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Watermarking as communications with side information

Ingemar J. Cox�, Matt L. Miller† and Andrew L. McKellips‡

Abstract

Several authors have drawn comparison between embedded signaling or watermarking and
communications, especially spread spectrum communications. We examine the similarities and
differences between watermarking and traditional communications. Our comparison suggests
that watermarking most closely resembles communications with side information at the trans-
mitter and or detector, a configuration originally described by Shannon. This leads to several
novel characteristics and insights regarding embedded signaling which are discussed in detail.

1 Introduction

Watermarking is a process in which a signal is hidden or embedded into another signal, usually a

photograph, video or music. There are a variety of possible uses for embedded signaling, ranging

from covert signaling applications that encompass classical steganography, to recent commercial

interest in providing copyright and copy control information. In the latter case, an advantage of

embedded signaling is that the copy control information is embedded directly into the media to be

protected and is therefore independent of the broadcast or transmission format and remains present

even after decryption [BCK+99]. The reader is directed to [CM97] and to articles in this current

issue for a review of watermarking methods.

Watermarking is, of course, a form of communications. The requirement that the fidelity of the

media content must not be impaired implies that the magnitude of the watermark signal must be very

small in comparison to the content signal, analagous to a stringent power constraint in traditional

communications. This characteristic, together with the widespread view that, from the perspective

of watermark detection, the content is noise, has led several authors to think of watermarking as a

form of spread spectrum communications.

When media content is viewed purely as noise, no advantage is taken of the fact that the content is

completely known to the watermark embedder (and detector, if the original unwatermarked content

is available as part of the detection process). We therefore prefer to view watermarking as an example

of communication with side information. This form of communication was originally introduced by

Shannon [Sha58] who was interested in calculating the capacity of a channel when the transmitter
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and/or receiver had information regarding the state of channel noise. We believe that modeling

watermarking as communication with side information allows more effective watermark insertion

and detection methods to be designed.

In Section 2 we provide a high level view of three paradigms for watermarking in order to motivate

the remainder of the paper. In Section 3, we introduce a basic framework for the watermarking

process, including notation used throughout the paper. In Section 4, we compare watermarking

and traditional communication models, demonstrating a strong similarity between the former and

a communication channel with side information. In order to utilize this communications model in

the design of a watermark insertion algorithm, it is necessary to have knowledge of the underlying

statistics of the content and the distortions it is likely to experience. These issues are discussed in

Section 5. In Sections 6 and 7 we analyze watermark insertion and detection algorithms from the

point of view of communications with side information. Conclusions are presented in Section 8.

2 Three paradigms for watermarking

We believe that prior work in watermarking can be divided into two distinct categories. Much early

work in watermarking falls into Category 1, which essentially consists of directly adding a watermark

signal, w to the content, C0 to produce a watermarked version Cw. Category 1 watermarking is

characterized at the detector by considering the content C0 as noise. When the original content

is available to the detector, this “noise” is subtracted from the received signal prior to detection.1

Insertion of the watermark in a Category 1 system is characterized by the fact that the content

modification is independent of the content being modified. Thus, for example, perceptual modeling

is not applied to the content and the signal that is added is not adjusted based on this information.

Cox et al [CKLS97] suggested that perceptual modeling had significant utility for watermarking.

Their early paper highlighted an idea that is somewhat counter intuitive. If a watermark is to be

robust, i.e. survive, common signal processing that is routinely performed on the content, then the

watermark signal must be placed in the perceptually significant components of the content. This is

clearly true if, for example, a watermark is intended to survive lossy compression, since the goal of

such compression algorithms is to remove the perceptually insignificant, i.e. redundant, components

of the content. Of course, such a requirement conflicts with the desire that the watermark also

be invisible. In order to meet both these requirements, Cox et al proposed a form of spread spec-

trum coding such that each perceptually significant component is only changed by a small amount.

Subsequently, there have been a variety of very interesting papers describing more sophisticated

perceptual models and coding schemes, for example [SZT98, PZ98].

In our taxonomy, such systems are considered Category 2 systems. The watermark inserter

is characterized by the fact that the watermark signal to be embedded is now modified, prior to

insertion, based on a function of the content itself. However, such modification is performed primarily

for fidelity considerations, and not specifically with the intention of improved detector performance.
1The use of the original content at the detector is a case of detection with side information. However, in the paper,

we are primarily concerned with embedding with side information.
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At this point, it is useful to discuss a simple example. Consider a content vector C0 and a

watermark vector w, where the magnitude of w is considerably smaller than that of C0. In a

Category 1 watermarking system, the embedding process forms a watermarked content vector Cw

as the simple sum of C0 and w. Category 2 watermarking takes advantage of a content-dependent

fidelity model to balance a perceptual distortion constraint with effective embedding techniques.

While the particular form of fidelity model is not important to this paper, assume for illustration

that the output from such a model indicates that each element of the content can be changed by no

more than ±y units. Thus, a very simple Category 2 embedder might simply scale the watermark

vector, w by a scalar value, α such that the magnitude of the largest element of αw equals y. This

scaled vector is then added to the content to obtain the watermarked content, Cw. A variety of other

embedders are possible. For example, the embedder might choose a value for α such that the average

magnitude of the elements of the watermark is scaled to y and elements of the watermark that exceed

this magnitude are then truncated to y. Many other possibilities are imaginable, which begs the

question of whether there is an optimium embedding strategy, which is the focus of Category 3

watermarking.

This paper describes a third category of watermarking, Category 3, in which side information

in the form of knowledge of the actual content at the embedder is exploited for improved detector

performance. The result is that novel watermark embedding and detection algorithms can be devel-

oped which, we believe, are (or at least have the potential to be) superior to the prior art. The basic

idea is to choose a watermarked content vector Cw from within an acceptable distortion region in

order to maximize probability of detection. This maximization may have further constraints, such

as maximizing detectability after MPEG compression, but the rest of this paper does not develop

this further.

To perform this optimization, we must know the form of the detector. Matched filtering is a

detection technique frequently employed in many communications applications, particularly spread

spectrum systems, which often form a model for watermarking systems. When matched filter de-

tection is applied, the gain to be had in one-shot detection performance from side information at

the embedder is largely dependent on the form of fidelity and distortion models, and can be lim-

ited. For instance, under a content-independent power constraint on the strength of the embedding

vector and an assumption of no distortion encountered subsequent to the embedding process, an

optimal embedding scheme is formed by adding the watermark vector (against which the matched

filter correlates) scaled to maximum-allowable power; clearly, this scheme takes no advantage of the

knowledge of content realization at the embedder2.

While a matched filtering approach to detection would seem natural for a watermarking system,

recent designs have favored another detection technique, whereby the normalized coefficient between

a given content and watermark vector pair is evaluated and compared to a threshold3. This form of
2However, if detection is performed over multiple blocks of content vectors, rather than as one-shot detection over

a single content vector, it might be possible to exploit side-information at the embedder to make a more sophisticated
system. While detector complexity becomes a serious issue in such a design, this could indeed form the focus of future
investigations.

3This threshold can be determined based on the desired level of false positives and false negatives and is well known
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detector is favored primarily because of its robustness to many of the distortive effects encountered

in a watermarking environment, which often exhibit a strong correlation with the embedded content

vector. For instance, a simple brightness scaling of a video frame has the potential to significantly

degrade matched filter detector performance, while the preserving of linear relationships would tend

to render a normalized correlation detector more robust. Section 5 forms a detailed discussion of

watermark distortion issues, while detector design is addressed in Section 6, including a detailed

analysis of the normalized correlation detector. When normalized correlation detection is employed,

the potential exists for significant performance improvement through the use of side information at

the embedder, even in one-shot detection.

Returning to the example outlined above, assume that the detector operates by evaluating the

normalized correlation between a given content vector Cw and the watermark w and comparing

to a threshold. A Category 3 embedder would then pick a content vector Cw from within the

allowable distortion region in order to maximize such correlation, perhaps subject to post-embedding

distortion considerations. In so doing, knowledge of the original content vector is used explicitly by

the embedder to produce a watermark with a greater probability of detection.

The remainder of this paper explores how a Category 3 watermarking system can be developed.

3 Framework and Definitions

In this section, we model a generic watermarking procedure and describe the terms we will use

to analyze it. The framework described here is sufficiently detailed for analyzing watermarking

algorithms that employ side information at the embedder, but it does not specify many details

of the algorithm, such as perceptual models, data transforms, registration methods, etc. In the

framework, these details are abstracted in the form of a small set of functions that need not be

specifically defined here. A wide variety of different algorithms can be created by defining the

functions in different ways. The analysis presented in the present article will apply to all of these.

The terms, functions and variables are summarized in Table 1, and some of them are used as

annotations to Figures 2 and 3. We describe these terms below, and then give a pair of examples of

how specific functions might be defined to correspond to components of watermarking technology

found in the literature.

3.1 Terms, functions, and variables

We follow [Pfi96] in referring to the media content that is to be watermarked as the “cover data”.

This is described by a vector, which we usually denote by B or C, in a “media space” of M

dimensions. For example, in a system designed to watermark images that are represented as p by q

arrays of pixels, the media space is a M = p× q dimensional pixel space.4

in detection theory, especially in a Neyman-Pearson framework.
4Some types of cover data are not naturally represented by vectors of predetermined numbers of dimensions. For

example, different audio clips might be different lengths, yielding different numbers of samples. In such cases, we
make the simplifying assumption that the watermark detector will examine the cover data for a fixed amount of time,
t, before making a decision about the presence or absence of a watermark. If the sampling rate per unit time is S,
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“cover data” a piece of media that is to be watermarked
“media space” a space in which each piece of cover data can be represented as a vector
“watermark space” a space in which each watermark can be represented as a vector
M the number of dimensions in media space
K the number of dimensions in watermark space
B, C vectors in media space
B0, C0 unwatermarked cover data
Bw, Cw watermarked cover data
Bu, Cu cover data that might or might not contain a watermark
B′, C′ possibly distorted cover data
N distortion vector in media space (C′ − C)
D(B,C) perceptual distance in media space
w, r, s vectors in watermark space (w is usually used for a vector that specifies a watermark)
r0, s0 signals extracted from unwatermarked cover data
rw, sw signals extracted from watermarked cover data
ru, su signals extracted from cover data that might or might not contain a watermark
r′, s′ signals extracted from possibly distorted cover data
n distortion vector in watermark space (r′ − r)
d(r, s) perceptual distance in watermark space
S(r) region of watermark space with acceptable perceptual difference from r
R(w) region of watermark space that will be detected as containing watermark w
X(C) extraction function, which projects from media space into watermark space
Y (r,C) inverse extraction function, defined such that, if B = Y (r,C), then r = X(B),

and D(B,C) is small
m watermark message
E(m) encoded and modulated watermark message (a vector in watermark space)
f(r,w) “mixing” function, which yields a vector in the intersection of S(r) and R(w)

Table 1: Definition of terms
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Where it is necessary to distinguish between cover data that contains a given watermark and

cover data that does not, we use subscripts. The vector C0 denotes cover data that has not been

watermarked while Cw denotes cover data that contains a watermark w. Cover data that might or

might not contain a watermark is denoted by Cu, where the subscipt u denotes that presence or

absence of a watermark is unknown.

Cover data, either containing or not containing a watermark, may experience a variety of dis-

tortions due to compression, signal processing, etc. A prime superscipt is used to denote cover data

that has possibly been distorted, for instance Cw
′ is a possibly distorted version of Cw. A “distor-

tion vector” N is an M dimensional additive distortion applied to a given piece of cover data, i.e.

N = Cw
′ − Cw.

The real-valued function D(B,C) represents a perceptual distance function which yields a nu-

merical measure of the perceptual distance between content vectors B and C. This is typically used

to measure the perceptual distance between watermarked and unwatermarked versions of a piece of

cover data, D(Cw,C0).

A “watermark message” is an arbitrary set of bits that will be encoded in the watermark. The

watermark embedding process involves an encoding and modulation function, w = E(m), which

maps bit sequences into vectors in a K-dimensional “watermark space”. When we refer to a “wa-

termark”, “watermark vector”, or “watermark signal”, we are referring to a vector in this space.

The dimensionality of watermark space is assumed to be less than or equal to the dimensionality of

media space.

The number of possible watermarks that a system might embed is determined by the number

of bits in its watermark messages. During watermark detection, many systems can decode the bits

of the message, in effect determining which of the many possible messages is most likely to have

been embedded. Other systems can test for the presence or absence of only one watermark at a

time. These more limited systems can be made to identify the most likely of many messages by

exhaustively testing for all the possible watermarks. While this approach is less efficient than the

approaches taken in typical, multi-bit algorithms, it is conceptually the same. For this reason, we

will consider only systems which perform single-watermark detection.

The media and watermark spaces need not be of the same dimension. For example, we may

choose to watermark a frequency band that is significantly smaller than the spectrum of the the

media. Media space and watermark space are related by a pair of functions, which we refer to as

the “extraction function”, X(·), and the “inverse extraction function”, Y (·).
The extraction function X(·) maps cover data into vectors in watermark space. The resulting

vectors are referred to as “extracted signals”, and are denoted by r or s. As such, we have that

r = X(C). We use the same subscript and prime conventions for extracted signals as we use for

cover data, thus r0 = X(C0), rw′ = X(Cw
′), etc. Distortion vectors can also be expressed in

watermark space: n = r′ − r.

The inverse extraction function, B = Y (r,C), maps vectors from watermark space into media

then the portion of the cover data examined by the detector can be represented as a vector in M = t×S dimensional
sample space.
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space. The first argument is a vector in watermark space that usually corresponds to watermarked

cover data. The second argument is necessary because, if watermark space has fewer dimensions

than media space, the mapping from watermark space to media space is one-to-many, so the original,

unwatermarked cover data is required to disambiguate the function. Thus, the inverse extraction

function finds a unique piece of media, B, such that r = X(B) and D(B,C) is small. An optimal

version of Y (·) would find the value of B that minimizes D(B,C). However, a system need not be

optimal in order to fit into the present framework. Note that the inverse extraction procedure does

not represent the entire embedding process. A further key element, which we refer to as “mixing”,

is also required, as discussed shortly.

The function d(·) estimates perceptual distances in watermark space. This must correspond to

the distance function in media space. That is, the distance between two vectors in watermark space

should be equal to the distance between the two media space vectors that result from applying the

inverse extraction function. Since the inverse extraction function requires an instance of cover data

as a reference, the distance function in watermark space can be strictly defined only with respect to

a given piece of cover data, as d(r, s,C) = D(Y (r,C), Y (s,C)).

When d(·) is used, the reference cover data will typically be the original, unwatermarked cover

data, s will be the watermark signal extracted from it, and r will be the signal in watermark space

corresponding to the watermarked cover data. Thus, we will most often be interested in the distance

d(sw, s0,C0) = D(Y (sw,C0),C0)

where s0 = X(C0) and Y (s0,C0) = C0.

For many possible extraction and inverse extraction functions, the value of d(·) is independent
of the reference cover data. Consider, for example, an extraction function that projects an M

dimensional media vector into aK dimensional extracted signal by simply ignoringM−K dimensions

of the input vector. This is the case when we choose to watermark only a low frequency subset of

the image spectrum, for example. So, if r = X(C), then ri = Ci for all i ≤ K, where K < M . A

natural inverse extraction function, B = Y (r,C), would fill in the M −K dimensions required to

go from watermark space to media space by copying them from C. So Bi = ri for all i ≤ K, and

Bi = Ci for all K < i ≤ M . If D(·) is defined to be Euclidean distance in media space, then it

is easy to see that d(·) will be independent of its reference cover data. In fact, d(·) will simply be

Euclidean distance in watermark space.

Because the reference cover data used in d(·) is often irrelevant, we will ignore it in the rest of this
paper. Thus, we assume that we can have a function in watermark space, d(r, s), which corresponds

exactly with D(B,C) in media space. If the value of d(·) is not independent of the reference cover
data, then we assume that the reference cover data is always the data being watermarked.

Next, we define two regions in watermark space. The region S(r0) is the set of signals s for which

d(s, r0) is less than a given fidelity threshold. This represents the set of signals that correspond to

cover data that is perceptually similar to the data from which r0 was extracted. The region R(w)

is the set of signals that are sufficiently similar to the watermark w so as to be considered as

watermarked. To convey the presence of a watermark in cover data C0, the embedder chooses a
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signal rw from within the intersection of S(r0) and R(w), and maps this signal into media space. To

determine if a given piece of cover data Cu is watermarked, the watermark detector tests whether .

During watermark detection, the extraction function is applied to the cover data being tested,

and the resulting vector is compared with the watermark being tested for. Thus, the steps for

watermark detection are:

1. ru = X(Cu)

2. if ru ∈ R(w), then Cu contains watermark w

During watermark embedding, knowledge of the content vector is exploited by applying the ex-

traction function and subsequently modifying the extracted signal so as to maximize the probability

of a detection at the receiver. The modification is performed by the “mixing function”, f(·). This
function is given an extracted signal and a watermark vector. rw = f(r0,w) yields a signal in

watermark space that is within the detection region for the given watermark vector, R(w), and that

is perceptually similar to the extracted signal, so d(r0, rw) is small. We call this process “mixing”

because it “mixes” the desired watermark, w, with the extracted vector, ro. We apply the mixing

function in watermark space because, if the extraction and inverse extraction functions are suitably

defined, the task can be substantially easier than it is in media space, as discussed in Section 5.

Watermark embedding is completed by applying the inverse extraction function to convert the

modified signal from watermark space into media space. Thus, the steps for watermark embedding

are:

1. r0 = X(C0)

2. rw = f(r0,w)

3. Cw = Y (rw,C0).

3.2 Examples

At this point, a couple of examples are supplied in order to illustrate how the functions X(·), Y (·),
D(·), d(·), and f(·), and the regions of watermark space S(·) and R(·) might be defined for some

image watermarking algorithms.

First, we begin with a simple system in which each possible watermark message is encoded as an

independent pseudorandom pattern equal in size to that of the image. A watermark is embedded

into an image by simply adding the pattern to it, attenuated so-as not to cause too much fidelity

impact. The detector works by matched filtering, that is, it computes the inner product between the

image being tested and the watermark pattern, and then compares the result against a threshold,

Tc.

In such a system, the media space and the watermark space are the same. The watermark

extraction function is simply an identity mapping, i.e. the extracted watermark r is simply the

received cover data or content C, and

r = C = X(C) .
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The inverse extraction function is similarly an identity mapping, in which the reference cover-data,

B, is ignored:

Y (r,B) = r = C .

A natural perceptual distance metric in such a system is a weighted Euclidean distance in pixel

space, in which the weight of each pixel is determined by a local fidelity function. If the weight for

pixel Ci is Gi, then we have

D(B,C) =
√∑

i

((Ci −Bi)Gi)2

The distance function in watermark space, d(·), is the same asD(·). The region of acceptable fidelity,
S(r), is just a sphere centered around r.

The detection region is defined by the correlation test described above. Thus we have

R(w) = {s : sTw > Tc}

Finally, the mixing function, f(r,w), finds a scaling value, k, such that k
√∑

i(wiGi)2 is within

the radius of the sphere S(r), and adds the watermark, scaled by this factor, to the image. So

f(r,w) = r+ kw

A more interesting example would be a system similar to the one above, but in which only

the low frequencies of the image are watermarked. Here, a watermark is embedded by applying a

frequency transform to the image, adding the frequency-domain watermark to the low-frequency

coefficients, and then taking the inverse frequency transform of the result. A watermark is detected

by applying the frequency transform to the image, and then computing the inner product between

it’s low-frequencies and the frequency-domain watermark. If the result surpasses a given threshold,

Tc, then the watermark is determined to be present.

When this system is fit into our framework, the extraction function,X(·), consists of the frequency
transform and the removal of high-frequency coefficients. So

X(C) = Low(F(C))

where F(·) is a frequency transform such as the Fourier or discrete cosine ransform, and Low(·)
truncates an M -dimensional frequency-domain image to its K lowest frequencies. Since K is less

thanM , X(·) maps a higher-dimensional media space down to a lower-dimensional watermark space.
Since X(·) performs a many-to-one mapping, the second argument of Y (·) will be required for

disambiguation. The inverse extraction process, Y (·), can be defined to append the high frequencies

from its second argument to the low frequencies present in its first argument, forming a complete,

frequency-domain image, and then to apply the inverse frequency transform, F−∞(·), to obtain a

spatial-domain image. So

Y (r,B) = F−1(Append(r, High(F(B))))
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Figure 1: Standard model of a communications channel.

where High(·) gives the M −K high frequencies of its M -dimensional, frequency-domain argument,

and Append(·) appends an M − K-dimensional vector (second argument) onto a K-dimensional

vector (first argument) to produce a single, M -dimensional vector.

The perceptual distance metric, D(·), can be defined in a manner similar to that in the first

example, but it will be most convenient to define it in the frequency domain. So

D(B,C) =

√√√√ M∑
i

((Fi(C)−Fi(B))Gi)2

where F〉(·) indicates the i’th term of the frequency transform of its argument, and Gi is a perceptual

weight for frequency i.

In watermark space, the perceptual distance metric, d(·), is simple to define. If we use Y (·) to
map any two watermark vectors into media space using the same reference content, B, then the

two resulting media vectors will differ only in the low frequencies that are used in watermark space.

Thus, only the first K terms of the summation for the difference between them will be non-zero. So

d(r, s) = D(Y (r,B), Y (s,B))

=

√√√√ K∑
i

((ri − si)Gi)2.

Finally, the region of acceptable fidelity, S(·), the detection region, R(·), and the mixing function,
f(·), can all be defined exactly as in the first example, with the only difference being that they are

here defined for K-dimensional vectors, rather than M -dimensional vectors.

4 Watermarking as communications

Figure 1 illustrates the basic elements of a classical communications system. The message to be

transmitted is first encoded. This step typically takes a binary input stream and translates it

into a binary output stream, usually for error correction and/or frequency spreading purposes.

The encoded message is then used to modulate a carrier signal in any of a variety of ways, e.g.

amplitude, frequency, phase, spread-spectrum, etc. The modulated carrier signal is transmitted via

a transmission channel, where it encounters additive noise. The receiver demodulates the noisy

signal to a (possibly corrupted) encoded message. Finally, this message is decoded to produce the

received message.
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Figure 2: Watermarking as communications.
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Figure 3: Complete model of watermarking

In Figure 2, we show one way in which watermarking can be mapped into this framework. Here,

the modulation step is replaced by the step of embedding the encoded message5 into some media

content C and the demodulation step is replaced by the step of extracting the (possibly corrupted)

watermark signal from the received signal6, Cw
′.

In watermarking, the post-embedding noise in the transmission channel, N, results from various

types of processing that the watermarked media goes through before the watermark is received, e.g.

compression and decompression, broadcast over analog channels, image or audio enhancements, etc.

It might also result from malicious processing by pirates intent on removing the watermark.

While Figure 2 illustrates a strong relationship between classical communications and water-

marking, it is incomplete; it does not illustrate the importance of maintaining the fidelity of the

watermarked media. A more complete image of a watermarking system is shown in Figure 3. Here,

we have added a second “receiver” in the form of human sensory organs, which should receive a

“message” that is essentially the same as the carrier media content. While this represents a de-

viation from classical communications, in which the carrier signal’s sole function is to carry the

encoded message, the resulting fidelity constraint is analagous to a constraint on signal power in a

communication channel, albeit with a different metric and motivation.
5Note that a binary encoding of the watermark, as would be given by a typical encoder in a classical communications

system, is not necessarily desirable. See [CKLS97].
6In some watermarking systems, the receiver is provided information about the unwatermarked content before it

extracts the watermark. See [CM97] for further discussion of this issue. This is also a form of side information, but
now at the receiver.
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Figure 4: Three categories to watermark embedding.

Because of the importance of preserving the fidelity of the watermarked media, most designers

of watermarks have not viewed the media as a carrier signal to be modulated, but rather as noise

that cannot be removed from the system. The systems that have resulted from this view can be

divided into two categories, as discussed earlier and illustrated in Figures 4a and 4b. These figures

show different schemes for implementing the watermark embedding step of Figures 2 and 3.

In the first category of embedders (Figure 4a), no advantage is taken of the fact that the media

content is completely known at the time of embedding. The encoded watermark signal is simply

attenuated according to a fixed, global power constraint, and added to the media. To maintain

fidelity, the power constraint is kept very low. Spread spectrum techniques are often employed to

make the signal detectable in the resulting low signal-to-noise ratio channel7. Examples of Category 1

watermarking methods can be found in [Tur89, Car95, TNM90, MT94, HW96, Rho95, BGML96,

HMW88, SC96]. Note that this approach to watermarking makes no distinction between the media

content, C0, and the attack noise, N.
7Spread spectrum communications was originally developed as a military communications system that would be

resistant to enemy jamming, though it is increasingly being used in commercial applications. The basic idea is to
take a narrowband signal and spread its energy over a much larger bandwidth. A detailed review of spread spectrum
technology can be found in [PSM82].
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Cox et al [CKLS97] first suggested that the watermark signal should be modified based on the

perceptual properties of the content. This led to a second category of watermarking algorithms,

depicted in Figure 4b, which make use of a model of human perception. In such algorithms, the

watermark signal is locally amplified or attenuated according to the local sensitivity of the model,

where locality may be interpreted in either the spatial or frequency domain. The resulting, modified

signal is then added to the media content as in a Category 1 embedder. A perceptual model is often

used to increase the power of the signal while maintaining fidelity by amplifying the signal wherever

the model’s sensitivity is low. Alternatively, to improve robustness, especially to compression, the

perceptual model may be used to identify perceptually significant regions of the content that must be

preserved by a compression algorithm. A watermark can be inserted in these perceptually significant

regions using, for example, spread spectrum techniques [CKLS97, RDB96, SZT98, PRH+94, PZ98].

Regardless of whether the goal is to increase fidelity or robustness, category 2 systems employ

only the perceptual properties of the media during embedding, i.e. the effect that the watermarked

media will have on the human perceptual system. The effect it will have on the watermark detector is

not explicitly modeled, and for public watermarking, the content is modeled as noise at the detector.

In the present paper, we present a logical generalization of the perceptually-based methods of

Figure 4b. This third category of watermarking algorithms is illustrated in Figure 4c. Here, we

have simply removed the stipulation that the media content be used only for local amplification and

attenuation of the watermark signal. The result is an example of a communication channel with

side information at the transmitter, such as that studied in [Sha58]. Rather than modelling the

media content as unknown channel noise, knowledge of the content is side information that can be

used by the embedder to control both fidelity (by using a perceptual model) and detectability (by

using a model of the watermark detector). The embedder can choose any Cw that satisfies these

two constraints according to a desired tradeoff.

Similarly, when the original content, C0, is present at the detector, such an arrangement can

again be considered communication with side information. However, the remaining sections of this

paper only examine communication with side information at the embedder and assume that no side

information is available at the detector. This is common for “public” watermark systems in which

detectors are widespread and not controlled by the content owner.

The systems under consideration in the present article have the following features:

• The watermark embedder takes two inputs: the watermark signal, w, and the media content

to be watermarked, C0. It has one output: the watermarked media, Cw.

• The embedder has complete knowledge of the functionality of the watermark detector, and

some level of knowledge of the human perceptual system.

• The embedder has no knowledge of the attack noise that will be applied to the watermarked

media before it is input to the watermark detector. However, this is an interesting generaliza-

tion of the approach which we believe should be studied.
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• The watermark detector takes two inputs: the received, possibly watermarked media, Cu
′, and

the watermark signal to test for, w. It outputs a yes or no answer to the question of whether

the given watermark is present in the media.

• If the media input to the detector contains no watermark, then it has not been manipulated

by any part of the watermarking system. This means that the detector receives just the media

plus the attack noise, C0
′ = C0 +N.

In order to develop a Category 3 embedder, we must first decide upon a suitable detector. To do

so requires knowledge of the statistical characteristics of the content and noise that can be expected.

Section 5 provides a discussion of the these charactersistics and Section 6 uses this information to

recommend the form of the detector. Finally, Section 7 uses this information to demonstrate how a

Category 3 embedder may be designed.

5 Characteristics of cover data and distortion vectors

In the first two categories of watermarking systems discussed above, little or no distinction is made

between the cover data and the distortion vectors. They are both simply considered as noise.

However, in the systems under consideration here, this distinction is clear, and it is profitable to

consider the different natures of and relationship between these two types of “noise”.

We are primarily concerned with the characteristics of these vectors in watermark space. That is,

we are interested in the signals extracted from the cover data and the distortion vectors as projected

into watermark space.

5.1 Cover data

There are two characteristics of the signals extracted from cover data to consider. The first is the

distribution of vectors that can be expected from unwatermarked data that is input to a watermark

embedder or detector. The second is the amount by which the embedder may change a vector before

causing an unacceptable degradation in fidelity.

The distribution of vectors extracted from unwatermarked data is highly dependent on the ex-

traction function, X(·). For example, if we consider the simplest image watermarking method

described in Section 3, where X(C) = C, the distribution of extracted vectors is the same as the

distribution of images. The elements of these vectors are highly correlated, since the pixels in natu-

ral images are usually correlated with their neighbors. But sparse sampling, averaging of disparate

values, whitening filters, and some image transforms can produce spaces in which the dimensions of

naturally occuring images are far less correlated. Furthermore, many of these techniques produce

distributions for the individual elements that are zero-mean Gaussians (see, for example, the analysis

in [HPGRN98]). All of these techniques can be used in watermark extraction functions.

We will assume that the probability density function of signals extracted from unwatermarked,

undistorted cover data is zero-mean, independent Gaussian. The analysis that results applies only
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to watermarking systems in which the extraction functions are designed to approximately yield such

a distribution. It will not apply directly to systems like the simple X(C)=C system.

The maximum allowable change in an extracted signal before the fidelity of the watermarked

data becomes unacceptable is also dependent on the extraction function. Generally, the maximum

change will be very small. But, when the dimensionality of the watermark space is significantly

lower than that of the media space, the maximum change, relative to the standard deviation of the

values in the original extracted signal, may increase.

For example, imagine that our perceptual distance metric is simply the largest distance along

any of the N dimensions of media space: D(C,B) = maxi |Ci − Bi|. Imagine, further, that if the

distance between the watermarked and unwatermarked versions of a piece of cover data is more than

D(C0,Cw) = 1, then the fidelity of the watermarked version will be unacceptable. So the embedder

can change each dimension in media space by up to a value of 1. If the length of a typical cover

data vector is significantly larger than 1, then a watermarking system that works directly in media

space will have little latitude for embedding watermarks. But, if our extraction function averages

groups of k values together, then the situation improves. The expected standard deviations of the

signals extracted from unwatermarked cover data will be roughly 1/
√
k times the expected standard

deviations of the cover data vectors, while the maximum change in any dimension remains 1. It

is thus conceivable that we could effect such a large change in this smaller space that the original

media vector is completely cancelled out, while still maintaining fidelity.

In Section 7, when we consider the best strategy for embedding watermarks that are to be

detected by thresholding a normalized correlation, we will make no assumptions about the relative

amount that we can change the media vector. But, in Section 6, when we consider the best strategy

for detecting watermarks, we will assume that the media vector can be completely cancelled out.

Thus, the analysis of Section 6 can only be applied directly to systems that work in spaces like the

one in which disparate values are averaged together, but applies in principle to other systems as

well.

5.2 Distortion Vectors

Unlike the cover data, distortion vectors can never be changed by the watermarking system. Thus,

we are interested here only in the distribution of distortion vectors. We argue that an appropriate

distortion model for watermarking applications includes a significant correlation between distortion

vectors and content vectors to which they are applied. This property will motivate a detection

strategy for which side information at the transmitter proves to be particularly exploitable.

The distribution of distortion vectors is often modelled as uncorrelated Gaussian noise. Such a

model is convenient, and it is accurate for distortions which are truly random, for example transmis-

sion over a noisy analog channel. However, commonly, digital media can fall subject to a randomly

selected collection of deterministic, digital processes. For a simple example, consider the process of

decreasing the brightness of an image by 10%. Here, the amount that is added to a given pixel value

is determined by a simple function of that pixel’s original value, not well-modelled by independent
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Gaussian noise. More complex examples would consist of any of a variety of compression and de-

compression algorithms. For most algorithms, the degradation applied to the input image is entirely

dependent on the image and the compression rate. The choice of distortions and their parameters

may be random, but the result of each distortion is a deterministic function of the media.

We therefore believe that a more realistic model of distortion vectors would specify a correlation

between the noise and the media8. We model such correlation by defining the distortion vector, n,

to be a Gaussian random vector with zero mean and covariance matrix

Λr
�
= σ2

n[ρ rrT + (1−ρ)I] (1)

where r is a vector in watermark space, σ2
n represents the overall strength of the distortion and the

parameter ρ, 0 ≤ ρ ≤ 1, determines the extent of the noted correlation between n and r.

To examine the accuracy of this model, and to get an idea of suitable values of ρ, we subjected

1800 images to a variety of distortions, and estimated ρ for each type of distortion, measured in

RGB pixel space. The images were 720 by 486 pixels in size, and each pixel was represented with

three bytes, one each for red, green, and blue. The distortions were:

1. “BLUR 3” filtered the image with a 3x3 box filter.

2. “BLUR 7” filtered the image with a 7x7 box filter.

3. “SHARPEN” filtered the image with the simple, 3x3 sharpening filter shown below:
 −1 −1 −1

−1 9 −1
−1 −1 −1


 .

4. “PIXELATE 3” divided the image into blocks of 3x3 pixels, and replaced all the pixels in each

block by the average of their colors. This is equivalent to shrinking the image down to 1/3 the

resolution in each dimension, and then pixel-replicating it back up to the original size.

5. “PIXELATE 7” performed the same process as PIXELATE 3, but with 7x7 blocks.

6. “SNOW 20” added normally distributed, random values to each of the R, G, and B values in

the image. The values were drawn from a zero-mean distribution with standard deviation 20.

The results were clipped to the range of 0 through 255.

7. “DITHER” reduced the image to 8 colors (black, red, green, yellow, blue, magenta, cyan, and

white) by means of three independant Bayer ordered dithers [Bay73].

8. “QUANTIZE 5” quantized each R, G, and B value down to 5 bits by zeroing out the three

low-order bits.
8Note that this form of “correlated noise” is not what is usually meant by “correlated noise”. Usually, this refers

to auto-correlation which can be overcome by means of whitening filters. However, we are referring to the correlation
between the noise and the transmitted signal. In this context, the applicability of whitening filters is unclear.
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ρ
Distortion Mean Median Min Max
BLUR 3 .196 .192 0 .603
BLUR 7 .218 .224 0 .616

SHARPEN -.139 -.127 -.831 .483
PIXELATE 3 .168 .160 0 .576
PIXELATE 7 .217 .213 0 .614

SNOW 20 .031 .025 -.094 .628
DITHER -.006 -.006 -.248 .124

QUANTIZE 5 .763 .763 0 .991
GAMMA 1.18 .898 .931 0 .973

Table 2: Statistics of Content-Distortion Correlation ρ.

9. “GAMMA 1.18” raised each R, G, and B value to the power of 1.18 and scaled back to a

range of 0 to 255. This is a standard simulation of what happens in video monitors and other

non-linear video equipment (1.18 is a typical number for monitors).

The results are summarized in Table 2. It is clear that ρ cannot be expected to be zero. The sig-

nificance of this is discussed in Section 6, where, for non-zero ρ, we show that normalized correlation

may be preferable to matched filtering.

Note that this model makes no attempt to deal with the issue of malicious attacks, that is distor-

tions performed by would-be pirates with the sole intention of removing the watermark. Distortions

of this type, especially those designed using detailed knowledge of the algorithm (for examples, see

[CL97, CL98, Kal98, KLvD98, LvD98]), are extremely difficult to analyze, and are not be covered

in the present article. However, several malicious attacks are actually pathalogical examples of pro-

cesses that might otherwise occur with normal processing (for example, see [PAK98]). The analysis

based on our model of distortion vectors should have some application to these types of malicious

attacks.

The model of distortion vectors given here is used in Section 6 to decide on the best detection

region to use when the signal extracted from unwatermarked cover data can be completely cancelled

out during watermark embedding. It is not used in Section 7 in order to permit the derivation of

sufficiently detailed results.

6 Watermark Detection

We are now interested in developing an effective detection strategy for the watermarking channel.

Recalling that the embedder does not have access to content wherein no watermark is to be inserted,

we have in this case that the detector observable is given by r0′ = r0 + n. If, on the other hand,

presence of a watermark is to be conveyed, then ignoring for the moment any distortive constraints,

an intuitively pleasing transmission strategy calls for the transmitter to set rw = w for some fixed

watermark vectorw in aK-dimensional watermark space; this removes all uncertainty at the detector

associated with the content vector r0, and generates the detector observable rw ′ = w+n. Although
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the capability of setting the content vector to a fixed watermark would seem optimistic in a real

watermarking application, it affords an analysis which produces an effective watermark detection

strategy and is less optimistic in cases where the dimensionality of watermark space is significantly

lower than that of content space.

We are led to consider the distribution of the channel output ru′ conditioned on presence or

absence of a watermark, where the subscript u conveys the notion that such presence or absence is

unknown at the detector. These distributions depend on the statistical description of the channel

distortion vector n modelling various effects encountered between watermark insertion and detection

such as cropping and D/A followed by A/D conversion. As illustrated in Table 2, an analysis of real

images subjected to a variety of corruptive processes demonstrates a significant correlation between

the distortion vector n and the transmitted content vector ru. We model such correlation by defining

n to be a Gaussian random vector with zero mean and covariance matrix

Λru
�
= σ2

n[ρ ruruT + (1−ρ)I]
as in Equation 1 where σ2

n represents the overall strength of the distortion and the parameter ρ,

0 ≤ ρ ≤ 1, determines the extent of the noted correlation between n and ru.

When a fixed watermark is transmitted, the detector observable rw′ = w + n is a Gaussian

random vector with mean w and covariance Λw. The probability density function of the output ru′

conditioned on watermark presence is then given by

f(ru′|watermark) =
1

(2π)K/2|Λw|1/2
exp{−(ru′ − w)TΛ−1

w (ru′ − w)/2}

where |Λw| is the determinant of the covariance matrix Λw. In the absence of a watermark, the

random vector n with covariance matrix Λr0 = σ2
n[ρr0r0

T +(1−ρ)I] does not yield a straightforward

characterization as r0 is not deterministic. In this case, we make the simplifying assumption that

r0 + n is a zero-mean Gaussian random vector with covariance matrix (σ2
c + σ2

n)I, which tends to

an exact description as either of σ2
n/σ

2
c or ρ tends to zero, leading to the conditional channel output

probability density function

f(ru′|no watermark) =
1

(2π(σ2
c + σ2

n))K/2
exp{−ru′T ru′/2(σ2

c + σ2
n)}.

In typical watermarking applications, the probability of a false positive, which occurs whenever

the detector concludes presence of an absent watermark, is a primary concern. This property leads

to a natural characterization of the detection process as a Neyman-Pearson hypothesis test (see for

instance [Poo94]), wherein the probability of proper watermark detection is maximized subject to

a prescribed limit on the probability of a false positive. In our case, the Neyman-Pearson test is

achieved by a likelihood-ratio test, which takes the form of a comparison of the likelihood ratio

L(ru′) = f(ru′|watermark)/f(ru′|no watermark)
with a threshold chosen to satisfy the prescribed false-positive tolerance with equality; if the thresh-

old is surpassed (or met with equality), watermark presence is concluded, and watermark absence

is concluded otherwise.
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Monotonicity of the natural logarithm log(·) allows us to consider the equivalent hypothesis test
generated by the log-likelihood ratio

l(ru′) = log f(ru′|watermark)− log f(ru′|no watermark)

which is proportional to each of the quantities (assuming σ2
c > 0 and σ2

n > 0)

ru′T ru′

2(σ2
c + σ2

n)
− (ru′ − w)TΛ−1

w (ru′ − w)
2

,

ru′T ru′

2(σ2
c + σ2

n)
− 1

2(1− ρ)σ2
n

(ru′ − w)T
[
I − ρwwT

1 + ρ(wT w − 1)

]
(ru′ − w) (2)

and

t(ru′) �= ρ(ru′T w)2 − (σ2
c + ρσ2

n)(1 + ρ(wT w − 1))
σ2

c + σ2
n

ru′T ru′ + 2(1− ρ)ru′T w, (3)

where (2) follows from the matrix inverse identity

[
I + uuT

]−1
= I − uuT

1 + ||u||2

for a general Kx1 vector u. Hence, an optimal detector concludes watermark presence if and only

if t(ru′) ≥ τ where τ is chosen so that

P (t(ru′) ≥ τ |no watermark) = P (t(r0′) ≥ τ) = α

where P (A|B) denotes the probability of an event A conditioned on an event B, and where α is the

prescribed limit on false positive probability. If we fix ρ > 0, the detector tends with growing K to

conclude watermark presence if and only if

(ru′Tw)2

||ru′||2||w||2 ≥ τ ′

||ru′||2 +
σ2

c + ρσ2
n

σ2
c + σ2

n

(4)

where we have assumed that ||w||2 grows at least linearly in K in order that the watermark signal-

to-noise ratio

||w||2/E[||n||2] = (σ2
n[ρ+K(1− ρ)/||w||2])−1

remain bounded away from zero, and where τ ′ is again chosen to meet the false positive requirement

with equality. The detection region corresponding to (4) is depicted in Figure 5 for the values

σ2
c = 10, σ2

n = 1, ρ = .5 and varying values of τ ′. When τ ′ = 0, the detector test statistic is given

by the normalized correlation |ru′Tw|/(||ru′|| ||w||). We are led in this case to a detection scheme

in which the linear relationship between the observed vector ru′ and the watermark vector w, as

measured by their described angle, is compared with a prescribed threshold.

Although threshold values other than τ ′ = 0 describe hyperbolic detection regions according to

(4), we propose detectors which in general conclude watermark presence if and only if

|ru′Tw|
||ru′|| ||w|| ≥ τ ′′(α) (5)
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Figure 5: Asymptotic detection regions corresponding to varying thresholds τ for the values σ2
c = 10,

σ2
n = 1 and ρ = .5. The x-axis represents the directions parallel to the watermark vector and the
y-axis is any direction perpandicular to the watermark vector.

for reasons of detector simplicity and robustification of the false positive analysis, where the depen-

dence of the threshold τ ′′ on the prescribed false positive probability α has been expressed. The

robustness follows from the property that, for large K, the random variable

Z =
√
K − 3
2

log
1 + r0′

Tw/||r0′|| ||w||
1− r0′Tw/||r0′|| ||w||

tends to Gaussian distribution with zero mean and unit variance independent of the values of σ2
c or w

[Cox91]. Hence, no statistical description of the content vector covariance parameter σ2
c is required

in order to develop expressions for false positive probabilities in the determination of an appropriate

prescribed threshold τ ′′(α). This is a particularly beneficial trait of the the normalized-correlation

detector (5) in light of the discrepancy in statistical properties exhibited by different types of content

vectors.

7 Watermark Insertion

In early watermarking applications, watermark insertion amounted to the addition of a predeter-

mined watermark vector to the original content to be embedded. This approach stemmed from

the philosophy that the content vector represented noise from the point of view of the watermark

embedder/detector pair. In essence, the addition of a constant watermark vector translated the

underlying statistical distribution of content vectors, with the aim that the watermarked content
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vector lie in an appropriate detection region the majority of the time; a large enough acceptable

distortion level would allow the addition of a strong enough watermark vector to achieve such an

aim.

In the proposed watermarking strategy, the embedder makes use of the knowledge of the content

vector rather than treating it as unknown noise. Thus, while the underlying content vector is

still viewed as noise from the point of view of the watermarking detector, recognition of the side

information available to the embedder in the form of the content realization leads to a transmission

strategy exhibiting a significant performance improvement.

Under the proposed scheme, the embedder uses knowledge of the content vector r0 to compute a

region S(r0) within which transformed content vectors satisfy acceptable distortion tolerances based

on prescribed content-dependent fidelity measures. The goal then becomes to pick an embedded

content vector rw from within S(r0) which will lead the receiver to conclude presence of a watermark.
For a fixed detection strategy and false positive tolerance α, detection is described by a region R(α)

of receptions which are considered to represent watermark presence.

In the absence of channel distortions, it is clear that any embedded vector rw selected from

the intersection of S(r0) and R(α) will exhibit acceptable distortion and lead to correct watermark

detection; if the regions S(r0) and R(α) do not overlap for a given content realization r0 and

false positive prescription, then watermark presence can not be conveyed. However, if we consider

the potential for channel distortions, determination of an effective transmission vector becomes a

more involved task. Even if the intersection of S(r0) and R(α) is non-empty, it is profitable for

the embedder to select a transmission from within the intersection that is maximally robust to

channel distortions, so that a reasonable probability of correct watermark detection is maintained

even following any signal processing applied to the embedded vector.

As an example, consider watermark detection based on the normalized correlation between a

given content vector rw and a prescribed watermark vector w, characterized by the detection region

R(α) =

{
rw′ :

|rw′Tw|
||rw′|| ||w|| ≥ τ(α)

}
. (6)

Such a detection scheme has previously been considered for watermarking applications ([CKLS97,

PZ98]), at least in part because of the reduction in statistical modelling of the content vectors

required in order to carry through a false positive analysis. Further justification for such a detection

scheme was also developed in the previous section.

In order to consider detection robustification based on this strategy, we assume that the reception

rw ′, representing the observable upon which the determination of watermark presence is based, is

the superposition of the embedded vector rw and additive distortion n. We assume that n is

Gaussian distributed with zero mean and covariance matrix Λn = σ2
nI, where σ2

n represents the

average strength of encountered distortive effects. Although we have ignored the tendency for a

correlation between rw and n addressed in earlier sections, we note that such an assumption will not

significantly alter the results to follow, and discuss the generalization of the embedding process to

arbitrary models at the end of this section. Then, for a given embedded vector rw, the probability
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of correct detection Prw is given according to (6) by

Prw = P (rw + n ∈ R(α))

= P

( |(rw + n)T w|
||rw + n|| ||w|| ≥ τ(α)

)
.

The distribution of the random variable nT w is Gaussian with zero mean and variance σ2
n||w||2,

while that of nT rw is zero-mean Gaussian with variance σ2
n||rw||2. When the content vectors lie in

a watermark vector space of high dimension K, the distribution of ||n||2 tends to a Gaussian with

mean Kσ2
n and variance 2Kσ4

n. Hence, for large K we have that

Prw � P

(
|rwTw|√||rw||2 +Kσ2

n||w|| ≥ τ ′′
)

=

{
0 , |rwT w|√

||rw||2+Kσ2
n||w|| ≥ τ ′′

1 , otherwise
(7)

Roughly, then, a given embedded content vector rw within the detection region can be charac-

terized by its resistance to distortive effects, where, with high probability, distortion with strength

Kσ2
n ≤ (rwT w)2

||w||2τ ′′(α)2 − ||rw||2
will leave the watermark unharmed, while stronger distortion will lead the receiver to incorrectly

conclude watermark absence. It is evident that an optimal embedder strategy consists of picking

from the set S(r0) of vectors with acceptable perceptual distortion the embedded vector rw which

maximizes the quantity
(rwT w)2

||w||2τ ′′(α)2 − ||rw||2
in order to achieve maximal robustness to subsequent distortive effects. Note that surfaces of equal

robustness are rotationally symmetric about the watermark axis according to (7). In Figure 7, a

sample of contours of equal robustness are plotted in an arbitrary plane containing the watermark

vector, which is assumed to have unit magnitude.

We have shown how an embedder might exploit knowledge of specific content in order o robustify

the embedding process to subsequent distortions, including attacks. While different watermark

detection strategies and distortion models will require that alternative expressions be optimized

in order to achieve maximum robustness to signal processing and other distortions, the basic idea

remains that the acceptable set of embedded vectors for a given content realization forms the feasible

set for the optimization of a robustness expression, for instance that given in (7). In this manner,

the side information provided to the embedder is used to generate an optimal insertion strategy for

a given channel model.

8 Conclusions and Future Work

In this paper, we have illustrated some basic similarities and differences between watermarking and

traditional communications. Content (cover data) has historically been viewed as a form of noise,
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Figure 6: Equal robustness contours in an arbitrary plane containing a watermark vector of unit
magnitude for the value τ ′′(α) = 0.9. Contours are resistant to distortion of strength Kσ2

n. The
x-axis represents the directions parallel to the watermark vector and the y-axis is any direction
perpandicular to the watermark vector.

and watermarks treated as transmissions with very low signal-to-noise ratios. However, as we have

pointed out here, viewing knowledge of the cover data as side information at the transmitter allows

the design of more powerful watermark embedding algorithms. In particular, it becomes possible

to calculate the robustness of watermarked data to subsequent attacks, and to maximize robustness

within a specified distortive constraint.

We have further argued that an effective watermark detection region is formed by a K dimen-

sional, two-sheet hyperboloid. But, when it is important to place tight upper bounds on false positive

rates, the detection region formed by thresholding a normalized correlation is probably preferable.

While these observations promise a significant performance improvement, there is still much

room for future work. This might include

• analyzing more accurate models of the distribution of distortion vectors. In particular, our

analysis of the embedding process is based on a simplified model of an independent Gaussian

distribution. A more accurate model might be considered in order to improve overall perfor-

mance. One approach might be to make use of the side information available at the embedder

to predict the likely distribution of future distortions to the watermarked data.

• analyzing potential performance improvement given side information at the detector. Several

existing watermarking algorithms assume knowledge of the original, unwatermarked cover

data at the detector. Typically, these algorithms subtract the unwatermarked data from the

23



(possibly) watermarked data to reconstruct the watermark. It may be that more sophisticated

algorithms can be developed.

• assessing the capacity of the watermarking channel. Shannon’s article [Sha58] is devoted to

analyzing the capacity of communication channels with side information at the transmitter. It

would be interesting to apply a similar analysis to the particular application of watermarking.
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