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We present a method to design controllers for safety specifica-
tions in hybrid systems. The hybrid system combines discrete event
dynamics with nonlinear continuous dynamics: the discrete event
dynamics model linguistic and qualitative information and natu-
rally accommodate mode switching logic, and the continuous dy-
namics model the physical processes themselves, such as the con-
tinuous response of an aircraft to the forces of aileron and throttle.
Input variables model both continuous and discrete control and dis-
turbance parameters. We translate safety specifications into restric-
tions on the system’s reachable sets of states. Then, using analysis
based on optimal control and game theory for automata and con-
tinuous dynamical systems, we derive Hamilton–Jacobi equations
whose solutions describe the boundaries of reachable sets. These
equations are the heart of our general controller synthesis technique
for hybrid systems, in which we calculate feedback control laws for
the continuous and discrete variables, which guarantee that the hy-
brid system remains in the “safe subset” of the reachable set. We
discuss issues related to computing solutions to Hamilton–Jacobi
equations. Throughout, we demonstrate our techniques on examples
of hybrid automata modeling aircraft conflict resolution, autopilot
flight mode switching, and vehicle collision avoidance.
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I. INTRODUCTION

A. Why Study Hybrid Systems?

For about the past eight years, researchers in the tradition-
ally distinct fields of control theory and computer science
verification have proposed models and verification and con-
troller synthesis techniques for complex, safety critical sys-
tems. The area ofhybrid systemsis loosely defined as the
study of systems that involve the interaction of discrete event
and continuous time dynamics, with the purpose of proving
properties such as reachability and stability.

To elaborate, consider that individual feedback control
scenarios are naturally modeled as interconnections of
modules characterized by their input/output behavior. Modal
control, by contrast, naturally suggests a state-based view,
with states representing control modes. These distinct mod-
eling techniques need to be reconciled in order to support
a systematic methodology for the design, validation, and
implementation of control software. The dichotomy between
the input/output (feedback) view and the state-space (mul-
timodal) view is often presented in a restricted setting, as
a difference between continuous and discrete control. Con-
tinuous feedback control focuses on the analog interaction
of the controller with a physical plant, through sensors and
actuators. Continuous control models and design techniques
have been developed, used, and validated extensively. The
case for discrete multimodal control rests on the observa-
tions that discrete abstractions make it easier to manage
system complexity, discrete models are easier to manipulate,
and discrete representations more naturally accommodate
linguistic and qualitative information in controller design.
Commonly used models for hybrid systems, such as hybrid
automata, combine state-transition diagrams for discrete
behavior with differential equations or inclusions for con-
tinuous behavior. The discrete event systems are used to
model modes of operation of the system, such as the mode
of flight of an aircraft or the interaction and coordination
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among several aircraft. The continuous dynamics model
the physical process, such as the continuous response of an
aircraft to the forces of aileron and throttle. For complex
multiagent systems, in addition to the requirement of de-
signing hierarchies of decision making at different levels
of abstraction, there is the need to synchronize decision
making across different agents. In the absence of a global
clock, it is useful to have the mechanism of synchronization
using discrete events. The resulting interplay of continuous
single agent dynamics with synchronization across multiple
agents once again results in a hybrid system.

B. Problems Solved Using Hybrid Systems

In work to date, a number of problems for hybrid systems
have been studied.

1) Optimal Control: Roughly speaking, the optimal con-
trol problem is to drive the system to a desirable state while
minimizing a cost function that depends on the path fol-
lowed. It typically involves aterminal cost(depending on
the terminal state), anintegral costaccumulated along con-
tinuous evolution, and a series ofjump costsassociated with
discrete transitions. This is a classical problem for contin-
uous systems, extended more recently to discrete systems [1],
and to classes of hybrid systems with simple continuous dy-
namics [2]. The approach has been extended to general hy-
brid systems both for the dynamic programming formulation
[3] and for the variational formulation, extending the max-
imum principle [4].

2) Hierarchical Control: This describes the systematic
decomposition of control tasks such that the resulting hier-
archical controller guarantees a certain performance [5], [6].

3) Distributed, Multiagent Control:Here, optimal con-
trol problems are decomposed so that they can be solved in
a distributed way by a collection ofagentswith a specified
communication and information architecture [7].

4) Least Restrictive Controllers for Specifications Such as
Safety and Liveness:Here it is required that all trajectories
of the system satisfy certain properties. Properties include
safety properties (for example, requiring that the state of the
system remain in a certain safe set) and liveness properties
(requiring that the state eventually enter a certain target set or
visit a set infinitely often). For discrete systems, this problem
has a long history in mathematics and computer science. The
essence of the classical problem was posed by Church [8] and
solved in different ways by a number of authors, including
Büchi and Landweber [9] (for an overview, please see [10]).
In the continuous domain, control problems of the safety type
have been addressed in the context of pursuit evasion games
[11].

In this paper, we concentrate on the solution of safety spec-
ifications for hybrid systems that have rich classes of non-
linear dynamics. We encode system safety properties into
requirements that the state trajectory of the system remain
within certain safe subsets of the state space. We then calcu-
late the subset of states from which this safe subset is always
reachable, and determine the control law, in both the discrete
and continuous control variables, that renders this subset in-
variant. We present three examples to illustrate our model

and control law design methodology: aircraft conflict resolu-
tion, aerodynamic envelope protection, and highway vehicle
collision avoidance. These examples, introduced below, il-
lustrate the ability of a hybrid system framework to improve
the ease of analysis and control of complex safety critical
systems.

C. High-Confidence Systems

We increasingly find ourselves surrounded by so-called
high-confidence systems: transportation networks, power net-
works, communication networks. These are systems in which
the real-time software is expected to work at a very high level
of confidence: of necessity is the reliability, correctness, and
graceful degradation under faulted modes of operation. These
systems are safety critical since failures could result in loss
of life and/or property; they are hybrid due to the multiagent
hierarchical nature of the control system involved. Two key
examples in the area of transportation systems have motivated
our work: air-traffic management systems [12] and automated
highwaysystems[13].

Today’s crowded skies and ever-increasing demand for
air travel, coupled with new technologies for navigation
and surveillance, are fueling a change in the way that the
Federal Aviation Administration manages air traffic. Current
air-traffic control (ATC) practice manually routes aircraft
along predefined paths between “fixes,” using radar track
and flight information from plan view displays and voice
communication over radio channels. The use of global
positioning systems (GPSs) and datalink communication
will enable automation of some ATC functionality, such as
the prediction and resolution of trajectory conflicts between
aircraft. For such a safety-critical system, the integrity and
acceptance of new automated control functionality depends
on aprovably safedesign, which requires accurate system
models, and procedures for verifying and synthesizing
safe control actions. For more details, we refer the reader
to [14]–[16]. A proposed new solution to the growing
congestion is a program called “free” or “flexible” flight, in
which each aircraft flies along optimal user-preferred routes,
which can minimize flight time and fuel consumption or
avoid inclement weather. Key enabling technologies for
such a system are accurate methods for navigation and
communication [such as inertial navigation systems (INSs),
GPSs, and automatic dependence surveillance-broadcast
(ADS-B) datalinks], provably safe methods for conflict
detection and resolution, route generation and regeneration,
and automatic flight mode switching to follow routes. In
such a system, each aircraft is surrounded by a virtual
cylinder called a protected zone, the radius and height of
which (2.5 nautical miles by 1000 ft) depend on current
International Civil Aviation Organization (ICAO) separation
standards. A conflict or loss of separation between aircraft
occurs when protected zones of two or more aircraft overlap.
The conflict resolution algorithm must use available in-
formation to generate maneuvers that resolve conflicts as
they are predicted. From a data base of flight modes, such
as segments of constant heading, of constant bank angle,
of constant or varying airspeed, the conflict resolution
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algorithm could synthesize the parameters of the maneuver,
such as the proper sequencing of these modes, the numerical
values associated to each segment (heading angle, bank
angle, airspeed), and the conditions for switching between
flight modes. The result would be a maneuver, proven to
be safe within the limits of the models used, which is a
familiar sequence of commands easily executable by the
flight management systems on board aircraft. The resulting
maneuvers could be viewed as protocols, or “rules of the
road.”

Highway traffic congestion is a problem millions of
commuters face every day. Even though building new
highways seems like an easy solution, the price of real
estate in and around urban areas makes it impractical. An
alternative solution that has attracted attention in recent
years uses automation to make more efficient use of the cur-
rent highway system. Intelligent vehicle highway systems
(IVHSs) attempt to do this by taking advantage of recent
technological advances in communication, sensing, surveil-
lance, computation, and control. The most ambitious form
of IVHS is the automated highway system (AHS), in which
driving is partially or even fully automated. Different AHS
concepts have been proposed, ranging from longitudinal
(along the lane) autonomous intelligent cruise controllers
(AICCs) to fully automated driving. The platooning concept
[17] is based on the empirical observation that low relative
velocity collisions are safe for both the vehicles and their
passengers. On an AHS that supports platooning, vehicles
move in tightly spaced groups (known asplatoons) of up to
20 vehicles, withintraplatoonspacings of the order of 1 to
2 m. Under normal conditions of operation, the controllers
of the vehicles can be designed such that no collisions occur
within a platoon. Under emergency conditions, collisions
may be possible. However, because of the tight spacing, it is
likely that they will be at low relative velocities. Collisions
are prevented from propagating from one platoon to the
next by maintaining a largeinterplatoon spacing (on the
order of 50 m). Because it promises a substantial increase
in highway throughput, platooning has been studied exten-
sively in recent years. As with the air-traffic system, control
design techniques that guarantee safety of the system are
paramount. Controllers have been proposed for maintaining
the longitudinal stability of a platoon [18], for joining
and splitting platoons and maintaining the interplatoon
separation [13], for regulating the lateral movement of the
vehicles (lane keeping and lane changing), for coordinating
the actions of different platoons [17], for stabilizing the
traffic in segments of the highway, and for routing traffic
along the entire highway system. The interaction among
these controllers involves hybrid phenomena at different
levels. For example, the discrete communication protocols
that coordinate the actions of neighboring platoons [17] im-
plement their decisions by invoking continuous controllers
designed for joining platoons, splitting platoons, and other
maneuvers. Moreover, even these low-level controllers may
involve switching, between the different modes used for
maintaining a desired speed and heading from the preceding
vehicle [19], for example.

D. Game Theoretic Approach to Hybrid Systems Design

The analysis and control of hybrid systems can be based on
game-theoretic methods from computer science and optimal
control. A hybrid game is a multiplayer structure in which
the players have both discrete and continuous moves. Each
player controls a set of real-valued variables. The game pro-
ceeds in a sequence of rounds. In every round, each player ei-
ther chooses to update some of its variables (a discrete move),
or chooses a law according to which its variables will evolve
together with an upper bound on the duration of the round (a
continuous move). If some player chooses a discrete move,
then the variables are updated and no time elapses. If all
players choose continuous moves, then the variables evolve
according to the selected laws for the minimum of the se-
lected durations.

Hybrid games have been used both in the computer sci-
ence and in the control community. In the computer science
literature, they have been classified with respect to the com-
plexity of the laws that govern the evolution of the variables
and with respect to the winning conditions for the players.
This has been studied in the timed games of Maleret al.[20],
[21] (for constant differential equations of the form )
and the rectangular games of Henzingeret al.[22], [23] (con-
stant differential inclusions of the form ). The clas-
sical winning conditions for infinite discrete games are safety
(stay within a given set of states), Büchi (visit a given set of
states infinitely often), and Boolean combinations thereof. In
the control community, problems of the safety type have been
addressed in the context of pursuit-evasion games and robust
control [11], [24], [25].

As the reader will see in this paper, the solution of safety
games for hybrid automata involves the fixed-point iteration
of single-round controllability operators: the game theoretic
synthesis procedure is semidecidable when certain operators
called that we define in the paper are
computable. We discuss how to approximate the solution of
the exact operators in order to cover
cases that are not decidable. It is our conviction that this
theory is critical for all examples of practical importance.

E. Outline of the Paper

In Section II, we give the formal definition of the class of
hybrid systems, called hybrid automata, that we will study.
Section III contains three examples drawn from air-traffic
management, flight systems avionics design, and automated
highway systems, which we carry throughout the paper. In
Section IV, we give a review of the discrete, continuous, and
hybrid controller design procedure. This procedure is applied
to the three model examples in Section V. Approximate so-
lution techniques are discussed in Section VI.

II. M ODELING FORMALISM

Our goal is to develop a mathematical model of hybrid
systems rich enough to describe both the evolution of con-
tinuous dynamics and the discrete switching logic, and ca-
pable of modeling uncertainty in both the continuous and
discrete input variables. In this section, we present a hybrid
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system model that was developed in [16], [26], and [27] and
is based on overlaying finite automata on nonlinear contin-
uous-time control systems. To get the ideas fixed, we start
with finite-state automata and continuous state, continuous
time control systems.

A. Notation

Let be a countable collection of variables and letde-
note its set of valuations, that is, the set of all possible assign-
ments of the variables in . We refer to variables whose set
of valuations is countable asdiscreteand to variables whose
set of valuations is a subset of a Euclidean spaceascon-
tinuous. We assume that Euclidean space is given the Eu-
clidean metric topology, whereas countable and finite sets are
given the discrete topology (all subsets are open). Subsets of
a topological space are given the subset topology and prod-
ucts of topological spaces are given the product topology. For
a subset of a topological space we useto denote its clo-
sure, its interior, its boundary, its complement,

its cardinality, the set of all subsets of , the set
of finite or infinite sequences of elements in, and the set
of piecewise continuous functions fromto . We use
to denote conjunction, disjunction, negation, the uni-
versal quantifier, and the existential quantifier.

A finite-state automaton is represented as

(1)

where is a finite set of discrete state variables;
is a finite set of discrete input variables, where contains
the controller’s inputs and contains the environment’s in-
puts, which cannot be controlled; is a set of initial
states; and maps the state and input space
to subsets of the state space and thus describes the transi-
tion logic of the finite automaton. Anexecutionof (1) is de-
fined to be a finite or infinite sequence of states and inputs

where, for , and
.

Continuous state, continuous time control systems, on
the other hand, may be represented as differential equations
evolving on a state space

(2)

where is the state, usually ;
is the space of continuous input variables, where is
the set of control inputs and is the set of disturbance
inputs; is a vector field, assumed to be globally Lipschitz in

and continuous in; and the initial state where
. A trajectory of (2) over an interval

is a map: such that
for all .

B. Hybrid Automata

Since we are interested in hybrid phenomena that involve
both continuous and discrete dynamics, we introduce the hy-
brid time trajectory, which will encode the set of times over
which the evolution of the system is defined.

Definition 1 (Hybrid Time Trajectory):A hybrid time tra-
jectory is a finite or infinite sequence of inter-
vals of the real line, such that:

• for and, if ,
or ;

• for all , .

The interpretation is that are the times at which discrete
transitions take place. Notice that discrete transitions are as-
sumed to be instantaneous and that multiple discrete transi-
tions may take place at the same time, since it is possible for

. Hybrid time trajectories can extend to “infinity”
if is an infinite sequence or if it is a finite sequence ending
with an interval of the form . Since the dynamical
systems we consider are time invariant, we assume, without
loss of generality, that . We denote by the set of
all hybrid time trajectories. For and , we use

as a shorthand notation for “there exists asuch that
.” We mention that in this paper, the evo-

lution of time will be “dense” continuous time, that is, the
underlying continuous state dynamics are continuous time.
In applications, it is sometimes of interest to have discrete
time (synchronous) evolution of the continuous state with au-
tomata like transitions (asynchronous).

Definition 2 (Hybrid Automaton):A hybrid automaton
is a collection

Init Inv (3)

where

• is a finite collection of state variables, with
finite and ;

• is a finite collection of discrete input
variables, where is the set of discrete control inputs,
and is the set of discrete disturbance inputs;

• is the set of continuous input variables,
where is the set of continuous control inputs and
is the set of continuous disturbance inputs;

• Init is a set of initial states;
• is a vector field describing the

evolution of for each ; is assumed to be glob-
ally Lipschitz in (for fixed ) and continuous
in ;

• Inv is called an invariant and defines
combinations of states and inputs for which continuous
evolution is allowed;

• is a reset relation,
which encodes the discrete transitions of the hybrid au-
tomaton.

We refer to as thestateof and to
as theinput of . We make the following

assumption to ensure that the hybrid automaton does not
block trajectories, causing the system to deadlock: assume
that is an open set, and that if then

.
The main differences between the model presented here

and that of timed and linear hybrid automata are in the contin-
uous dynamics: we incorporate full nonlinear models of the

952 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



continuous state dynamics and include continuous input vari-
ables to model both parameters that the designer may control
and disturbance parameters that the designer must control
against. This allows an accurate representation of the con-
tinuous physical processes that we would like to model and
control.

Definition 3 (Execution of a Hybrid Automaton):An ex-
ecutionof a hybrid automaton is a hybrid trajectory

with:

• Initial Condition: Init;
• Continuous Evolution: for all with ,

, are constant, is piecewise contin-
uous, is a solution to the differential equation

over , and for all ,
Inv;

• Discrete Evolution: for all ,
, .

A hybrid automaton is interpreted as accepting, rather than
generating, an execution. Hybrid automata may accept no ex-
ecutions for some initial states or some inputs, may accept
multiple executions for the same initial state and inputs, or
may not accept executions over arbitrarily long time hori-
zons. More formally, an execution is
called finite if is a finite sequence ending with a closed
interval,infinite if is an infinite sequence or if

, andZeno1 if it is infinite but .
In [28] and [29], conditions are given that allow one to ensure
that a hybrid automaton accepts a unique infinite, non-Zeno
execution.

Associated to the hybrid automaton is a trajectory
acceptance condition, which describes the specification
that one would like executions of the system to satisfy. We
define aproperty as a map from the set of executions to
True, False. Our work has been motivated by verification

and synthesis for safety critical applications, and as such
we have been primarily interested in safety specifications.
These specifications are encoded as subsets of the state
space of the hybrid system: thesafe set is that
subset in which the system is defined to be safe. We assume
that safe sets are closed and unsafe sets are open; we use
to denote safe sets and to denote unsafe sets. We
define asafety property, denoted by , by

True if
False otherwise.

Safety properties are more general than they may initially
appear. Consider, for example, another propertydefined
by

True if
False otherwise.

It is easy to see that . Examples of
more complex specifications not covered by safety properties
are so-calledliveness properties, for example, the “always

1The name “Zeno” comes from the ancient Greek philosopher Zeno who
lived in Elea, a Greek colony in southern Italy, in the fifth century B.C. Zeno
spent his time posing paradoxes about time.

eventually” property . The full Borel hierarchy of
specifications built up from constitutes an important
set of temporal properties (see [30]).

In what follows, we will restrict ourselves to static-state
feedback controllers. We define astatic-state feedback con-
troller for a hybrid automaton to be a map from the state
space to subsets of the controller’s input space

(4)

Thus, the controller may affect the behavior ofthough its
discrete and continuous control inputs and .

III. M OTIVATING EXAMPLES

We now present three examples of hybrid systems: res-
olution of trajectory conflicts between aircraft, single air-
craft aerodynamic envelope protection, and collision avoid-
ance for automated vehicles in an AHS. In the conflict res-
olution and collision avoidance problems, the system is safe
if the aircraft or vehicles always maintainminimum separa-
tion with each other. In the aerodynamic envelope protec-
tion problem (representative of autopilot design problems),
system safety means that the state of the aircraft remains
within minimum and maximum bounds imposed on its ve-
locities and orientation variables.

A. Aircraft Conflict Resolution

We present as motivating example a model for the kine-
matic motions of two aircraft, labeled 1 and 2, at a fixed
altitude. Let represent the
relative position and orientation of aircraft 2 with respect
to aircraft 1. In terms of the absolute positions and orien-
tations of the two aircraft for , it may
be verified that ,

,
and it is easy to derive that

(5)

where is the linear velocity of aircraftand is its angular
velocity. The protected zone of aircraft 2 may be translated
to the origin of this relative frame, and thus the relative posi-
tion must remain outside of the disk :

. The flight modes for this system of two
aircraft are based on the linear and angular velocities of the
aircraft. We consider two possibilities: , meaning that
aircraft follows a straight line, and , meaning that air-
craft follows an arc of a circle if is kept constant. These
maneuvers approximate closely the behavior of pilots flying
aircraft: straight line segments (constant heading) and arcs
of circles (constant bank angle) are easy to fly both manu-
ally and on autopilot. Consider a maneuver in which there
are three modes in sequence: acruisemode in which both
aircraft follow a straight path; anavoidmode in which both
aircraft follow a circular arc path; and a secondcruisemode
in which the aircraft return to the straight path. The protocol
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of the maneuver is that as soon as the aircraft are within a cer-
tain distance of each other, each aircraft turns 90to its right
and follows a half-circle. Once the half-circle is complete,
each aircraft returns to its original heading and continues on
its straight path (Fig. 1). We assume that both aircraft switch
modes simultaneously, so that the relative orientationis
constant, and we assume that both aircraft fly an arc with the
same radius at the same velocity. These assumptions simply
allow us to display the evolution of the continuous state in
two dimensions, making the results easier to present: in a true
conflict resolution scenario, these assumptions would be re-
moved. This maneuver generalizes to-aircraft as a “round-
about” maneuver, discussed in [12].

The dynamics of the maneuver can be encoded by
the hybrid automaton of Fig. 2, where corresponds to
cruising before the avoid maneuver, corresponds to the
avoid mode, and corresponds to cruising after the avoid
maneuver has been completed. There is one discrete control
input , such that the switch from to triggers
the transition from to . The transition from to is
required to take place after the aircraft have completed a
half-circle: note that with , for , it takes
time units to complete a half circle. The continuous state
space is augmented with a timer to force this tran-
sition. Let . At each transition, both
aircraft change heading instantaneously by radians; we
represent this with the standard rotation matrix .
Assuming computation in the flight management system of
aircraft 1, we assume that is controllable, and is known
to within some uncertainty. Safety is defined in terms of the
relative distance between the two aircraft

(6)

Thus the state space of this two-aircraft system is
. The discrete input

space is ( ), and the contin-
uous input space is , where and

(we assume in this example that and are
fixed, the more general case is presented in [12], [16]). We
assume , that is described by the rela-
tive aircraft dynamics (5) augmented with a timer, as shown
in Fig. 2, and that is given as follows:

Inv

The map that resets in transitions from to
and to is described in Fig. 2. The controller synthesis
problem is therefore to generate the relative distance between
aircraft at which the aircraft may switch safely from mode 1
to mode 2, and the minimum turning radiusin mode 2, to
ensure that the five-nautical-mile separation is maintained.

B. Aerodynamic Envelope Protection

The example is inspired by the work of [31], in which the
flight modes for the airspeed and flight path angle dynamics
of an aircraft are derived. We consider a nonlinear model

Fig. 1. Two aircraft in three modes of operation: in modes 1 and
3 the aircraft follow a straight course and in mode 2 the aircraft
follow a half-circle. The initial relative heading (120) is preserved
throughout.

Fig. 2. In q both aircraft follow a straight course, inq a
half-circle, and inq both aircraft return to a straight course.

of the longitudinal axis dynamics of a conventional takeoff
and landing (CTOL) aircraft in normal aerodynamic flight in
still air [32], [33], shown in Fig. 3. The horizontal and ver-
tical axes are, respectively, the (denoted

, ) axes, and thepitch angle is the angle made by the air-
craft body axis, with the axis. Theflight path angle

and theangle of attack are defined as: ,
. Expressions for the lift and drag forces

are given by
, where are dimensionlesslift

anddrag coefficientsand and are positive constants. We
assume that the autopilot has direct control over both the
forward thrust (throttle) and the aircraft pitch (eleva-
tors); thus there are two continuous control inputs

. Physical considerations impose constraints on the in-
puts: . The longitudinal dy-
namics may be modeled by the Newton–Euler equations

Rot Rot

(7)

where Rot and Rot are standard 2 2 rotation ma-
trices, is the mass of the aircraft, andis gravitational ac-
celeration. The simplified flight management system (FMS)
studied in this paper uses control inputsand to con-
trol combinations of the speed , flight path
angle , and altitude . The linear and angular accelerations

may be derived directly from (7)

(8)

(9)

Note that these dynamics are expressed solely in terms of
and inputs , where ; thus (8) and (9)

are a convenient way to represent the dynamics for modes in
which is not a controlled variable. Safety regulations for the

954 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



aircraft dictate that , and must remain within specified
limits

(10)
where are functions
of such factors as airspace regulations, type of aircraft, and
weather. For aircraft flying at cruise altitude, we assume
that these limits are constants, and thus the aerodynamic
flight envelope is as illustrated in Fig. 4 as projections in
the -space and -space, where .
The state trajectory must remain within at all times
within cruise mode (this is called aerodynamic envelope
protection). The system may be discretized into five flight
modes, depending on the state variables being controlled:

• Mode 1: (Speed, Flight Path), in which the thrust
is between its specified operating limits (

), the control inputs are and , and the controlled
states are the speed and the flight path angle of the
aircraft ;

• Mode 2: (Speed), in which the thrust saturates (
) and thus is no longer available

as a control input; the only input is, and the only
controlled state is ;

• Mode 3: (Flight Path), in which the thrust saturates
( ); the input is again , and
the controlled state is;

• Mode 4: (Speed, Altitude), in which the thrust is
between its specified operating limits (

), the control inputs are and , and the controlled
states are the speed and the vertical position of the air-
craft ;

• Mode 5: (Altitude), in which the thrust saturates (
); the input is , and the controlled

state is .

Modeling this system as a hybrid automaton,
the discrete state may take on one of five possible
values, , corresponding to the five
flight modes. The continuous state of the system is

, with continuous
dynamics specified by (7). The control inputs are
the throttle and pitch with input constraint set

, and we assume for
simplicity that there are no continuous disturbance inputs
( ) (a possible extension to this problem would be to
consider wind as a continuous disturbance). The controllable
discrete inputs label transitions from each mode to every
other mode: let , for and ,
be the action labeling the transition fromto . We assume
that there are no disturbance actions ( ) (although it
will be a very nice extension to introduce disturbance actions
representing pilot error in manually switching modes). The
safe set is illustrated in Fig. 4. In our calculations, we use
parameter values corresponding to a DC-8 at cruising speed;
the details are described in [16] and [34]. The controller
synthesis problem is therefore to generate the continuous
control inputs to use in each flight mode, as well

Fig. 3. The longitudinal dynamics of a conventional take-off and
landing (CTOL) aircraft in flight with attached axes about its center
of mass.

Fig. 4. (a) Simplified aerodynamic flight envelope in
(V; 
)-space: axes are airspeedV , flight path angle 
. (b)
Simplified aerodynamic flight envelope in(h; V; _h)-space: axes
are altitudeh, airspeedV , vertical speed_h.

as the allowable mode transitions, so that flight envelope
protection is guaranteed.

C. Vehicle Collision Avoidance

The need to ensure the safety of the vehicles on an AHS
dictates that formal methods have to be used to design and
analyze the hybrid interactions. In [13], the design method-
ology presented in this paper was used to derive safety con-
ditions for the longitudinal movement of the vehicles in a
multilane AHS. Here we highlight a simple example from
that study. Consider two platoons, labeledand , moving
on an AHS (Fig. 5) with following . Let denote the
length of platoon and its position from a fixed
road-side reference frame. Since neither the dynamics nor
the safety requirements depend on the absolute position of
the platoons, we introduce a variable
to keep track of the spacing between platoonsand . We
assume that (after feedback linearization) the controller of
vehicle can directly affect the acceleration of, ,
through brake and throttle actuators. We also assume that
vehicle is equipped with sensors to measure its own ve-
locity and the spacing and relative velocity with respect to
vehicle . The acceleration of vehicle, , is assumed to
be unknown to vehicle and is treated as a disturbance. The
continuous dynamics can now be described by a state vector

with

(11)
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Physical considerations impose constraints onand : ve-
hicles are not allowed to move in reverse and are required to
keep their speed below a certain speed limit . To enforce
these requirements, we assume thatand satisfy

if

if

if
and

if

if

if .

(12)

To ensure that the dynamics of the system are phys-
ically meaningful, we assume that the set of initial
states is such that ,

, and that the
constants satisfy and .
In this case, for all .

Even though the model of this two platoon system seems
continuous, there are a number of sources of discrete be-
havior. The first is the mode switching necessary to enforce
the constraints on the velocities. Three discrete states are in-
troduced for each platoon to account for this, one for ,
one for , and one for .
This gives rise to a total of nine discrete states. Additional
discrete phenomena are introduced by the intraplatoon col-
lisions that and may experience in case of emergency.
From the point of view of platoon , these collisions can be
treated as a source of disturbance and can be modeled as dis-
crete events that instantaneously reset the velocities of cer-
tain vehicles. For simplicity, we assume that the first vehicle
of platoon (leaderof ) can experience at most one col-
lision with the vehicle immediately behind it (firstfollower
in ), and parameterize the disturbance by the time at which
the collision occurs ( ) and the resulting increase in the
velocity of the leader ( ). Likewise, we assume that the
last vehicle of platoon can experience at most one col-
lision, and use the time at which the collision occurs
and the decrease of the velocity of the last vehicle
to parameterize the disturbance. Since the vehicles are not
allowed to move in reverse, we assume that collisions with
a platoon will not result in negative velocities, or, in other
words, that . Likewise, since ve-
hicles are not allowed to move faster than the speed limit,
it is natural to assume that collisions within a platoon will
not result in velocities greater than , or, in other words,

. Finally, if the intraplatoon controllers
are designed properly, we can assume that all intraplatoon
collisions will be at low relative velocities, below a certain
“safe” value, m/s. Under these assumptions, which
are reasonable if the vehicles have roughly equal masses and
coefficients of restitution, the discrete disturbance caused by
intraplatoon collisions can be parameterized by

(13)

Fig. 5. AHS model with five platoons and distances as marked.

The hybrid automaton used to capture the intraplatoon
collisions in platoons and is shown in Fig. 6. The
discrete states to represent: no collisions in either
platoon; collision in platoon ; collision in platoon ;
and two simultaneous collisions, one in platoon and
one in platoon . Two discrete disturbance inputs
and are introduced to trigger the collisions, and
four continuous disturbance inputs
are introduced to capture their effect. The discrete states
introduced to model the velocity constraints have been
suppressed to simplify the figure; with these states, the total
number of discrete states is 36. To simplify the notation, we
use to denote the continuous
disturbance inputs, even though, strictly speaking,and

encode the times at which the discrete disturbance inputs
and change values and and are only

relevant at those times. It is easy to show that for each initial
condition and each control and disturbance ,
there exists a unique state trajectory. Moreover, this state
trajectory satisfies for all .
Finally, an additional source of discrete dynamics is the
communication protocols proposed in [17] to coordinate
the actions of neighboring platoons. The methods discussed
in this paper can also be used to establish conditions that
ensure the safety of the interaction between the discrete
communication protocols and the low-level, continuous
controllers. This issue will not be addressed here because
of the complicated notation needed. The interested reader is
referred to [13] for details.

Recall that even though intraplatoon collisions withand
are acceptable in case of emergency, interplatoon colli-

sions should be avoided at all costs. Thus, for safety, we
would like to prevent collisions between platoonsand .
In other words, we would like to ensure that for
all . Notice that the limiting case is consid-
ered acceptable, since the vehicles just touch at zero relative
velocity. Summarizing, the controller synthesis problem we
would like to solve involves selecting the continuous control
variable such that for all actions of the disturbancethe
two platoons are guaranteed not to collide.

IV. REACHABILITY ANALYSIS AND CONTROLLERDESIGN

A state of a dynamical system is defined to bereachableif
there is an execution of the system that touches it. A subset
of the state space is said to becontrolled invariantif there
exists a controller that guarantees that if the execution starts

956 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



Fig. 6. Hybrid automaton modeling intraplatoon collisions in
platoonsA andB. The discrete states areq for no collisions,q
for collision inside platoonB, q for collision inside platoonA,
and q for simultaneous intraplatoon collisions inA andB. The
continuous dynamics within each discrete mode are given by (11).

in the subset, the execution stays in the subset for all future
time. For a hybrid system , we seek to design a controller
that prunes away executions that reach unsafe states. For such
a problem, the initial state or set of initial states is usually
left unspecified. We therefore pose the controller synthesis
problem as: Given a safe set, determine i) the maximal
controlled invariant set contained in and ii) the controller
which renders this set invariant. In this paper, we restrict our-
selves to safety specifications and consequently safety games
alone. For more general specifications such as, , or
others, the games to be considered are referred to as Büchi
games and include nested versions of the games that we will
discuss here. In this section, we solve the controller synthesis
problem for safety specifications in hybrid automata. Our
method is based on computing thebackward-reachableset
from . As before, we present the algorithm first on the fi-
nite-state automata and continuous-state control systems.

A. Finite Automata

The problem of synthesizing control laws in
the presence of uncertain actions for the finite au-
tomaton described by (1) was first posed by Church in 1962
[8], who was studying problems in digital circuit design, and
was solved by Büchi and Landweber [9] and Rabin [35] in
the late 1960s and early 1970s using a version of the von
Neumann–Morgenstern discrete game [36]. More recently,
Ramadge and Wonham [37] added new insight into the struc-
ture of the control law. A temporal logic for modeling such
games is introduced in [38]. We define thewinning states
for the controller as the subset of from which the system
has a sequence of control actions , which can force the
system to remain in despite the actions of the environment

. The set can be calculated as the fixed point of the
following iteration (where a negative index is used
to indicate that each step is a predecessor operation).

Algorithm 1 (Maximal Controlled
Invariant Set for Finite State Automata)

initialization : , , .
while do

end while

The iteration terminates when . At
each step of the iteration, . Since is finite
the iteration terminates in a finite number of steps. The set

contains those states for which the controller has a se-
quence of actions that will ensure that the system remains in

for at least steps, for all possible sequences .
In order to characterize this iteration mathematically, we as-
sociate avalue function to each state at each iteration,
representing the future reward or cost to be incurred by the
system given that its current state isand iteration

such that

.
(14)

Therefore, . Since the most
logical action of the controller is to keep the system inside
in the face of unknown and therefore possibly hostile actions
of the environment

if
otherwise.

(15)

The “ ” in the above compensates for the
nondeterminism in ; the order of operations
means that the controllerplays first, trying to maximize the
minimum value of . This representation gives the envi-
ronment the advantage, since it has “prior” knowledge of the
controller’s action when making its own choice. Therefore,
in general

(16)

with equality occurring when the action is asaddle
solution, or a no regretsolution for each player. Here, we
do not need to assume the existence of a saddle solution;
rather, we always give advantage to the environment, the
player doing its worst to drive the system out of, in order
to ensure a conservative solution. Strictly speaking, this is a
Stackelberg solutionof the game with the controller as leader.

The iteration process in Algorithm 1 may be summarized
by the difference equation

(17)

We refer to (17) as a “discrete Hamilton–Jacobi equation.”
The first “ ” in the equation ensures that states outside
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that can be forced by the controller to transition into
are prevented from appearing in . This means that once
a state has associated to it a value of zero, the value stays at
zero for all subsequent iterations: enforcing the requirement
that “once a state becomes unsafe, it remains unsafe.”

Proposition 1 (Winning States ): For finite sets and
, a fixed point of (17) is reached in a finite number

of steps. The set of winning states for the controller is
. is the largest controlled invariant

subset of .

B. Continuous-Time Dynamics

For the continuous nonlinear dynamics, described by (2),
the solution of an optimal control law in the presence of
environmental uncertainties was solved as a zero-sum
dynamic game by Isaacs in the early 1950s [39].2 Solutions
for linear differential games were presented by Pontrjagin in
[40]. An excellent modern reference is [11]. To conform with
convention in the dynamical games literature, we represent
the specification in terms of theunsafeset : the controller
wins if it can keep the system from entering the interior of
the set , denoted for a differen-
tiable function , with boundary . Conversely,
the environment wins if it can drive the system into. The
winning states for the controller are those states
from which there exists a control law that can keep
the system outside despite the disturbance .

Consider the system over the time interval , where
. The value function of the game is defined by

(18)

and is interpreted as the cost of a trajectory that starts
at at initial time , evolves according to (2) with
input and ends at the final state , with cost

. Note that the value function depends only on the
final state: there is no running cost, orLagrangian. This is
because, for proving safety of the system, we are only inter-
ested in whether or not the system trajectory enters, and
we wish to compute the control law that maximizes the set
of initial states from which the system trajectory is guaran-
teed to remain outside of . Thus, we do not restrict the
trajectories further with a running cost. The game is won
by the environment if the terminal state is in [i.e.

], and is won by the controller other-
wise.

The optimal action of the controller is one that tries
to maximize the minimum cost, to try to counteract the
optimal disturbance action of pushing the system toward

. As in the discrete game, the disturbance is given the
advantage: the control plays first and disturbance
plays second with the knowledge of the controller’s play.
This kind of solution is referred to as aStackelberg solution;
in the event that the solution is equal to the

solution, then the solution is also thesaddle

2Isaacs was then a researcher at Rand Corp. and was motivated by tactical
issues for U.S. Air Force pilots (dog fights, missile evasion).

solutionof the game. The Stackelberg solution corresponds
to , and we define

, the optimal cost, as

(19)

and the corresponding optimal input and disturbance as

What is not explicit in this formulation is the “information
patterns” used by the input and disturbance. In the event that
the input and disturbance choices are causal (i.e., based only
on past values of the input, disturbance, and state), the so-
lution to the game can be characterized using Hamilton–Ja-
cobi (Isaacs) theory. More precisely, the Hamiltonian of the
system is , where is
the costate vector [41], [11]. Standard results in optimal con-
trol theory [41]–[43], may be extended [11] and [16] to yield
the optimal solution

(20)

(21)

Theoptimal Hamiltonianis therefore given by

(22)

The Hamilton–Jacobi partial differential equationfor the
evolution of the value function in backward time is derived
[41], [16] to be

(23)

with boundary condition . However, the so-
lution to (23) includes as safe states those states for
which optimal trajectories pass through and end up out-
side at time 0. To prevent this from happening, we modify
(23) to guarantee that, if for some there exists an

such that , then is nonin-
creasing for time less than. We do this by requiring that

for

for

(24)

with boundary condition . It is easy to show
[16] that if is a smooth solution to (24), then the
subset of the state space enclosed by the zero level set of

cannot decrease as time marches backward, that is,
for all ,

. Equation (24) is the continuous analog
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to (17) of the preceding discrete game and describes the re-
lationship between the time and state evolution of .
We claim that , where is
the solution to (24), is the set of states from which the envi-
ronment can force the system into in at most seconds.
The pictorial explanation of this is given in Fig. 7. The part of
the boundary of where does
not grow with negative time, as shown by point 1 in Fig. 7(a).
Part (b) of the same figure shows the existence of a stationary
solution as . Questions about the smoothness of so-
lutions to the Hamilton–Jacobi equation, shocks, and what to
make of the solutions in this instance are subtle ones, and the
interested reader is referred to Section VI and [16] for details
on these points.

Proposition 2 (Winning States ): Assume that
satisfies the Hamilton–Jacobi equation (24) for

all , and that it converges uniformly in as to
a function . Then the set of winning states for the
controller is

(25)

is the largest controlled invariant set contained in
.

Theleast restrictivefeedback controller for that renders
invariant can now be constructed. The controller is

defined to be

if

if .

Thus, in the interior of , is free to take on any value
in . Existence of such for is guaranteed by
construction.

C. Hybrid Systems

Consider the nonlinear hybrid automaton (3) with safety
property , where . We seek to construct the
largest set of states for which the control can
guarantee that the safety property is met despite the action
of the disturbance . For a given set

, we define thecontrollable predecessor and the
uncontrollable predecessor by

(26)

Therefore contains all states in for which con-
trollable actions can force the state to remain in
for at least one step in the discrete evolution. , on
the other hand, contains all states in, the complement of

Fig. 7. (a) The setsfx 2 XjJ (x; 0) = 0g, fx 2
XjJ (x; t ) = 0g, fx 2 XjJ (x; t ) = 0g for 0 > t > t .
(b) The fixed pointfx 2 XjJ (x) < 0g, fx 2 XjJ (x) = 0g,
andfx 2 XjJ (x) > 0g.

, as well as all states from which uncontrollable actions
may be able to force the state outside of. In the

definition of , the controllable actions are required to
be able toforcea transition (hence the in the formula).
In contrast, for , we simply require that a transition be
possible, giving the advantage to the uncontrollable actions.
The controllable and uncontrollable predecessors will form
the discrete part of the algorithm for computing controlled
invariant sets. For the continuous part of the algorithm, we
need the operator.

Definition 4 (Reach):Consider two subsets
and such that . The Reach operator
is defined as

Reach

and such that

and

for

(27)

where is the continuous state trajectory of
starting at and

represents the state space components of. The
set Reach describes those states from which, for
all , there exists a , such that the state
trajectory can be driven to while avoiding an
“escape” set .

The following algorithm describes the construction of the
maximal controlled invariant set for hybrid systems.

Algorithm 2 (Maximal Controlled
Invariant Set for Hybrid Systems)

initialization : , , .
while do

end while

In the first step of this algorithm, we remove fromall
states from which there is a disturbance forcing
the system either outside or to states from which an en-
vironment action may cause transitions outside,
without first touching the set of states from which there is a
control action keeping the system inside. Since
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at each step, , the set decreases monoton-
ically as decreases. If the algorithm terminates, we denote
the fixed point as .

Proposition 3 (Winning States ): If the algorithm ter-
minates after a finite number of steps, the fixed point is
the maximal controlled invariant subset of.

In order to implement this algorithm, we need to calcu-
late , , and . The computation of and

requires inversion of the transition relationsubject
to the quantifiers and ; existence of this inverse can be
guaranteed subject to well-understood conditions on the map

. The computation of requires the development of
a new algorithm for determining the set of initial conditions
from which trajectories can reach one set, avoiding a second
set along the way. In the following analysis, we describe this
calculation for a single discrete state.

Recall that along continuous evolution the value of the dis-
crete state remains constant. Therefore, since the computa-
tion of the Reach operator involves only continuous evolu-
tion, it can be carried out for each discrete state separately.
Fix the value of and let and be
differentiable functions such that
and . Consider the following
system of interconnected Hamilton–Jacobi equations:

(28)

and

(29)

where and
, and

for

otherwise
(30)

for

otherwise.
(31)

Equation (28) describes the evolution of the setunder
the Hamiltonian (30). This is the “ ” game of
the previous section, with the modification that in

, which ensures that the evolution
of is frozen in this set. Similarly, (29) describes the
evolution of the set under the Hamiltonian . Here a
“ ” is used, since it is assumed that the control
tries to push the system into, to escape from .

in to ensure that the evolution
of is frozen in this set. Note that in both games,
the disturbance is given the advantage by assuming that the
control plays first. Fig. 8 illustrates a sample evolution.

It is proven in [16] that the resulting set
contains neither nor states for

which there is a control that drives the system into
; and the set contains neither

nor states for which there is a disturbance input
that drives the system into . Our theorem states that

is the set Reach [16].
Theorem 1 (Characterization of Reach):Assume that

[ , respectively] is a smooth function of
and , that it satisfies the Hamilton–Jacobi equation (28)

[(29), respectively], and that it converges uniformly inas
to a function [ , respectively]. Then

Reach (32)

The least restrictivecontroller that renders invariant
is:

if

if

if
(33)

D. Remarks

In general, one cannot expect to solve for using a fi-
nite computation. The class of hybrid systems for which al-
gorithms like the one presented here are guaranteed to ter-
minate is known to be restricted [44]. In general, Algorithm
2 is semidecidable when the operators
are computable. For example, when the continuous state dy-
namics are constant and the guards and resets are polyhedra,
then the operators map polyhedral sets
back into polyhedral sets. These hybrid systems are referred
to as linear hybrid automata. When the hybrid system is

960 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



a timed automaton, the synthesis procedure is actually de-
cidable [45]. The main reason for the somewhat pessimistic
news about the decidability of the controller synthesis algo-
rithm has to do with the fact that at heart these algorithms
involve quantifier elimination for entry into “bad” sets or
steering around “good” sets. However, thanks to some recent
activity in mathematical logic in what are known as O-min-
imal systems, one can extend the class of systems for which
the synthesis algorithm is semidecidable, to “O-minimal hy-
brid systems” (see [46]).

However, our main focus in the rest of this paper is to show
how one can make progress in getting approximate solutions
even when the given application does not belong to a general
class of hybrid systems for which the algorithm is semidecid-
able. In practice, we are helped by the fact that we are usually
interested in finite time computations, rather than computing
for or until a fixed point is reached. Numerical
techniques are discussed in Section VI.

Another problem is the requirement that the controller re-
sulting from our algorithm benon-Zeno(does not enforce the
safety requirement by preventing time from diverging). The
algorithm proposed here has no way of preventing such be-
havior, as will be illustrated in the third example, which we
solve in the next chapter. There are several ways of removing
Zeno behavior. One that we discuss in the next section is a
practical method of resolving the Zeno effect, by adding a re-
quirement that the system must remain in each discrete state
for a nonzero amount of time. For a further discussion of how
to regularize hybrid systems that have Zeno behavior, and to
classify Zeno behaviors, see [47] and [48].

V. SOLUTIONS TO THEEXAMPLES

In this section, we apply our techniques to the three
examples previously introduced. For each example, we
first derive and solve the Hamilton–Jacobi equation, and
then apply the controller synthesis algorithm to compute
the maximal controlled invariant set and corresponding
control law so that each system satisfies its specified safety
requirement. For these examples, the Hamilton–Jacobi
equations are simple enough, and the dimensions of the
discrete and continuous state spaces small enough, to permit
solutions using the method of characteristics. We discuss
computational issues for larger systems in Section VI.

A. Aircraft Conflict Resolution

Consider the three-mode conflict resolution example pic-
tured in Fig. 1 and modeled in Section III-A. We assume
that for this example, the speeds of both aircraft
are constant even in the straight modes, so that the input
and disturbance sets are singletons
and . The general case, in which
and are ranges of possible speeds, is considered in the
examples in [12] and [16]. Recall that our goal is to cal-
culate the relative distance at which the system may safely
switch from mode 1 to mode 2, and the minimum turning ra-
dius in mode 2, to ensure that separation between aircraft
is maintained. The evolution of the protected zone in each

Fig. 8. Computation ofReach(G; E) in a single discrete stateq.

Fig. 9. J (x) � 0 for (a) Modes 1 and 3 (i = 1; 3), ! =
! = 0 (the jagged edge means the set extends infinitely) and (b)
Mode 2 (i = 2), ! = ! = 1. In both cases, = 2�=3, and
v = v = 5.

Fig. 10. (W ) .

mode, assuming no switches, is computed using the contin-
uous-time Hamilton–Jacobi method. The unsafe setis de-
fined as , where

. Let
represent the unsafe set in mode. Thus the set

, where is the optimal cost, is the back-
ward evolution of the protected zone in mode, assuming no
switches between modes. These sets are shown in Fig. 9. In
both cases, the relative heading between aircraft is assumed
fixed at (because of our assumption that aircraft
switch modes instantaneously). We implement Algorithm 2
for this example, at each step computing the sets , ,
and . In the first step, ,
the complement of

(34)
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as shown in Fig. 10 (the complement is shown in the figure)

(35)

(36)

Note that for all , since labels
transitions from . The set (Fig. 11) is

(37)

The set involves computing
; this computation is illustrated in Fig. 12(a),

and the set is shown in Fig. 12(b) as the shaded region. Con-
tinuing, a fixed point is reached after three iterations: Fig. 13
illustrates this fixed point in . Since we
assumed in this example that the continuous control input

is fixed, we need only design the discrete part of the
controller and the radius of the maneuver. The design
is as illustrated in Fig. 13(a): the enabling and forcing of
occurs at the boundary of as shown, as explained below.
The transition from to , governed by , must be dis-
abled until the relative position of the two aircraft reach the
dashed line as shown; otherwise, the aircraft will lose sep-
aration with each other either during the maneuver or after
the maneuver is complete. At the dashed line,is enabled,
meaning the transition from to may occur at any time.

remains enabled until the dynamics reach the solid line
(boundary of ), at which point it must be both enabled
and forced: otherwise the aircraft lose separation immedi-
ately. Note that there are states that are not rendered
safe by the maneuver. Indeed, if the initial state is in the
darker shaded region shown in Fig. 13(a), then the aircraft are
doomed to collide. Fig. 13(b) displays the result of increasing
the radius of the turn in . Notice that the set (the com-
plement of the shaded region) increases as the turning radius
increases. This implies that the maneuver renders a larger
subset of the state space safe. Fig. 13(b) shows the critical
value of the turning radius, for which the maneuver is guaran-
teed to be safe, provided the conflict is detected early enough.
Thus, the controller synthesis procedure presented in Sec-
tion IV, applied to this example, generates conditions for the
enabling and forcing of , and also the turning radius.

B. Aerodynamic Envelope Protection

Consider the longitudinal dynamics of the CTOL aircraft
(7) in which the state is required to stay
in the envelope , shown in Fig. 4(a) in -space and
Fig. 4(b) in -space. In contrast to the previous example,
this example has a range of possible continuous input vari-
ables: , and thus we will ex-
emplify the continuous Hamilton–Jacobi calculation of Sec-
tion IV in some detail below.

The specification may be decoupled according to and
: the airspeed and flight path angle must remain in

the envelope at all times; and the airspeed, altitude,
and vertical speed must remain in the envelope at all
times. In the speed and flight path modes (modes ),

Fig. 11. (W ) . The jagged edge inq means that the set extends
infinitely.

Fig. 12. (a) Pre (W ) and Pre (W ) in q ; (b)
Reach(Pre (W ); P re (W )) in q .

Fig. 13. Showing the enabling and forcing boundaries for� in
stateq ; and the result of increasing the radius of the turn in the
avoid maneuver to increaseW .

and are the only controlled variables. Therefore, we may
derive the maximal controlled invariant set contained in ,
using the -dynamics (8), (9). Let

(38)

where

Thus, is only piecewise smooth, yet for this example
we can prove that the calculation can be performed one edge
of the boundary at a time: we can derive a Hamilton–Jacobi
equation for each , and prove that the intersection of the
resulting sets is the maximal controlled invariant subset of

. The subscript in each will indicate that the
calculation is for boundary . In the following, we describe
how the computation is performed by looking at one edge
of the boundary . The details of the proofs of controlled
invariance are presented in [16].
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The optimal Hamiltonian in this case (there is no dis-
turbance, hence this is not a game but an optimal control
problem) is given by the following, where we have substi-
tuted into the dynamics the expressions for the liftand
drag forces (neglecting the quadratic term in):

(39)

where . The Hamilton–Jacobi equation
describing the evolution of is obtained from
(24)

(40)

with boundary condition .
The optimal control at is computed from (39).

The optimal throttle input may be calculated directly from
this equation: (since for the in-
ward pointing normal). The optimal pitch input
is calculated indirectly [16], since loses de-
pendence on on the set . Define

.
Then

(41)

Integrate the system dynamics (8), (9) with
, , backward from to ,

where is chosen to be large enough so that the solution
intersects . Now denote this point
of intersection as , and the solution to (8), (9)
between and as , as shown in
Fig. 14. Repeating this calculation for the remaining three
boundaries, only contains a point at
which the associated optimal Hamiltonian, ,
becomes zero. We denote this point as , where

(42)

and similarly calculate and , as shown in Fig. 14. In
summary, for the aircraft dynamics (8), (9) with flight enve-
lope given by (38), and input constraints, the maximal

controlled invariant subset of , denoted , is the set
enclosed by

(43)

The least restrictive controller that renders controlled
invariant is , where

if

if

if

if

if

if

if

(44)

with

(45)

In Fig. 14, the portions of for which all control in-
puts are safe ( ) are indicated with solid lines;
those for which only a subset are safe ( ) are in-
dicated with dashed lines. The map defines theleast restric-
tive safe control schemeand determines the mode switching
logic. On and , the system must be in Mode 2 or
Mode 3. Anywhere else in , any of the three modes is
valid as long as the input constraints of (44) are satisfied.
In the regions (the upper left and lower right cor-
ners of ), no control inputs will keep the system inside of

. Repeating these calculations for the speed and altitude
modes (modes 4, 5), using the dynamics (7) and envelope il-
lustrated in Fig. 4(b), the controlled invariant subset
is computed and shown in Fig. 15, and the least restrictive
control scheme is as indicated. This calculation incorporates
the limits on the altitude into the previous calculation: at

, the control must be chosen so that , whereas
at , the control is restricted to force .
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Fig. 14. The setW in (V; 
)-space, with control law as
indicated. Values used are for a DC-8:
 = ��=8 rad,

 = �=8 rad, V = 180 m/s, V = 240 m/s,
� = ��=8 rad,� = �=8 rad,T = 40 kN, T = 80
kN.

Fig. 15. The setW in (h; V; _h)-space, with control law as
indicated. Altitudes areh = 10 kft, h = 51 kft.

We would now like to apply Algorithm 2 to generate the
controllable actions , which force transitions between dis-
crete states to ensure safety. However, we quickly run into a
problem. At the first step of the algorithm, , and
since there are no uncontrollable actions, .
However, since the controllable actions are always enabled,

. Thus
so that . Similarly, ,

, and the fixed point is , meaning that the max-
imal controlled invariant set contained inis itself! This
is clearly incorrect for the real system: the calculations to
produce Figs. 14 and 15 showed that certain “corners” of

are not controlled invariant. The error lies in the fact that
this system is Zeno: if forced into one of these corners, the
system could avoid flowing out of by switching infinitely
often in zero time between discrete states. Unlike the pre-
vious examples, there is no specified minimum time for the
system to stay in each discrete state. A possible remedy is
to enforce that the system remain in each discrete state for
some minimum time . If this is the case, then the al-
gorithm calculates as the union of and for
their applicable discrete modes. The mode switching logic

is implicit in these calculations: as the aircraft approaches
maximum or minimum altitude, the FMS must force the au-
topilot to switch to modes 4 or 5 and choose a control scheme
which satisfies the limits on. As the aircraft approaches its
maximum or minimum speed and flight path angle, the FMS
must force the system into modes 1, 2, or 3 and select those
control inputs which either drive the aircraft back inside the
envelope, or keep it on the boundary of the envelope.

In summary, this example uses the Hamilton–Jacobi for-
mulation of Section IV to calculate the maximal controlled
invariant set within the specified aerodynamic flight enve-
lope, as well as the least restrictive control scheme that ren-
ders this set invariant.

C. Vehicle Collision Avoidance

The design of safe controllers for AHS platoon leaders
can be cast as a game between the control (representing the
acceleration of platoon ) and the disturbance (representing
the acceleration of platoon and the effect of intraplatoon
collisions within platoons and ) over a cost function

that encodes the requirement that the two platoons should not
collide. Fortunately, the system is simple enough that phys-
ical intuition allows us to guess the optimal strategy for both
the control and the disturbance. The worst that can happen
from the point of view of platoon is that both collisions
take place immediately and at the maximum possible relative
velocity, and then platoon decelerates as hard as possible
until it comes to a stop. The best that platooncan do in re-
sponse is also to decelerate as hard as possible until it comes
to a stop.3 In other words,
with , ,

, and

if
if

and
if
if .

Notice that the inputs are in feedback form and can naturally
be encoded by a trivial hybrid controller. By direct computa-
tion, one can show that and not only satisfy the condi-
tions of Section IV, but are in addition a saddle equilibrium
for the two-player game, that is, for all , , and

In other words, a player can never improve his/her situation
by changing unilaterally away from the saddle equilibrium.
Let .

3It should be noted that physical intuition may lead to erroneous con-
clusions even for small changes in the specification. For example, one can
show [13] that if the safety specification is relaxed from requiring no inter-
collisions betweenA andB to allowing collisions at low relative velocity,
maximum deceleration may no longer be the optimum strategy for the con-
trol or disturbance.
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Fig. 16. The boundary of the maximal controlled invariant set for vehicle collision avoidance inq =

q .

The computation used to show that is a saddle
equilibrium also allows us to analytically characterize the
maximal controlled invariant set

(46)

The boundary of the set m/s ,
m/s , m/s, and m/s is shown pictorially
in Fig. 16 for (the safe set is everything “above” the
boundary shown in the figure). The least restrictive controller
that renders invariant is

if

if

if

if .
(47)

If additional requirements, such as passenger comfort, fuel
efficiency, and emission reduction, are imposed, controllers
that optimize the system performance with respect to these
objectives can be sought among the class of controllers de-
fined by .

Similar computations lead to maximal controlled in-
variant sets and least restrictive controllers to implement the
remaining functions that an automated vehicle may be called
upon to perform: join a platoon, split from a platoon, change
lanes, etc. In addition to characterizing the safe inputs for
each maneuver, the controlled invariant sets also provide

guidelines for the switching among the different controllers
that is carried out by the communication protocols that
coordinate the actions of neighboring platoons. A controller
should not be switched on unless the state is in the corre-
sponding controlled invariant set. For technical details on
how this can be accomplished, the reader is referred to [13].

VI. COMPUTATIONAL METHODS

The algorithm for reachability analysis and controller syn-
thesis for hybrid systems presented here provides the com-
plete necessary and sufficient conditions for design of the
controller provided that the operators
can be computed. As we pointed out, the set of systems for
which these can be computed is very restrictive: timed or
linear hybrid automata. Here we discuss computational tech-
niques for approximating the optimal control and disturbance
inputs , as well as solutions to the Hamilton–Ja-
cobi partial differential equation.

Numerical solutions are potentially complicated by
the facts that the right-hand side of the Hamilton–Ja-
cobi equation is nonsmooth and that the initial data may
have a nonsmooth boundary, that may be
discontinuous, and that may not remain a contin-
uous function of and even if the boundary condition

is differentiable (this is known as a
shock). The discontinuity on the right-hand side of (24)
further complicates the solution, as does the discontinuous
switching of the optimal control and disturbance and

. In addition, we are often interested in cases in which
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has nonsmooth boundary, so that the boundary conditions
of the Hamilton–Jacobi equation are not differentiable. In
order to admit discontinuous solutions, a “weak” derivative
and “weak” solution to the Hamilton–Jacobi equation was
developed by Crandallet al. in the early 1980s [49], [50].
A viscosity solutionto (24) is defined as the limit as
goes to zero of solutions to the Hamilton–Jacobi
equation regularized by adding to the right-hand side;
here refers to the Laplacian of . For and for
smooth Hamiltonians, it may be shown [49], [50] that there
exists a unique continuous solution to the Hamilton–Jacobi
equation: the second derivative term acts like
a smoothing term and is called a “viscosity” term for that
reason. As , the solution approaches the
viscosity solution to the Hamilton–Jacobi equation. Thus,
even when classical smooth solutions do not exist, solutions
in this “weak sense” exist.

A. Level Set Methods for Computing Solutions to Hybrid
Systems

We discuss a numerical technique developed by Osher and
Sethian [51], which computes the viscosity solution to the
Hamilton–Jacobi equation, ensuring that discontinuities are
preserved. We conclude with a discussion of its application
to the reachability analysis of hybrid systems. The level set
methods of Osher and Sethian compute the solution of the
Hamilton–Jacobi equation to be the one obtained from the
regularized system as the viscosity coefficient .

In order for the numerical scheme to closely approximate
the gradient , especially at points of disconti-
nuity, the numerical approximation of the spatial derivative
must be chosen carefully. Consider an example in two dimen-
sions, with discretized into a grid with spacing and

. Theforward difference operator at
is defined as (for , similarly for )

(48)

The backward difference operator is defined as (for
, similarly for )

(49)

Similarly, thecentral difference operator is defined as
(for , similarly for )

(50)

At each grid point , the partial derivatives
and may be approximated

to first order using the forward, backward, or central dif-
ference operators. The correct choice of operator depends
on the direction of [in our case, it depends
on since we compute backward in time]. If

flows from left to right (from smaller to larger
values of ), then should be used to approximate

(and vice versa); and if flows
from bottom to top (from smaller to larger values of),
then should be used to approximate

(and vice versa). Such an approximation is called anupwind
scheme, since it uses information upwind of the direction
that information propagates.

The algorithm for the two-dimensional example proceeds
as follows. Choose a domain of interest inand discretize
the domain with a grid of spacing . Let rep-
resent the grid point and let rep-
resent the numerical approximation of . Using the
boundary condition , compute
for each .

Let . While , perform
the following steps.

1) Compute

using the initial approximations to the derivatives

(51)

2) Calculate .
3) If flows from larger to smaller values

of , let

(52)

else use .
4) If flows from larger to smaller values

of , let

(53)

otherwise use .
5) Compute . For such that

For such that

otherwise

We have recently designed a tool for computing reach-
able sets for hybrid systems based on this level set tech-
nique [52], have implemented it in Matlab 5.3, and have
used it to compute reachable sets for several examples, in-
cluding the first example in this paper. Using a grid spacing of

(or about 90 000 grid points) each iteration of this
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example required about 1400 timesteps on a Sun UltraSparc
10 (a 300-MHz UltraSparc processor with 512-KB cache and
128-MB main memory). This translated to about 75 min.
Computation time will decrease significantly with our new
version in , which exploits opportunities for parallelism in
the algorithm. In addition, our current version used the very
basic idea in level set methods presented above; for special
forms of the Hamilton–Jacobi equation, many extremely ef-
ficient variants of this method exist [53]. In particular, the
narrow-bandandfast marchingmethods speed up the algo-
rithm by confining the computation to a narrow band around
the evolving front.

B. Other Computational Methods Involving Approximations

Other methods have been presented for approximating the
reach set calculation. One idea has been to use rectangular
hybrid automata to approximate conservatively the reach set
of general hybrid automata. This procedure consists of subdi-
viding the state space into regions where one can find upper
and lower bounds for each component of the right-hand side
of the continuous dynamics and using the reach set anal-
ysis for the resulting rectangular hybrid system. The package
HyTech does precisely this computation provided that the
guards and invariants are polyhedra [54]. A synthesis pro-
cedure based on this appears in the paper by Wong-Toi [23].
The main advantage of this approximation procedure is that
it deals with a class of systems for which the synthesis al-
gorithm is semidecidable. The main drawback is that there
is an exponential growth in the number of discrete states in
approximating the continuous dynamics. The successor to
HyTech is a package called HyperTech [55], which reduces
the conservativeness of HyTech by using interval arithmetic
with some systematic checks to reduce the divergence of in-
terval arithmetic estimates to approximate reach sets. A con-
troller design procedure using HyperTech has yet to be com-
pleted.

1) Approximating Dynamics with Differential Inclu-
sions: Suppose the continuous dynamics in the nonlinear
hybrid automaton (3) were approximated with the differen-
tial inclusion

(54)

where , . A com-
putationally efficient method for approximating the reach set
of is to conservatively approximate by a set
of constant inclusions, each of the form

(55)

and then to compute the reach set of the constant inclusions.
This method is presented in [56] and [57], where it is proved
that the approximation error can be made arbitrarily small
by approximating the differential inclusion arbitrarily closely
( -approximation). An advantage of this method is that the
class of constant inclusions used to approximate the differ-
ential inclusion is known to be decidable, thus one can guar-
antee that the reachable set as can be computed
in a finite number of steps. The amount of preprocessing re-

quired to initially approximate the dynamics may be quite
formidable, however, especially to achieve a close approxi-
mation of the true reach set.

2) Approximating Nonsmooth Sets with Smooth Sets:We
have shown that the reach set at any time may
have a nonsmooth boundary due to switches in , non-
smooth initial data, or the formation of shocks. The level set
scheme propagates these discontinuities, yet its implementa-
tion may require a very small time step to do this accurately.
In [58], we present a method for overapproximating such
nonsmooth sets with sets for which the boundary is contin-
uously differentiable by using smoothing functions to derive
smooth inner and outer approximations. By applying Algo-
rithm 2 to smooth inner and outer approximations of the sets

and , we calculate smooth inner and outer approxima-
tions to the true reach set.

3) Ellipsoidal Methods:A similar idea is to use ellip-
soids as inner and outer approximations to the reach set [59],
[60]. To preserve the propagation of ellipsoids, the contin-
uous dynamics in each of the discrete locations needs to be
approximated by linear dynamics. Bounds on the conserva-
tiveness of this approximation and their validity have not
yet been worked out. However, [60] presents efficient algo-
rithms for calculating both the minimum volume ellipsoid
containing given points, and the maximum volume ellipsoid
in a polyhedron, using a matrix determinant maximization
procedure subject to linear matrix inequality constraints.

4) Quantifier Elimination and Linear Hybrid Sys-
tems: While the decidability results for the controller
synthesis algorithm gave sharp results about the class
of hybrid systems for which the design procedure is
(semi)decidable, there has been a reawakening of interest in
mathematical logic, which enables us to extend these results
using so-called order-minimal or O-minimal systems. These
are examples of systems that may not admit quantifier
elimination but do nonetheless allow for semidecidable
algorithms [61]. Using these results, we are able to perform
controller synthesis for classes of hybrid systems for which
the dynamics in each discrete location is linear (in the
sense that ) and the guards,
invariants, and resets are subanalytic sets. This has been
used in a symbolic package using QEPCAD in [46]. Finally,
for hybrid systems in which the continuous state dynamics
are linear and in discrete time, techniques from quantifier
elimination and linear programming can be used to develop
semidecidable procedures for controller design [62].

VII. CONCLUSION

Hybrid control design techniques are an important design
tool for rapid prototyping of controller designs for real-time
and embedded systems, by which one may achieve better
performance, handle larger systems, and have greater con-
fidence in the functioning of the system according to speci-
fication.

This paper is a survey of a new method of controller design
for hybrid systems, along with its application to three inter-
esting and topical examples from air-traffic management, au-
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tomated highway systems, and flight management systems.
We have had success in applying these methods to examples
in other arenas: such as the control of unmanned aerial ve-
hicles and communication networks. Our method represents
a rapprochement between the game theoretic synthesis tech-
niques of computer science and the robust control techniques
of control theory. Current work focuses on computational
methods for mechanizing the algorithm or its approximation.
This is especially challenging given the limits on decidability
results that we have quoted in the paper. Especially promising
are level set methods, quantifier elimination methods, and el-
lipsoidal methods.
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