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The main contribution is showing that the known convergence 
properties of the Hopfield model can be reduced to a very simple 
case, for which we have an elementary proof. The convergence 
properties of the Hopfield model are dependent on the structure 
of the interconnections matrix W and the method by which the 
nodes are updated. Three cases are known: (1) convergence to a 
stable state when operating in a serial mode with symmetric W, (2) 
convergence to a cycle of length at most 2 when operating in a 
fully parallel mode with symmetric W, and (3) convergence to a 
cycle of length 4 when operating in a fully parallel mode with anti- 
symmetric W. We review the three known results and prove that 
the fully parallel mode of operation is a special case of the serial 
mode of operation, for which we present an elementary proof. The 
elementary proof (one which does not involve the concept of an 
energy function) follows from the relations between the model and 
cuts in the graph. We also prove that the three known cases are 
the only interesting ones by exhibiting exponential lower bounds 
on the length of the cycles in the other cases. 

I. INTRODUCTION 

A. What i s  a (Neural) Network? 

The neural network model considered is the one sug- 
gested by Hopfield in 1982 [I]. It is a discrete-time system 
that can be represented by a weighted graph. A weight is 
attached to each edge of the graph and a threshold value 
i s  attached to each node (neuron) of the graph. The order 
of the network is the number of nodes in the corresponding 
graph. Let N be a neural network of order n; then N i s  
uniquely defined by (W,  T )  where: 

W i s  an n x n matrix, with element w,/ equal to the 
weight attached to edge ( i ,  j )  
Tisavectorof dimension n,whereelement t,denotes 
the threshold attached to node i. 

Every node (neuron) can be in one of two possible states, 
either 1 or - 1. The state of node I at time t denoted by v,(t). 
The state of the neural network at time t i s  the vector U t )  
= (vdt), VAt), * * * , v m .  

The state of a node at time ( t  + 1) i s  computed by 

1 if H,(t) 2 0 
(1 1 

-1 otherwise 
v,(t + 1) = sgn (H,(t)) = 
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where 
n 

H,(t) = c W/.,V/(t) - t,. 
/ = 1  

Note that every node in the network is actually a linear 
threshold (LT) element with the states of the other nodes 
being its inputs and the threshold being t,. 

The next stateof the network, that is, V(t  + I) ,  i s  computed 
from the current state by performing the evaluation (1) at 
a subset of the nodes of the network, to be denoted by S. 
The modes of operation are determined by the method by 
which the set S i s  selected in each time interval. If the com- 
putation is  performed at a single node in any time interval, 
that is, I S  I = 1 ( I SI  denotes the number of nodes in the set 
S), then we will say that the network i s  operating in a serial 
mode, and if the computation i s  performed in all nodes in 
the same time, that is, I S (  = n, then we will say that the 
network i s  operating in a fully parallel mode. All the other 
cases, that is, 1 < I SI  < n,  will be called parallel modes of 
operation. The set Scan be chosen at random or according 
to some deterministic rule. 

A state V(t )  is called stable iff V(t)  = sgn (WV(t) - T), that 
is, there i s  no change in the state of the network no matter 
what the mode of operation is. The set of stable states of 
a network N i s  denoted by MN. A set of distinct states { V,, 
. . . , V,} i s  a cycle of length k if a sequence of evaluations 
results in the sequence of states: Vl, . . . , V,, Vl, . . . repeat- 
ing forever. 

B. Three Simple Examples 

To make the foregoing definitions clear, we consider 
three simple examples. The networks considered in these 
examples consist of two nodes only, like the one in Fig. 1. 

Fig. 1. A network with two nodes. 

Example I: serial operation, symmetric W: Consider the 
network N = (W,  T) with 

= (-: -3 
0018-9219/90/1000-1579$01.00 0 1990 IEEE 

PROCEEDINGS OF THE IEEE. VOL. 78, NO. 10, OCTOBER 1990 1579 



and T being the 0 vector. It can be verified that when N is 
operating in a serial mode MN = {(-I, I), (1, -I)}. 

Example 2: fully-parallel operation, symmetric W: Con- 
sider the network N = (W, T ) ,  with 

= (-: -3 
and T being the 0 vector. It can be verified that when N is  
operatinginafullyparallel mOdeMN = {(- l , l ) ( l ,  -I)}  and 
that {(I, I), (-1, -I)} i s  a cycle of length 2. 

Example 3: fully-parallel operation, antisymmetric W: 
Consider the network N = (W, T) with 

w =  (-: Q 
and T being the 0 vector. It can be verified that when N is  
operating in a fully parallel mode there are no stable states 
and the set of states 

i s  a cycle of length 4. 
One of the fascinating properties of the network model 

is the fact that these three examples are special cases of a 
general property-the convergence property. Note that 
since the state-space of a network is finite, the network will 
always converge to the stable stateslcycles in the state- 
space. 

C. Convergence Properties 

The convergence properties are dependent on the struc- 
ture of W and the method by which the nodes are updated. 
The three foregoing examples are special cases of the fol- 
lowing three known results: 

1) Convergence to a stable state when operating in a 
serial mode with symmetric nonnegative diagonal 
w VI. 

2)  Convergence to a cycle of length at most 2 when 
operating in a fully-parallel mode with symmetric 
w PI. 

3) Convergence to a cycle of length 4 when operating 
in a fully-parallel mode with antisymmetric W [3]. 

The main idea in the proof of the convergence properties 
i s  to define a so-called energyfunction and to showthat this 
energyfunction is nondecreasing when the stateof the net- 
work changes as a result of computation. Since the energy 
function i s  bounded from above it follows that it will con- 
verge to some value. Our approach here i s  to get a proof 
that does not involve the concept of an energy function. 

In Section II it is shown that finding the global maximum 
of the energy function associated with the network oper- 
ating in a serial mode is  equivalent to finding the minimum 
cut in the undirected graph associated with the network. 
Wethen use this relation toderivean elementary proof (one 
that does not involve the concept of an energy function) for 
convergence in the serial mode (see the Appendix for a 
proof of this result that uses the concept of an energy func- 
tion). Getting an elementary proof using the relation tocuts 
in a graph led to the following question: 

Is the convergence property unique? Three convergence 
properties were described in Section I-C. The idea in the 
proofs of those results is to use the concept of an energy 
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function. Two different energy functions were used for 
those three results. The question i s  whether the three con- 
vergence properties are inherently different. The answer i s  
no. In Section Ill it i s  shown that the two properties of con- 
vergence in a fully parallel mode are special cases of the 
convergence in a serial mode for which we have an ele- 
mentary proof. Also we prove that those are the only three 
interesting cases by proving exponential lower bounds on 
the length of the cycles in the other cases. 

II. THE MODEL AND CUTS IN A GRAPH 

The idea in this section is to establish the relation between 
the method of computation performed by the network to 
a particular problem in graph theory, namely, the problem 
of finding a minimum cut (MC) in an undirected graph. In 
fact, it isshownthatfindingaglobal maximumoftheenergy 
function associated with a network operating in a serial 
model iseguivalenttofindaminimumcut intheundirected 
graph associated with the network. We use this relation to 
get a very elementary proof for convergence in a network 
operating in a serial mode. It also possible to consider 
directed graphs and show how to program a network to 
perform a local random search for the MC [4]. 

A. The Equivalence with the Undirected Case 

The neural network model, when operating in a serial 
mode, is actually performing a local search for a maximum 
of the energy function denoted by E,: 

(2) 

Theorem 8 (see the Appendix) implies that a network, when 
operating in a serial mode, will always get to a stable state 
which corresponds to a local maximum in the energy func- 
tion El. This property suggests the use of the network as a 
device for performing a local search algorithm in order to 
find a local maximal value of the energy function El [5]. The 
value of El that corresponds to the initial state i s  improved 
by performing a sequence of random serial iterations until 
the network reaches a local maximum. The local search 
algorithm performed by the neural network model is 
imposed by the way the network is operating. Consider a 
network N operating in a serial mode, and let LNdenote the 
local search algorithm performed by the network N. 

E,(t) = VT(t)WV(t) - 2VT(t)T. 

Algorithm LN for max (E#)) is: 

1) Start with a random assignment V E { -1, 
2) Choose a node i E {I . . . n} at random. 
3) Try to improve El by performing the evaluation 

v, = sgn ( i, w,,iv, - ti). 

4) Go to step 2. 

The class of optimization problems that can be repre- 
sented by quadratic functions i s  very rich [6]. One problem, 
which is not only representable by a quadratic function but 
actually i s  equivalent, i s  the problem of finding an MC in 
a graph [6]-[8]. To make the above statements clear, let us 
start by defining the term "cut in a graph." 

Definition: Let G = (V, E) be a weighted and undirected 
graph, with W being an n x n symmetric matrix of weights 
of the edges of G. Let V, be a subset of V, and let V-, = V 
- V,. The setofedges incident at one node in V, and at one 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. IO, OCTOBER 1990 



node in V-, i s  called a cut of the graph G. A minimum cut 
in a graph i s  a cut for which the sum of the corresponding 
edge weights i s  minimal over all Vl. 

Theorem 7: [6], [8] Let G = (V, f )  be a weighted and undi- 
rected graph, with W being the matrix of i t s  edge weights. 
Then theMC problem in GisequivalenttomaxQc(X),where 
X E { -1, I}", and: 

Proof: Assign a variable x, to every node i E V. Let W+ + 

denote the sum of the weights of edges in G with both end 
points equal to 1, and let W--  and W + -  denote the cor- 
responding sums of the other two cases. Thus, 

Qc = 2 ( W + +  + W - -  - W + - )  

which also can be written as 

Qc = 2(W++ + W-- + W + - )  - 4 W + -  

n n  

= c c w,,/ - 4w+- .  (3)  

The first term in (3) above is constant (equals the sum of 
weights of edges in G);  hence, maximization of QG is  equiv- 
alent to minimization of W+- is actually a weight of a cut 
in G with Vl being the set of nodes in G that correspond to 

0 
The above theorem can be applied to get the equivalence 

with the energy associated with the network. 
Theorem 2: Let N = (W, T) be a network with W being an 

n x n symmetric zero diagonal matrix. Let C be a weighted 
graph with (n + 1) nodes, with its weight matrix Wc being 

,=I ,=I 

variables that are equal to 1. 

The problem of finding a state Vin Nfor  which E, i s  a global 
maximum is  equivalent to the MC problem in the corre- 
sponding graph C. 

Proof: Note that the graph G i s  built out of N by adding 
one node to N and connecting it to the other n nodes, with 
the edge connected to node i having a weight ti (the cor- 
responding threshold). Clearly, if the state of the added 
node is  constrained to -1, then for all X E { -1, I}" 

QcW, -1) = Ei(X). 

Hence, the equivalence follows from Theorem 1. Note that 
the state of node (n + 1) need not be constrained to -1. 
There is  a symmetry in the cut; that i s  QG(X) = Qc(-X) for 
all XE  { -1, I}"+'. Thus, if a minimum cut i s  achieved with 
the state of node (n + 1) being 1, then a minimum is also 
achieved by the cut obtained by interchanging Vl and V-l 

0 (resulting in x,+~ = -1). 

B. A Simple Proof for Convergence 

The relation between neural networks and the MC prob- 
lem leads to the following nice interpretation of the algo- 
rithm L, performed by the model. 

Algorithm L, for the MC problem is: 

1) Start with a random cut. 
2) Choose a node k at random. 
3)  Compare the sum of weights of the edges which 

belong to the cut and incident at node k with the 

sum of weights of the other edges which are inci- 
dent at node k. Move node k to the side of the cut 
which will result in a decrease in the weight of the 
cut.Ties(thecaseof equa1ity)are broken by placing 
node k in VI. 

4) Go to step 2. 

Hence, we have an elementary proof for convergence: 
Theorem 3: Let N = (W, T) be a network with T = 0 and 

W be a symmetric zero-diagonal matrix. If N i s  operating in 
a serial mode then it will always converge to a stable state. 

Proof: By the foregoing derivation we can consider the 
operation of N as the running of algorithm LN for the min- 
imum cut in N. In each iteration the value of the cut is non- 
increasing (ties are broken as described above); thus, the 
algorithm will always stop resulting in a cut whose weight 
is a local minimum. 0 

Clearly, the proof above is for a special case of a network 
(that is why it i s  simple). In Section Ill we show that a l l  the 
other general cases can be reduced to the foregoing simple 
case. 

I l l .  A UNIFIED APPROACH TO CONVERGENCE 

Convergence to a stable statekycle of a certain length is  
one of the most important properties of the neural network 
model. The convergence properties are dependent on the 
structure of the interconnection matrix Wand the method 
by which the nodes are updated. The three known cases 
are mentioned in the Section 1-6. Those results were proved 
by using the concept of an energy function. In this section 
we answer the three following questions: (i) Is the conver- 
gence property unique? (ii) I s  there an elementary proof for 
convergence (one that does not involve the concept of an 
energyfunction)? (iii) Are there any interesting cases besides 
the three known cases? 

The answer to the first question i s  yes; in fact we prove 
that convergence in a fully parallel mode is  a special case 
of convergence in a serial mode. In Section II we presented 
a proof (see Theorem 3) for convergence in a very simple 
network based on the relations between networks and cuts 
in a graph. In this section we show that all the other cases 
are special cases of this simple network; hence, we have an 
elementary proof for theconvergence properties (a positive 
answer to (ii)). We also consider other cases and exhibit 
exponentially (in the number of nodes) long cycles in net- 
works that are not of the three known cases; hence we have 
a negative answer to (iii). 

A. Convergence Theorems 

Oneof the most important properties of the model i s  the 
fact that in certain cases it alwaysconverges, as summarized 
bythe following theorem. Notice that these threecasescor- 
respond to the three simple examples in the Section I-B. 

Theorem 4: Let N = (W, T) be a neural network, then: 

Assume N i s  operating in a serial mode and W i s  a 
symmetric matrixwith the elementsofthediagonal 
being nonnegative. Then the network will always 
converge to a stable state, that is, there are no cycles 
in the state space [I]. 
Assume N i s  operating in a fully parallel mode and 
W is a symmetric matrix. Then the network will 
always converge to a stable state or to a cycle of 
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length 2, that is, the cycles in the state space are of 
length I 2 [2]. 

3) Assume N is  operating in a fully parallel mode and 
W i s  an antisymmetric matrix with zero diagonal 
and let T = 0. Then the network will always con- 
verge to a cycle of length 4 [3]. 

The main idea in the proof of the three parts of the theorem 
is  to define a so-called energyfunction and to show that this 
energyfunction i s  nondecreasing when the state of the net- 
work changes. Since the energy function is bounded from 
above itfollows thattheenergywillconvergetosomevalue. 
An important note i s  that originallythe energyfunction was 
defined by others such that it is nonincreasing [I]-[3]; we 
changed it to be nondecreasing such that the value of the 
energy will comply with some known graph problems (for 
example, MC, see Section 11) .  The second step in the proof 
i s  to show that constant energy implies in the first case a 
stable state, in the second a cycle of length 5 2 ,  and in the 
thirdacycleof length4(seetheAppendixforaproof of part 
1 of the theorem that involves the concept of an energy 
function). Two different energy functions were defined: 

El(t )  = VT(t)WV(t) - (V(t) + V(t))'T 

E2(t) = VT(t)WV(t - 1) - (V(t) + V(t - 1))'T. (4) 
The energy function E&) was used to prove the first part of 
the theorem and E2(f) was used to prove the second and 
third parts of the theorem. In the next section we reveal the 
relation between the three cases. 

B. A Unified Theorem via Reductions 

In this section we prove that the three cases of Theorem 
4 are special cases of a network operating in a serial mode 
with W being a symmetric zero-diagonal matrix. Notice that 
the reduction i s  in the sense that it is  possible to derive the 
state of one network given the state of the other network. 
The first lemma presents the two reductions associated with 
W being a symmetric matrix [4]. 

Lemma 1: Let N = (W, T )  be a neural network where W 
is a symmetric matrix. Let I%' = (W, f) be obtained from N 
as follows: f i  i s  a bipartite graph, with 

w = (  o w  ) 
W O  

and 

i =  (;). 
For any serial mode of operation in N there exists an 
equivalent serial mode of operation in A, provided 
W has a nonnegative diagonal. 
There exists a serial mode of operation in f i  which 
is equivalent to a fully parallel mode of operation in 
N. 

Proof: The new network f i  i s  a bipartite graph with 2 n  
nodes. The set of nodes of A can be subdivided into two 
sets: let P, and P2 denote the set of the first and the last n 
nodes, respectively. Clearly, no two nodes of P, (and also 
P2) are connected by an edge; that is, both P, and P2 are inde- 
pendent sets of nodes in A. Another observation i s  that P, 
and P2 are symmetric in the sense that a node i E P, has an 
edge set similar to that of a node (i + n)  E P2. 
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Proof of (a): Let Vo be an initial state of N, and let (il, i2 
. . .) be the order by which the states of the nodes are eval- 
uated in a serial mode in N. We will show that starting from 
the initial state (Vo, Vo) in 6l (the state of both P, and P2 i s  V,) 
and using the order (il, ( i ,  + n),  i,, (i, + n), . . .) for the eval- 
uation of states will result in: 

1) The state of P, will be equal to the state of P2 in 
f i  after an arbitrary even number of evaluations. 

2) The state of N at time k is equal to the state of P1 
at time 2k, for an arbitrary k. 

The proof of (1) is by induction. Given that at some arbitrary 
time k the state of Pl i s  equal to the state of P2, it will be 
shown that after performing the evaluation at node i and 
then at node (n + i )  the states of P1 and P2 remain equal. 

If the state of node i does not change as a result of 
evaluation, then by the symmetry of f i  there will be 
no change in the state of node (n  + i). 
If there is a change in the state of node i, then 
because fiI,,+, i s  nonnegative it follows that there 
will beachangeinthestateof node(n +;)(the proof 
is straightforward and won't be presented). 

The proof of (2) follows from (1): by (1) the state of Pl i s  equal 
to the state of P2 right before the evaluation at a node of PI. 
The proof is by induction: assume that the current state of 
N is the same as the state of P, in f i .  Then an evaluation 
performed at a node i E P, will have the same result as an 

0 
Proof of  (b): Let's assume as in part (a) that f i  has the 

initial state (Vo, Vo). Clearly, performing the evaluation at all 
nodes belonging to P, (in parallel) and then at all nodes 
belonging to P2, and continuing with this alternating order 
is equivalent to a fully parallel mode of operation in N. The 
equivalence is  in the sense that the state of N is equal to 
thestateofthesubsetof nodes(either Plor P2)of fiatwhich 
the last evaluation was performed. A key observation i s  that 
P, and P, are independent sets of nodes, and a parallel eval- 
uation at an independent set of nodes i s  equivalent to a 
serial evaluation of all the nodes in the set. Thus, the fully 
parallel modeofoperation in N isequivalenttoaserial mode 

The second lemma presents the reduction associated with 
W being an antisymmetric matrix. 

Lemma 2: Let N = (W, T )  be a neural network where W 
i s  an antisymmetric matrix with zero diagonal and T 0. 
Assume that WV has no zero for all V E  { I ,  -1)". Let N = 
(W, f) be obtained from N as follows: N i s  a bipartite graph, 
with 

There are two cases: 

evaluation performed at node i E N. 

of operation in A. 0 

0 0 - w  

w = ( .  -w O 0 I) 
w 0 0  

and f =  0.Thereexistsaserial modeofoperation inNwhich 
i s  equivalent to a fully parallel mode of operation in N. 

Proof: The new network N i s  a bipartite graph with 4n 
nodes. The set of nodes of can be subdivided into four 
sets, to be denoted by P,, P2, P3, and Ps, that correspond tp 
the first, second, third, and fourth sets of n nodes of N, 
respectively. Note that P1 is connected only to P4 and that 
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P2 i s  connected only to P,. Another observation i s  that W 
i s  a symmetric matrix. This follows from the assumption that 
WJ = - W. We consider fully parallel iterations in the net- 
work Nand denote that state of N after k iterations by V k .  
In the network N we consider parallel iterations at the sets 
P, (which are in fact serial iterations), and denote the state 
of f l  by a vector which i s  a concatenation of the states of 
the P,s.  

Letusassumethattheinitial stateof N i s  V,. Weshowthat 
if the initial state of f l  i s  (-Vo, V,,, V,,, -Vo) and the order of 
evaluation i s  P,, P,, P,, P4, PI, P,, . . . , then the network 
N simulates the network N. Note that after an even number 
of iterations in N, the state of P, is the complement of the 
state of P, and the state of P, i s  the complement of the state 

Now we claim that: (i) After 8k iterations at N the state of 
P, i s  equal to the state of N after 4 k evaluations and the state 
of ?, i s  equal to the state of N after 4 k  - 1 evaluations. (ii) 
After 8k + 4 iterations the state of P4 is equal to the state 
of N after 4k + 2 evaluations and the state of P2 is equal to 
the state of N after 4 k  + 1 evaluations. The proof of those 
two claims i s  by induction on k. Clearly, after 4 iterations 
in N we have that the state of the network i s  ( -VI,  V,, -V2, 
VJ, which establishes the basis of the induction (one can 
consider the next 4 iterations and get the basis for (i)). We 
assume that (i) and (ii) are true for k and prove (i) and (ii) for 
k + 1. Here we present only the proof of (i). By the assump- 
tion, after 8k + 4 iterations the state of f i  is ( - V 4 k + l ,  V 4 k + l ,  

- V 4 k + 2 ,  V d k + &  Hence, after 8(k + 1) iterations the state of 
f l  is ( V 4 k + 3 ,  - V 4 k + 3 ,  V4(k+1), -V4(k+l ) ) ,  which established (i). 

Note that evaluation at a set P,, 1 5 i 5 4, is equivalent 
to a serial evaluation of the nodes in the set, since the sets 
are independent sets of nodes. Hence, the network N oper- 
ating in a serial mode can simulate the network N operating 

0 
Using the transformations suggested by the above lem- 

mas we show that the three known convergence properties 
are special cases of convergence in a network operating in 
a serial mode with W being a symmetric zero-diagonal 
matrix. 

Theorem5 Let N = (W,  T )  be a neural network. Given (I), 
then (2), (3) ,  and (4) below hold. 

of P,. 

in a fully parallel mode. 

If N i s  operating in a serial mode and W is a sym- 
metric matrix with zero diagonal, then the network 
will always converge to a stable state. 
If N is operating in a serial mode and W is a sym- 
metric matrix with nonnegative elements on the 
diagonal, then the network will always converge to 
a stable state. 
If N is operating in a fully parallel mode then, for 
an arbitrary symmetric matrix W, the network will 
always converge to a stable state or a cycle of length 
2; that is, the cycles in the state-space are length 
5 2. 
If N i s  operating in a fully parallel mode then, for 
an antisymmetric matrix Wwith zero diagonal, with 
T = 0, the network will always converge to a cycle 
of length 4. 

Proof: The proof i s  based on Lemma 1 and Lemma 2. 
(2) is  implied by (7): By Lemma 1 part ( a ) ,  every network 

with nonnegative diagonal symmetric matrix W which is  
operating in a serial mode can be transformed to an equiv- 

alent network to be denoted by N, which i s  operating in a 
serial mode with W being a symmetric zero-diagonal sym- 
metric matrix. f l  will converge to a stable state (by(1)); hence, 
N will also converge to a stable state which will be equal 
to the state of P,. Note that trivially (1) i s  implied by (2). 

(3) i s  impliedby (7): By Lemma 1 part (b), every network 
operating in a fully parallel mode can be transformed to an 
equivalent network to be denoted by f i , which i s  operating 
in a serial mode with W, being a symmetric zero-diagonal 
matrix. N will converge to a stable state (by (1)). When f i  
reaches a stable state there are two cases: 

1. The state of P, i s  equal to the state of P2; in this case 
N will converge to a stable state which i s  equal to 
the state of P1. 

2. The states of P, and P, are distinct; in this case N 
will oscillate between the two states defined by P, 
and P,, that is, N will converge to a cycle of length 
2. 

(4) i s  implied by (I): By Lemma 2 every network oper- 
ating in a fully parallel mode can be transformed to an 
equivalent network, to be denoted by f l ,  which i s  operating 
in a serial mode, with W being a symmetric zero-diagonal 
matrix. N will converge to a stable state (by (I)). We denote 
this stable state by (U,, U,, U,, U,) with U, corresponding 
to the state of P,. We claim that the U, are distinct, hence, 
the stable state in N corresponds to a cycle of length 4 in 
N. 

To prove that the U, are distinct observe that, by Lemma 
2, U, = -U2 and U 3  = - U,. Also, in a stable state U, = sgn 
(WU,) and U, = sgn ( -  WU,). Assume that U, = U,; then sgn 
(WU, = sgn ( -  WU,). This i s  a contradiction. Also, when we 
assume that U, = -U4, we reach a contradiction. Hence at 
a stable state the U, are distinct. From Lemma 2 it follows 
that in the network N we have a cycle of length 4: U,, U,, 
u1, U,. 0 

An Elementary Proof for Convergence: To show that we 
have an elementary proof for all thecases, we have to reduce 
case 1 in Theorem 5 to the simple case considered in Theo- 
rem 3. Namely, we have to show that, the case where the 
network i s  operating in a serial mode with W a zero-diag- 
onal symmetric matrix and Tis an arbitrary vector, can be 
reduced to that in which T = 0. This reduction follows from 
Theorem 2. 

To summarize, we showed that the three known cases of 
convergence can be reduced to a very simple case: a net- 
work operating in a serial mode with W a symmetric zero- 
diagonal matrix and T = 0. For this special case we have an 
elementary proof that uses the equivalence with cuts in a 
graph (see Section 11) .  Next we show that, indeed, the three 
known cases are the only interesting ones. 

C. Big Cycles 

In the previous section we considered the convergence 
properties in three cases that can be characterized by the 
mode of operation and the structure of W: (i) serial mode 
of operation, symmetric W ,  (ii) fully parallel mode of oper- 
ation, symmetric W, and (iii) fully parallel mode of opera- 
tion, antisymmetric W. Using this characterization, there 
are three more cases that can be considered: (iv) serial mode 
of operation, antisymmetric W, (v) serial mode of operation, 
arbitrary Wand (vi) fully parallel mode of operation, arbi- 
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trary W. In this section we prove that cases (+(vi) are not 
interesting by showing that networks of these types can 

V. APPENDIX: PROOF OF CONVERGENCE USING THE ENERGY 
FUNCTION 

have exponentially (in the number of nodes) longcycles in 
their state space. First we show that cases (iv) and (v) can 
have an exponentially long cycle by considering a network 
with antisymmetric W. 

Theorem 6: Let n 2 2 be an even integer. There exists a 
network N = (W, T) of order n with Wantisymmetric which, 
when operating in a serial mode, has a cycle of length 2". 

Proof: Consider the network f l  = (W, f )  defined by 

W = (  -1 O 0 I) 

and f = (O,O).This i s  the same network as the one in Example 
3 in Section I-B. When weconsider serial modeof operation 
in Awe find that there i s  a cycle of length 4: {(I, I), (-1,  I), 
(-1,  -I), (1, -I)}. This cycle corresponds to the following 
order of evaluation: 1, 2, 1, 2 . * e .  

To get the result we construct a network of order 2n, to 
be denoted by N, simply taking n networks like fl. In N we 
can generate a cycle of length 22" by going through all the 
possiblestates.The idea is  toconsiderthe stateof everyone 
of the n subnetworks as a symbol over GF(4) and to go 

U 
Next we show that there i s  an exponentially long cycle 

also in case (vi): 
Theorem 7: Let n be a positive integer. There exists a net- 

work N = (W, T )  of order 3n, which when operating in afully 
parallel mode has a cycle of length 2". 

Proof: The idea in the proof is to construct B linear shift 
register [9] using linear threshold elements. A linear shift 
register device is simply a shift register in which the input 
of a cell i s  the output of the previous cell. The input to the 
firstcell isasum mod2ofacertain subsetofthecells.There 
i s  a way to select the subset of cells that sum up to be the 
input to the first cell in such away that the shift register will 
go through all the possible states (2 to the number of cells). 
For more details on this subject see [9]. To construct a linear 
shift register using linear threshold elements we need to 
implement two basic operations: (i) IDENTIw-to implement 
the function of a single cell in a shift register, (ii) xoR-to 
implement the sum mod 2. Clearly, only the XOR i s  a prob- 
lem. But XOR can be implemented by a depth 2 circuit of 
linear threshold elements (see [IO]). For XOR of n variables 

through the possible states lexicographically. 

We consider the first convergence property (serial mode), 
and prove it using the concept of the energy function. 

Theorem 8: Let N = (W, T) be a neural network operating 
in a serial mode. Let W be a symmetric matrix with non- 
negative diagonal. Then the network will always converge 
to a stable state, i.e., there are no cycles in the state-space 
VI. 

Proof: The energy function i s  defined as follows: 

E l ( t )  = Vr(t)WV(t) - 2V(t)'T (5) 

where a superscript T indicates a matrix transpose. Let A €  
= El(t + 1) - €,(t) be the difference between the energies 
associated with two consecutive states, and let A vk  denote 
the difference between the next state and the current state 
of node kat some arbitrary time t. Hk i s  defined in (1). From 
(1) it follows that 

0 if vk(t) = Sgn (Hk(t)) 

-2 

2 

if Vk(t) = I and sgn (Hk(t)) = -1 (6) 
i f  vk(t) = -1 and sgn (Hk(t)) = 1. 

By the assumption (serial mode of operation) the com- 
putation i s  performed only at a single node at any given 
time. Suppose thiscomputation i s  performed at an arbitrary 
node k; then the energy difference resulting from this com- 
putation is 

AE = Avk (/:l Wk,/v, -k , = 1  w,,kv#) 

+ wk,kAv i  - 2AvkTk. (7) 

From the symmetry of Wand the definition of Hk it follows 
that 

AI! = 2AVkHk -k wk,kAvi .  (8) 

Hence, since A VkHk 2 0 and wk,k 2 0 it follows that A E 2 
0 for every k. Since El i s  bounded from above, the value of 
the energy will converge. 

The second step in the proof i s  to show that convergence 
of the value of the energy implies convergence to a stable 
state.Thefollowingtwosimplefactsare helpful forthis step: 

we need n linear threshold elements. Sincewe have adepth 1) If AV, = 0 then A €  = 0. 
2circuitwe need to introduceadelay between anytwocells 2) If AV, # 0 then A €  = 0 only if the change in vk  i S  

in the shift register. For that we need n more elements. To from -I to I, with H k  = 0. 
summarize, we can implement a linear shift register device 
with n cells using 3n linear threshold elements. Hence, for 
every n, we have a network of linear threshold elements of 
order 3n which, when operating in a fully parallel mode, 

Hence, once the energy in the network has converged, it 
i s  clear from the preceding facts that the network will reach 

U a stable state after at most n2 time intervals. 

goes through a cycle of length 2". 

IV. CONCLUDING REMARKS 

We have presented a unified approach for proving con- 
vergence in the Hopfield model. The idea in our approach 
is to reduce all the known cases to a very simple case of 
convergence for which the proof i s  elementary. We also 
proved that those cases are the only interesting cases by 
proving exponential lower bounds on the size of cycles in 
the other cases. 
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