and 
woo( f; r )  5 kra, such that k = 9. The regressogram fm,+ satisfies 

given a sample of size stated in Theorem 3.2. 

Proof: We first estimate an upper bound on the Lipschitz constant off,,,. Let us expand fw(z )  as 

6j;zi + tj). The estimate on the Lipschitz constant can be obtained by maximizing the 
1 d 

j=l i=l 
aja( 

partial derivative e. First note that 

-- a+) - yo(z)[l - a(.)] 5 y/4 
d z  

since the right hand side is maximized at a(.) = 1/2. Then 

By the hypothesis, Fw C_ F which implies I( fz) 2 I( f )  = 0. Then we have PII(fm,,) - I( f )  > 
E ]  < 6 by Theorem 3.1, which implies the theorem for the nearest neighbor rule. The result for 
regressogram is similar by noting that the condition I f  (X) - f ( X ) l  < E implies E l f  (X) - f ( X ) l  < 6, 
since the domain is [0, lId with measure 1. 0 

We now state the result based on the second cost functional which can be shown along the lines 
of Theorem 4.1. 

Theorem 4.2 Under the hypothesis of Theorem 3.3, with the additional condition that woo( f ;  T )  5 
kra as r ---f 0,  for 0 < CY 5 1 and k = 9 where a = m+x Ia;I and b = m q  Ib;jl we have 
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given a sample of size specijed in Theorem 3.3. 0 

We note that boundedness of capacity of neural networks of this type can be deduced from the 
results of Macintyre and Sontag [lo], and, in principle, can be used to obtain sample bounds along 
the lines of Theorem 4.1. However, the problem of computing j,,, E 3w that PAC approximates 
optimal f: E Fw involves the loading problem which is NP-complete [19], whereas the three 
estimators above are linear-time computable. It is important, however, to note that the sample 
sizes of various cases for a fixed (c, 6) are not the same. 

5 Conclusions 

The PAC learning of smooth functions from finite samples by using feedforward neural networks 
has been “reduced” to the statistical estimation of functions via: (i) nearest neighbor, (ii) local 
averaging, and (iii) Nadaraya-Watson estimators. This reduction has to be understood in the 
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sense that - for a sufficiently large sample - one can replace the neural networks estimators 
by any of the statistical estimators above, with no loss of performance. The three estimators are 
computed in the Haar function representation that lends itself easily to constructive proofs and 
convenient implementations. Our method relies on smoothness properties of the functions to yield 
estimators computable in linear time and yet guarantee PAC learning conditions. Although neither 
the statistical estimators nor the Haar system are new, non-trivial synthesis of techniques allowed 
us to obtain the following practically important results: 

- under mild smoothness conditions on the function and/or the density we obtain stronger 
guarantees for the error than those based on capacity (or related combinatorial parameters) 
alone; 

- smoothness properties are easier to infer from data than the capacity of the family; 

- the results provide a deeper understanding of the approximation properties of neural networks, 
by relating them to well-known statistical estimators; and 

- unlike the general PAC solutions that usually require solving NP-hard problems, the proposed 
estimators can be computed in linear time. 

Generalizations of these results to PAC learning of functions by orthogonal systems is pursued 
elsewhere [15]. Tighter estimates and lower bounds for the sample sizes as well as a more precise 
relationship between smoothness guarantees and capacity for specific classes of functions are topics 
of future study. 
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