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Invited Paper

The promise of a powerful computing device 1o help people
in productivity as well as in recreation can onlv be realized with
proper human—machine conununication. Awromatic recognition
and understanding of spoken language is the first and probably the
most important step toward natural human—nachine interaction.
Research in this fascinating field in the past few decades has
produced remarkable results, leading to many exciting expec-
tations as well as new challenges. In this paper. we summarize
the development of the spoken language technology from both
a vertical (the chronology) and a horizontal (the spectrum of
technical approaches) perspective. We highlight the introduction
of statistical methods in dealing with language-related problems
as it represents a paradigm shift in the research field of spoken
language processing. Statistical methods are designed to allow
the machine to learn. divectly from data. structure regularities in
the speech signal for the purpose of automatic speech recognition
and understanding. Today, research results in spoken language
processing have led to a number of successful applications,
ranging from diciation software for personal computers and
telephone-call processing systems for automatic call routing to
automatic subcaptioning for television broadcast. We analyze the
technical successes that support these applicarions. Along with an
assessment of the state-of-the-art in this broad technical field, we
also discuss the limitations of the current technology and point out
challenges that are ahead of us. We hope that through this paper
an accurate overview of the spoken language technology can be
presented as the basis 1o inspire future advances.
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1. INTRODUCTION

Speech is the primary. and the most convenient, means
of communication between people. Whether it is due to the
technological curiosity to build machines to mimic humans
or the desire to automate work with machines. research in
machine recognition of human speech, as the first step 10-
ward natural human—machine communication, has attracted
much enthusiasm over the past four decades. The advent
of powerful computing devices further gives hope to this
relentless pursuit. particularly in the past few years. While
we are still far from having a machine that converses with
a human like a human. many important scicntific advances
have taken place, bringing us closer to the “Holy Grail” of
automatic speech recognition and understanding by machine.
To gain an appreciation of the amount of progress. the scope.
and the associated technical difficulties in spoken language
processing (SLP), it is worthwhile to briefly review scveral
milestones in the field. Such a review also paves the way to
a better understanding of the currently prevalent technical
framework, which forms the foundation of many speech-
recognition products and services used in real-world. albeit
limited, applications.

A. Historical Perspective of Research in Human-Machine
Communication by Speech

Early attempts to design systems [or automaltic
specch recognition were mostly guided by the theory
ol acoustic-phonetics, which describes the elements of
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speech and how they are realized to form a spoken language.
In 1952, Davis et al. of Bell Laboratories built a system
for isolated digit recognition for a single speaker [ 1], using
the spectral resonances during vowel regions ol cach digit.
In 1956, Olson and Belar of RCA Laboratories tried to
recognize ten syllables of a single talker [2]. AtMIT Lincoln
Laboratory. Forge and Forge built a speaker-independent
ten-vowel recognizer in 1959, using time-varying estimates
of the vocal tract resonance [3]. Later, in the 1960s. with
cmphasis on building a special hardware. several Japanese
laboratories also demonstrated their progress. Most no-
table among them were the vowel recognizer of Suzuki
and Nakata of the Radio Research Lab in Tokyo [4]. the
phoneme recognizer of Sakai and Doshita of Kyoto Univer-
sity (noting the use of a speech segmenter to allow analysis
and rccognition ol speech in different portions of the signal)
[5], and the digit recognizer of NEC Laboratories [6].

One significant remark to be made is the year 1959 when
Fry and Denes. at University College in England. attempted a
phoneme recognizer to recognize four vowels and ninc con-
sonants [7], [53]. They incorporaled statistical information
about allowable phoneme sequences in English to enhance
the overall phoneme recognition accuracy for words con-
sisting of two or more phonemes. This perhaps marked the
lirst use of statistical syntax in automatic speech recognition.

The work of Martin’s team at RCA Laboratories and that
of Vintsyuk in the Soviet Union in the 1960s have particu-
larly important implications on the research and development
of automatic speech recognition. Martin recognized the need
(o deal with the nonuniformity of time-scale in speech events
and suggested realistic solutions. including detection of ut-
terance endpoints, which greatly enhanced the reliability of
the recognizer performance [8]. Vintsyuk proposcd the use of
dynamic programming for time-alignment between two ut-
terances in order to derive a meaningful matching score [9].
Although his work was largely unknown to the West then, it
appears 1o have preceded that of Sakoe and Chiba [10], as
well as others who proposed more formal methods in speech
pattern matching, generally known as dynamic time warping.
Since the late 1970s. dynamic programming. in numerous
variant forms, has become an indispensable technique in the
pattern-matching approach to automalic speech recognition.

Two broad dircclions in speech-recognition rescurch
started 1o take shape in the 1970s, with IBM and Bell Lab-
oralories essentially representing the two different schools
of thought in wrms of the intermediate goals of speech
communication between human and machine. IBM’s effort,
led by Jelinek, was aiming al a voice-activated typewriter,
the main function of which was to convert spoken sentences
into a sequence of letters and words that could be shown on a
display or typed on paper [11], [12]. The system was mostly
speaker-dependent (i.e.. the typewriter was to be trained
to listen to its owner or primary user) and the technical
focus was on the structure of language. In the approach, the
language structure is represented by a probabilistic model,
which describes how likely a sequence of linguistic symbols
(e.g.. phones or words) can appear in the speech signal. This
type of task is often referred to as “transcription.” At Bell

Laboratories. the goal was to provide tclecommunication
services o the public, such as voice dialing. and command
and control for automation of phone calls. For most of the
applications of this kind. the system is expected to work well
for a vast population of talkers, independent of the identity
of the talker. The focus at Bell Laboratories was then in
the design of a speaker-independent system that could deal
with the acoustic variability intrinsic in the speech signals
coming from many different talkers, often with notably
different regional accents [13]. Research to understand
and to harness the acoustic variability manifests itself in
the study of spectral distance measures (see, e.g.. [14] and
[15]) and clustering techniques |16]. Also of importance
in the Bell Laboratories’ approach to the problem is the
concept of keyword spotting as a primitive form of speech
understanding [17]. Keyword spotting attempts to detect
prescribed words or phrases of particular significance, while
neglecting those nonessential portions ol the utterance. This
is owing to the need to accommodate talkers who often
prefer to speak natural sentences rather than rigid command
words. These two approaches had a profound inllucnce in
the evolution of the human—machine speech communication
technology in the past two decades. One common theme
between these modern efforts, despite the differences, is
that mathematical formalism and rigor start to emerge as a
distincl and important aspect of speech rescarch.

Another achievement in parallel to the above devel-
opments was the work of Reddy at Carnegie-Mellon
University, who first advocated dynamic phoneme tracking
for continuous speech recognition [18] and later proposed
a knowledge integration approach to speech recognition
and understanding in the context of artificial intelligence
research [19].

While the difference in goals led to different realizations
ol the technology in various applications, the rapid develop-
ment of statistical methods in the 1980s, namely the hidden
Markov model (HMM) framework [19]-[21]. had caused a
certain degree of convergence in the system design. Today,
most of the systems in use are based on the statistical frame-
work and results developed in the 1980s, with additional im-
provements in the 1990s. We shall elaborate in the following
a communication-theorctic [ramework, which supported the
development of the fundamental method.

B. Communication-Theoretic Framework

Speech communication involves sensory as well as cog-
nitive behaviors. Traditionally, the speech communication
chain comprises four stages: detection of acoustic-phonetic
cues to form words, syntactic and grammatical analysis for
parsing of sentences and for error correction, semantic deter-
mination and disambiguation, and pragmatic inference with
additional prosodic cues and interpretation of message in-
tent. The ultimate machine that can converse with a human
would need all the knowledge to perform those four stages of
the speech communication chain. It involves understanding
of the context (the subject domain as well as the mood and
the ambient) of the conversation. No attempt has yet reached
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Fig. 2. Finite state network.

such a level of complexity. While academic research fol-
lowing every step of this classical formulation can be con-
templated, speech technologies developed so far often take
a more simplified and restricted view. The machine that we
have atlempted to design so far is, almost without exception,
limited to the simple task of converting a speech signal into
a word sequence and then determining, from the word se-
quence, the meaning that is “understandable.” Here, the set of
understandable messages is finitc in number, each being as-
sociated with a particular action (e.g., route a call (o a proper
destination, or issue a buy order for a particular stock). In this
limited sense of speech communication. the focus is detec-
tion and recognition rather than inference and generation.
Following this limited goal of human—-machine commu-
nication, a concrete and yet convenient way to describe
the speech generation/production chain is shown in Fig. 1,
which depicts the basis of a communication-theoretic ap-
proach to automatic speech recognition and understanding.
In this formulation, a message source decides to convey an
intended message M, which is realized as a word sequence
W through a linguistic channel. specified by a probability
measure P(W|M). The linguistic channel is probabilistic
as there are many ways to express the same message, some
more likely than others. For example, Fig. 2 (after [23])
shows partially a linile state network of numerous expres-
sions. all leading to the same semantic message: the user
needs information ubout flights that leave Dallas. The word
sequence Wothen gets realized. through the articulatory
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running.

channel. as a sequence of sounds S. which may be expressed
in terms of phonemes as they are considered the fundamental
elements of speech. Again. the articulatory channel P(S|W)
introduces variability because no one talker can repeat ex-
actly the same wavelorm even uttering the same word. and
no two talkers are alike in terms of the configuration of their
articulatory apparatus. Fig. 3 shows a well-known vowel
triangle in the plane of the first and the second resonant
frequency produced by a population of talkers [24]. The
spread signifies the extent of variability in the resonant
frequencies. The sequence of sounds S is radiatcd from the
mouth of the talker, propagates in acoustic waves through
the room. 1s convolved with the room acoustic response
and mixed with the acoustic ambient. and then reaches the
microphone as the acoustic input A We label this process
“acoustic channel.” The acoustic ambient in various rooms
can be quite different. Fig. 4 shows the power spectrum of a
typical acoustic background noise in a personal office with
a computer running. Fig. 5 shows an example of the impulse
response of a room. These ambient conditions can vary
tremendously from onc L0 another. The acoustic channel
is characterized by a probabilistic model P(A|S). The
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Fig.6. Diversity of transducer characteristics in telephone set [25].

acoustic input signal A finally is converted by a microphone
into an electric signal, which then propagates through the
transmission route (cables, wires, or the telephone network)
and becomes X when it is received by the recognition and
understanding system. Microphone responses can also vary
substantially; for example, as shown in Fig. 6 (after [25]), the
frequency response ol a welephone set can vary by as much
as 40 dB at 4 kHz. This tremendous variation can make the
comparison of speech patterns unreliable if not properly
equalized. This last stage of uncertainty (transducer varia-
tion and transmission distortion) is called the “transmission
channel,” characterized by a probability model P( ).
An automatic speech recognition and understanding system
tries to reverse the process Lo recover M.

In this approach, every channcl represents one class of un-
certainty or variation and is individually characterized by a
probability distribution. The message source may also have
a probabilistic prior P(M), as some messages may be more
likely to appear than others. (Note that X. A, S, W, and M
are considered random events in the context of probability
theory.) The availability of knowledge of these uncertainties
dictates how well a systern can communicate with people.
This formulation also provides a unified framework for de-
veloping necessary technologies and systems in many prac-
tical applications. In the following scctions, we will elabo-
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2 strings name A%Ssagmg
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Fig. 7. Progress of spoken language technology along the
dimensions of vocabulary size and speaking styles.

rate recent technological developments and justification in
systems designs using this model of speech generation and
communication.

C. State-of-the-Art and Current Status in
Commercialization of the Technology

Research efforts in automatic speech recognition and
understanding in the past few decades have made viable
a number of application tasks involving human-machine
interaction via spcech. As a result. commercialization of
spoken language processing technologies is currently expe-
ricncing a strong push from many laboratories. companics,
and research institutes. These applications can be broadly
divided into wlecommunication and nontelecommunication
areas. In nontelecommunication applications, usc ol speech
recognition systems mostly takes the form of personal
computer (PC) software with automatic dictation as its
primary use. Leaders in this category of software include
IBM, Dragon Systems. L&H. and Philips. Although these
software packages have yet to be improved for general
speech-to-text conversion purposcs (c.g.. converling voice-
mails into text), they have received positive reviews from
professional groups such as radiologists and lawyers in
their specialized ficld ol applications. In the telecommu-
nication application arena. most of the applications are in
automating calls, which can be astronomical in terms of the
number of sessions and number of users. It requires a true
speaker-independent system. In a successful deployment of
a call-processing application (AT&T’s VRCP). it has bcen
reported that a five-word key word spotting system automates
billions of calls every year resulting in savings in operating
cost in hundreds of million of dollars [26]. Other service
oriented applications of automatic speech recognition and
understanding systems include on-line stock transactions
and credit-card account services and management.

The state-of-the-art in automatic speech recognition can be
addressed in several ways. We present two here. Fig. 7 illus-
trates the progress of speech recognition and understanding
technology according to generic application areas. ranging
from isolated word/command recognition to natural conver-
sation between human and machine [27]. The complexity of
these generic application areas is characterized along two di-
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Fig. 8. Benchmarks of ASR performance in word crror rates in DARPA-sponsored tasks [28].

mensions: the size of the vocabulary and the speaking style.
It should be obvious that the larger the vocabulary. the more
difficult.the application task. Similarly. the degree of con-
straints in the speaking style has a very direct influence on

the complexity of the application: a free conversation full of

slurring and extraneous sounds such as “uh,” “um,” and par-
tial words is far more difficult than words spoken in a rigidly
discrete manner. Thus, the ditficulty of an application grows
from the lower left corner to the upper right corner in Fig. 7.
The fuzzy diagonal lines demarcate the applications that can
and cannot be supported by the technology for viable deploy-
ment in the corresponding time frame.

Another benchmark of the technology is shown in Fig. 8.
which represents the chronological progress in various
lasks sponsored by the DARPA program [28]. Plotted in
the figure are the smallest word error rates achicved by the
participants in various DARPA evaluation contests during
the past decade. These error rates are often considered
optimistic duc to the fact that the data are all prerecorded.
particularly for those “read speech™ (i.e., speech signals
from a talker reading a prepared text). and lack the often
uncxpected variability that exists in most real speech inter-
actions. As is obvious from the chart, the word error rate for
conversational speech remains extremely high, at close to
40% level. Therefore, current spoken language technologies
are, in general, deemed inadequate as a machine intended
Lo converse with a human. The technology evolution, thus,
continucs.

D. Purpose and Outline of this Paper

This paper is intended to be a brief summary of the tech-
nology development in the field of spoken language pro-
cessing, particularly in automatic speech recognition and un-
derstanding. during the last two decades. While omission and
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personal biases are inevitable, we hope to objectively present
a reasonable portrait of the technological advances for the
purpose of inspiring morc in the future.

This paper is organized as follows. We state the problem
and the basic formulation of the approaches to the problem
in the next section. A contrast between the acoustic-phonetic
approach and the data-driven statistical approach is given
so as to induce the possibility of cross-fertilization, because
these two dominant methodologies can exist in a comple-
mentary manner. We discuss the possibility of various goals
and performance criteria in the design of a speech recogni-
tion and understanding system. In Section III, we present the
fundamental system architecture and elaborate its technolog-
ical components that have become the focal points of recent
spoken language research. Having discussed the technical
details of the system components, we address and prescnt
in Section TV a number of rescarch issues that await further
rescarch. We conclude this paper in Section V.

IT. PROBLEM STATEMENTS AND FOUNDATIONS OF SPEECH
RECOGNITION AND UNDERSTANDING

Spoken language processing encompasses a broad range
of technical challenges. including recognition of words and
phrases in the specch signal, extraction of keywords or key
phrases in the utterance. and understanding of the spoken
utterance for the machine o take actions. Conversation be-
tween people can take many ditferent forms. many of which
may be beyond the scope of the current scientific interest. For
example, a casual conversation between two people can drift
over an unbounded domain with no end result anticipated.
We will not address this category of scenarios. We will. how-
cver. assume that the common goal in speech recognition and
understanding is to identify an important message. out of a
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finite set of possibilities, conveyed in the spoken utterance.
In order to achieve this goal, the technology may choose o
wdentify intermediate results such as phonemes, words, or
sentences. We also often choosc o judge the performance
of such a machine by its error probability (or crror rate, as
an empirical estimale ol the error probability) in making a
recognition decision upon a test.

Recognition is a capability that can be addressed in at least
two ways in our daily life. One is to be able to identify a par-
ticular object of inlerest, say, a particular model of car made
by a manufacturer or a song from a particular artist. The other
1s 10 be able 1o recognize an object from a finite and closed
set ol possibilities, much like a multiple choice test, the av-
erage score (percent correct) ol which is often used to judge
the subject’s performance. In the former scenario. the sub-
ject under test evaluation may or may not know the cntire
universe that can cause confusion to the correct answer so
long as it has cnough cvidence to make a determination. If
it makes a correct identification (e.g.. naming the car model
or the song of the arlist), we say it can recognize: otherwise,
it cannot. The latter situation is different in that the subject
knows all about the task and its scope (choosing one out of
a finite number of answers). but due to the uncertainty in the
observed evidence. its answer may be at times incorrect. The
performance in the Jatter case is then usually measured in
terms of the recognition accuracy (percent correcl in answers
to a large set of trials or tests) or error rate (percent incor-
rect in answers). The former case is the basis of many clas-
sical speech-recognition research efforts, while the latter case
gives rise 1o the statistical approuch o the pattern-recogni-
tion problem that finds widespread engincering applications
in recent years.

A. Basics of Linguistics and Acoustic-Phonetics Related
to SLP

Most of the classical speech-recognition research was
based on the identification paradigm as discussed above. It
requires extensive understanding of the propertics of the ob-
ject (i.e., the speech sound). It. thus. depends on and makes
use of, almost exclusively, the acoustic-phonetic theory.
which aims al building a framcwork (or understanding
speech by a human.

Phoneticians and linguists decompose a spoken language
into elements of linguistically distinctive sounds—the
phonemes. The number of phonemes in a language is often a
matter of judgment and is not invariant to different linguists.
Phonemes are determined and taxonomically classified
according to their corresponding articulatory configurations.
For example, a vowel is produced by exciting a vocal tract
of an essentially fixed shape with quasi-periodic pulses of
air, caused by the vibration of the vocal cords. Front vowels
(/i/, /U, fel, and /e/) are vowels produced with a tongue
hump in the front portion of the vocal tract. Other phoneme
categories include diphthongs, semivowels. nasals, stops.
fricatives, affricates, and whisper. As in many classical
studies, the taxonomy was established for a sysiematic

investigation of the properties of the “element”™ of speech
sounds. Such properties of sounds arc often referred to as
acoustic-phonetic features. An alternative way (o classify
the phonemes is to use the broad phonetic class according to
key acoustic-phonetic feature dimensions.

The long history of acoustic-phonetic studies has pro-
duced a lairly extensive understanding of the properties of
phonemes, particularly in terms of their general behavior.
The acoustic-phonetic knowledge scientists were able to
accumulate has guided the main development of spoken lan-
guage processing technologies in the past. The knowledge
is, however. insufficient when it comes 1o dealing with vari-
ability in speech. First, due to the limitation of computing
and recording tools, previous studies of acoustic-phonetics
tend to focus more on “typical” and “standard” behaviors.
Second, most of the speech matcrials for linguistic studies
in the past were recorded under well-controlled (and clean)
conditions; rarely had noisy or distorted speech been cx-
tensively investigated. Behaviors of “found” speech—that
exists ubiquitously—are, thus, less well known. The scope
ol understanding in the sound variability is, thus, often
limited. Recent investigations in automatic recognition
and understanding of speech differ from the classical
acoustic-phonetic approach in the requirement for proper
handling of the extensive variability exhibited in the speech
sounds produced by lay people in their everyday life (as op-
posed to a professional narrator speaking in a quiet studio or
sound booth). The ability to deal with the statistical behavior
ol spoken utlerances is imperative due to the prescribed
average performance criterion, as will he discussed shortly.

B. Statistical Pattern Recognition Formulation—A
Data-Driven Approach

The formulation of statistical pattern recognition has its
root in Baycs™ decision theory. Let X be a random obser-
vation from an information source, consisting of M classes
of event. A classifier’s job is to correctly classify cach X
into one of the M classes. (Here, we use the terms clas-
sifier and recognizer interchangeably becausc we have de-
fined the problem as identifying an unknown observation as
one of M classes of event.) We denote these classes by C;,
i=1.2, ..., M.Let P(X, () be the joint probability dis-
tribution of X and C;, a quantity that is assumed to be known
to the designer of the classificr. In other words, the designer
has full knowledge of the random naturc of the source.

To measure the performance of the classifier. we further
define for every class pair (Z, 7) a cost or loss function ¢;;.
which signifies the cost of classifying (or recognizing) a class
i observation into a class j cvent. The loss function is gener-
ally nonnegative, with ¢;; = () representing a correct classi-
fication.

Given an arbitrary observation X. a conditional loss for
classifying X into a class ¢ event can be defined as [29]

A

RCIIX) = i P(C;

=1

X)1(X € C)) (1
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where 1(C;| X ) is the a posteriori probability and 1(e) is the
indicator function. This leads to a rcasonable performance
measure for the classifier. the expected loss. defined as

L= / RICX)X)p(X) dX )

where C(X) represents the classifier’s decision, assuming
one of the M “values,” ¢}, (s, .... Cjy based on arandom
observation X drawn from a probability distribution P(X).
The decision function C(X') depends on the classifier design.
Obviously. if the classificr is so designed that for every X

R(C(X)|X) = min R(C;|X) (3)

the cxpected loss in (2) will be minimized. For speech
recognition, the loss function ¢;; is usually choscn to be the
zero—one loss function defined by

1. i

which assigns no loss to a correet classification and a unit
loss to any error, regardless of the class. With this type of loss
function, the expected loss L s, thus, the error probability of
classification (or recognition). The conditional loss becomes

(,,j:{“‘ =12 M (4)

R(G|X) =" P(C|X)
iski
=1- P(Ci|X). %)

The optimal classifier that achieves minimum L is. thus,
the one that implements the following:

C(X)=C; if P(C;|X) =max P(C;|X). (6
i

In other words, for minimum error rate classification. the
classificr employs the decision rule of (6). which is called
the “maximum « posteriori” (MAP) decision. The minimum
error rate achieved by the MAP decision is called the “Baycs
risk™ [29].

The required knowledge tor an optimal classification
decision is, thus, the a posteriori probabilities for imple-
menting the MAP rule. These probabilitics, howevcer. are not
given in practice and have to be estimated from a training
set of observations with known class labels. The Bayes
decision theory. thus. effectively transforms the classifier
design problem into a distribution estimation problem. The
significance ol this approach is that the knowledge required
in the system design can be directly learned from the data.
without intensive deduction from human experts. Thus, the
basis of the statistical approach (o pattern recognition can
be siated as follows: collect and label (with certainty) a set
of observations (design sample) {X ;. Xo. ..., X1}, and
estimate the a posteriori probability distribution P(C;|X).
¢ = 1,2,.... M to implement the maximum «a posteriori
decision to achieve the (minimum) Bayes risk. The a
posteriori probability P(C;|X) can be rewritten as

P(Ci|X) = P(X|C;)P(C;) ] P(X). 7)
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Since P(X) is not a function of the class index. and, thus,
has no effect on the MAP decision, the needed probabilistic
knowledge can be represented by the class prior P(C;) and
the conditional probability P(X|C;).

In the context of speech recognition and understanding.
a class identity may be associated with a word in the vo-
cabulary, or a scquence of words or phonemes that is des-
ignated as a unitary linguistic event. The conditional proba-
bility P(X|C;) characterizes the randomness in realizing a
class C; event in the signal X.

Despite the advantage of automatic learning from data.
there are scveral issues associated with this classical
approach. First, the distributions usually have to be param-
eterized in order for them to be practically useful for the
implementation of the MAP rule. This is particularly nec-
essary in the case of the conditional probability P(X|C;)
when X is a continuously valued vector quantity. It is
parameterized as P, (X]|C;) and is called the acoustic
model. Correspondingly. the prior P(C;), which defines
the distribution of the linguistic event, is represented by a
measure called the language model. particularly when the
classes are associated with the words in the vocabulary.
The classifier designer. therefore. has to determine the right
parametric form of the distributions. For most real-world
problems, this is a difficult task. Our choice of the distribu-
tion form is often limited by the mathematical tractability
of the particular distribution function and is very likely to
be inconsistent with the aclual data distribution. This means
the true MAP decision can rarely be implemented, and the
minimum Bayes risk generally remains an unachievable
lower bound. Second, given a paramecterized distribution
form, the unknown parameters defining the distribution have
to be estimated from the training data. A good parameter
estimation method is. therefore. necessary. The estimation
method has to be able to produce consistent parameter
values. Third, the approach requires a training set of known
examples. To reliably estimate the parameters. the training
set needs 1o be of sufficient size. Usually. the more the
training data is provided, the better the paramcier cst-
matc is. The difliculty, nevertheless, is that data collection
and labeling 1s a labor-intensive and resource-demanding
process. particularly for speech-recognition applications.
When the amount of training data is limited, the quality of
the estimated distribution parameters cannot be guaranteed.

These three basic 1ssues point out a fundamental fact in the
statistical pattern-recognition approach: that is, despite the
conceptual optimality of the Bayes decision theory and its ap-
plications to pattern recognition. it cannot be accomplished
because practical "MAP™ decisions in speech recognition are
not true MAP decisions. Fortunately. practical procedures to
address these issues do exist. but this prior understanding is
necessary in our discussions below.,

C. Speech Variabiliry

Speech variability refers to the uncertainty a speech recog-
nition and understanding systcm would observe in the signal
itreceives from the speaker. As discussed above, the signal is

PROCEEDINGS OF THE IEEE. VOL. 88. NO. 8. AUGUST 2000



received via a speech production ““channel.” which can be de-
composed into several stages, each causing a certain type of
ambiguity to the original message during its realization. The
key idea behind the statistical approach is to obtain an accu-
rate characterization of the variation inherent in the speech
signal in order to be able Lo implement the MAP decision rule
as closely as possible. This requires first an understanding of
the variability of speech, in terms of its source as well as its
behavior.

When the message is translated into a sequence of words
to form an acceptable sentence or phrase, or simply an “un-
derstandable utterance,” there exist many possibilities. de-
pending on many factors such as the talker’s mood. the cir-
cumstance of the conversation, and so on. This kind of lin-
guistic variability is probably the least known in terms of its
statistical behavior. Only in extremely restricted tasks is there
some database for analyzing this effect. Even then. the cir-
cumstantial influcnce is often untractable.

When words are pronounced as a sequence of phonemes,
the variability comes from the fact that talkers may differ in
their lexical habit. some due to regional accents and some due
to education and upbringing. Pronunciation varialion may
also exist beyond the word boundary; the context may modify
the pronunciation differently for different talkers. Represen-
tation of a “spoken” lexicon is a major issuc in machine
recognition and understanding of a spoken language.

Much' of the speech variability comes from articulatory
variation. Various spcakers have different vocal tract con-
figurations, shapes, and lengths. Very rarely, if not impos-
sibly, would different talkers be able to produce acoustically
identical sounds. Articulation requircs motor control of the
articulatory apparatus and can hardly be repeated even for
the samce speaker. Attempts in the past to model the articula-
tory variation mostly focus on talker normalization, aiming at
transforming the speech spectrum to reflect the (static) para-
metric variation in the vocal tract apparatus (e.g.. the vocal
tract length [30]). No attempt exists, to the best of our knowl-
edge, to normalize the variation in motor control of the artic-
ulalory apparatus.

Other sources of variability come from the ambient and
the transmission channcl. Background noise is ubiquitous
and may display a vast rangc of characteristics and levels.
Noise can take the shape of a door slam, a constant fan noise
from a machine, the rotor noise of a chopper, or simply a
background conversation. The most difficull to characterize
is probably the nonstationary noise that resembles the
speech itsclf. Distortions in transmission can come from the
microphone arrangement (different types of microphone.
or the telephone handsct, which has a rather wide range of
allowable deviation in frequency response), the transmission
equipment (e.g.. a speech coder in digital wlephony or in
a cellular phone nctwork), or convolution with the room
acoustic response. The reverberation from an echoic room
poses as a major technical difficully in achieving high recog-
nition accuracy. As the use of hands-free speakerphones
becomes more prevalent, the problem of reverberation will
demand closer attcntion.

Having the insight of the source and the range of vari-
ability. one still needs to be able to translate it into a model, or
a structural representation, for incorporation into the specch
distribution. Much research in the past few years has been
concentrating on this aspect.

D. From Recognition to Inference—Machine Intelligence
Jor Communication

We consider speech understanding as capturing a parlic-
ular notion that is embedded in the spoken utterance. The
notion may appear in the form of a kev word, a key phrase,
or an expression. To understand the intended notion may re-
quire inference, involving the knowledge of the context in
which the utterance appears. the pragmatic aspect of the ex-
pression, or the atmosphere that leads to the conversation.
In other words. to go from automatic speech recognition to
understanding may incur the need of a machine with more
intelligence than the current speech systems. We will be di-
recting our atlention 1o only identification of a notion from
a finite set of possibilitics rather than machine intelligence
research. It is possible. however, Lo design a system o have a
dialogue with a human, emulating an intelligent machine, by
a proper design of the dialogue flow involving simple iden-
tification of limited notions.

1. TECHNOLOGY COMPONENTS OF AUTOMATIC SPEECH
RECOGNITION AND UNDERSTANDING

In this section, we discuss a typical system and its tech-
nological components for automatic speech recognition and
understanding. This represents a common architecture sup-
porting most of today’s engineering implementations of a
spoken language processing system.

A. Simplified Framework for Speech-to-Text Conversion

As mentioned at the beginning of the article, there are two
broad approaches to spoken language understanding. One as-
sumes that each utterance comprises a sequence of linguis-
tically meaningful and structured words, and the first step
toward the goal of understanding is to convert the spoken
acoustic signal into the word sequence as accurately as pos-
sible. Understanding of the meaning and the intention of the
spoken message would follow based on the recognized se-
guence of words. The other approach makes no explicit as-
sumption on the linguistic structure of the utterance; rather,
it only attempts to deal with situations in which the intended
message is always expressed in certain key words or phrases.
{We shall come back and address the issues in specch under-
standing in later sections.) The first approach is particularly
appropriate in the design of a voice-activated typewriter [11].
The task is sometimes referred o as “speech-Lo-text conver-
sion” or “word decoding” in continuous speech recognition.

Formulation of word decoding 1s essentially based on the
same Bayes decision theory discussed in Section 11-B. ex-
cept that the observation sequence may consist of more than
one class of observations. Let X = (1, 3, ..., Z¢)be an
(unknown) observation that may be an acoustic realization of
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Fig. 9. Fundamental block diagram for an automatic specch
recognition and understanding system based on the simplified
decoding strategy.

a sequence of words W' = (wq, wa. ..., wg), where cach
w; € V, the vocabulary. The speech recognizer attempts to
implement the maximum ¢ posteriori rule o find We

W = arg max Py(W|X)
W

arg. wax Py(X|W)Py(W)/PA(X).  (8)
W

The key quantitics alfecting the decision are of course
Py(X|W) and Py(W) since Py(X) is not involved in the
optimization process. As before, Py (X |W) is rclated to the
probabilistic realization of the word sequence and is called
the acoustic model. The other quantity, Py(W), defines
the probabilistic relationship that exists among words when
they appear in sequence and is usually called the language
model. Fig. 9 1s a block diagram depicting the modules ¢cm-
ployed in a prevalent speech recognition system according
to the above-simplified formulation. The received specch
signal first goes through a signal analysis module in which
the speech waveform is translated into a speech pattern
representation, consisting of a sequence of feature vectors.
The speech pattern is then compared with the reference
patterns pretrained and stored with class identitics. Such a
comparison can involve several layers of processing, from
a distance or likelihood calculation between two vectors.
to a search procedure for detecting the presence of higher
level units (i.e., phonemes. words, and possibly phrases and
sentences). The decoded sequence of linguistic symbols
is then subject to parsing and interpretation to infer the
message intended in the utterance.

One should note that this simplified formulation of the
recognition problem obviously lumps all the poteritial varia-
tion in the signal together and does not individually deal with
each source of variability in an explicit manner. For an im-
proved performance of the system, there may be a need to
design the system to cope with each variability source sep-
arately in a multistage fashion as outlined in the previously
discussed communication-theoretic framework.

B. Signul Analysis and Representation

Signal analysis is the first step in every automatic speech
recognition and understanding system. The aim of signal
analysis is to obtain the salient feature in the speech wave-
form that is critical to the recognition or identification of
the unknown linguistic event. Speech waveform has various

1150

Bandpass Non- | Lowpass \ Sa,‘}“a':;'"g Amplitude
LF|I Linearity Filter Reducmn Compression

Bandpass | Non- Lowpass saé’;:g"“ Amplitude
speech Filter 1 | Linearity Filter Reduction Compression

Bandpass Non-
Filter 1 Linearny

Lowpass ';“9 [ Amplllude
Filter i Ci

Fig. 10. Spectral envelope cstimation using filter-bank.

kinds of featurcs: for example, some pertain to the gender of
the speaker, some relate to the quality of the sound, and some
carry the necessary information for the intended message
from the spcaker. Many feature parameters can be dircctly
measured or estimalted from the acoustic waveform. while
others such as gender or mood have to be inlerred. In spite
of the advances in signal analysis to date, speech recognition
involves an inference and decision process; in other words,
the phoneme or word identity in the utterance cannot be
directly measured without hypothesis and decision.

Measurement dimensions that are used in the study of
acoustic-phonetic properties of a spoken language include
such parameters as the short-time energy, the zero-crossing
or level-crossing rate, voicing onset, and so on. Probably the
most important feature dimension of speech is the short-time
spectral envelope, which encapsulates the key characteristics
of the articulatory apparatus (e.g., the resonant frequencies
ol the vocal tract or formants) that caused the realization of
the speech sound. Shorl-time spectral estimation and repre-
sentation is, thus, considered the core of speech analysis for
speech recognition.

Short-time Fourier analysis performed on consecutive
blocks of data is the most rudimentary form of short-time
spectral analysis for speech. Short-time Fourier analysis,
however, produces a result with raw information that may
not be most suitable for linguistic inference. Two measures
are usually taken. One further smooths the Fourier spectrum
along the frequency axis by averaging adjacent frequency
components in a weighted manner (e.g.. a triangular weight
vector) and the other simply resorts to a filter-bank im-
plementation with an cmbedded nonlinearity and spectral
smoothing. We shall denote the short-time spectral estimate
of the speech signal by S(w). where w is the normalized
frequency. Fig. 10 shows a schematic using a filter bank to
obtain the short-time speech spectral envelope. Note that
it is now customary to employ a “pereeptually motivated”
frequency band structure to approximate the human audi-
tory system. “Mel-frequency™ or “Bark scale” relates to a
human’s subjective perception of frequency (in sinusoid).
and the notion of critical bandwidth and auditory masking
provides a guideline in incorporating the nonuniform
spectral resolution in our auditory system into the analysis
procedure.

Another major branch of spectral analysis for speech is the
autoregressive or all-pole modeling method [31]. Let s(n),
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n = 1,2, ..., N be ablock of spcech data. In autoregres-
sive modcling, 5(n.) is assumed to be generated by an autore-
gressive mechanism or source, i.e..

P
s(n) =Y ags(n — k) + Guln) C))

k=1

where ap. k= 1, 2, ..., p are the aulorcgressive parame-
ters, also often referred to as the prediclor coefficients. p is
the order of analysis, and «{n) the innovation sequence or
driving function, an independent and identically distributed
(1.1.d.) process, with G as the gain parameter affccting the
amplitude ol the speech signal. Equation (9) can be inter-
preted as an assumption that cach speech sample can be pre-
dicted from past samples (as a linear combination), and, thus,
this modcling technique is also referred Lo as linear predic-
tion or linear predictive coding (LPC). Given a sequence of
data {s(n)}, LPC analysis aims at finding a set of paramciters
{ay} that minimizes the difference between the actual value
and the predictive value, i.e., the prediction error

P
e(n) = s(n) — s'(n) = s(n) — Z ars(n—k)  (10)

k=1

averaged over the (windowed) data block. Expressed in the
z-transform, (10) becomes

S(z) = E(2)/A(2) (11)

where
]/

A)=1-Y w2 (12)

k=1

is a pth order polynomial. When the process is indeed an
autoregressive process and the prediction error is minimized
by a proper choice of {ay}, the prediction error will equal
Gu(n). The all-pole model power spectrum 1/|A(w)|?
approaches the speech power spectrum |S(w)|?, within
a scaling constant (the gain term), when the order p is
large (assuming large V). and provides an estimate of the
short-time spectral envelope when p is relatively small
(usually 10-16 for speech).

As with the filter-bank analysis, perceptual attributes can
be incorporated in the linear prediction analysis framework.
Examples of such attempts are Mel-scale LPC and perceptual
lincar prediction (PLP) [32].

Another important attribute in auditory perception is the
nonlinear compression of energy. which leads to the con-
sideration of the log power spectrum log |S(w)[? in most
speech-related processing algorithms. The Fourier series rep-
resentation of log |S(w)|? can be expressed as

lugIS(w)|2= Z eI (13)

n=—sc

where ¢, = ¢_,, are real and often called the cepstral co-
efficients, or simply the cepstrum. Note that ¢ is the av-
erage log power spectrum. Depending on the way S(w) is

estimated. the corrcsponding cepstrum may poSscss some-
what different properties. If S{w) is modeled as an all-pole
spectrum as in the LPC analysis. the corresponding cepstrum
is called an LPC cepstrum. When S(w) is obtained with a
Mel-scaled filter-bank. the cepstrum is then called a Mel-
cepstrum. Studies exist to compare these derivatives of the
cepstral representation for speech recognition and statistical
modeling.

It should be noted that these short-time spectral analysis
methods arc applied to consecutively windowed speech seg-
ments, called “frames,” resulting in a sequence of short-time
spectral envelope estimaies. The sequence with its time-de-
pendent variation. thus. defines the basic speech patiern of a
spoken utterance.

1) Distortion Measures and Parameter Representations:
Speech analysis produces what can be considered as a raw
paramctric representation of the feature. Since our goal in
speech recognition and understanding is o be able to dif-
ferentiate one linguistic cvent from another, discussions of
feature representation must involve the measure that we em-
ploy to assign dissimilarity between any two observed fea-
ture parameler vectors. For spectral parameters, this is usu-
ally called the spectral distortion measure or simply the dis-
lortion measure.

In order to define a proper distortion measure for speech
recognition, several factors have to be taken into account.
Ideally, the distortion measure must reflect proportionally the
perceptual difference judged by human listeners. For auto-
malic speech recognition, it should also result in high corre-
lation with the linguistic distinction between the two spectral
parameter vectors that are being compared. While the ulti-
mate dissimilarity measure that possesses these propertics is
still not at hand, studies in the past have converged to the use
of cepstrum and cepstrum-related distances.

Consider two power spectra. |S(w)|? and |S’(w)]?. under
comparison. Let

V{w) = log|S(w)|* —log

S(w)P2. (14)

The set of L, norm defined on V(w) is a natural choice
in defining the distortion measure between the two power
spectra

V(W) dw. (15)

dy(S. S = /—

For p = 1, it defines the mean absolute log spectral dis-
tortion. For p = 2, it defines the rms log spectral distor-
tion. which has become prevalent in many speech-processing
algorithms.

By applying Parscval’s theorem, we can relate the La cep-
stral distance to the rms log spectral distortion

da(8. 8" = ) (ew —¢p)° (16)

n=—o

where ¢, and ¢, are the cepstral coefficients of |S(w)|?
and |8'(w)|?. respectively. The L, norm above usually
is truncated to a finite number of terms, say, D, and the
finite-dimensional cepstral vector ¢! = (e, 2, ..., cp)
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is, thus, uscd as a representation of the feature vector for
speech recognition. Several other representations of the
short-time speech spectrum have been proposed and studied.
The cepstrum, however. remains a prevalent representation
in many speech-processing algorithms.

2) Post-Processing of Speech Feature Representations:
Measurements or estimated parameters of the speech feature
contain inevilably “noise” such as cstimation error, model
mismatch. and so on. These noisy components appear in
the short-time spectral sequence as unreliable fluctuation,
which would reduce the effectiveness in patiern matching if
not properly treated. Postfiltering on the parameter sequence
over time is, thus, advisable in removing some of these
“noisy” components. Various techniques such as the Slepian
filter and the Legendre polynomial [33]. RASTA [34], and
similar bandpass filters have been reported to bring about
good results.

Another aspect of the short-time spectral feature that can
lead to an improved performance is the dynamics of the time-
varying parameter sequence. A short-lime spectral cstimate
usually is obtained within a short time window, independent
of the adjacent data blocks. However, the rate of change in
the parameter sequence (a form of dynamic feature) is be-
licved to have a major pereeptual as well as cognitive sig-
nificance. Additional parameters that are derived from the
(static) feature representation and bear the dynamic charac-
teristics ol speech have been suggested and shown to help the
automatic speech-recognition performance. These dynamic
feature representations include the delta-cepstrum (a first-
order difference of the short-time cepstral sequence) [35], the
delta-delta-cepstrum (a second-order difference). delta-en-
ergy (a first-order difference of the shorl-time cnergy pa-
rameter). delta-delta-energy (a second-order difference), etc.
These dynamic feature representations can also be consid-
cred results of higher order polynomial data fitting on the
short-time (static) feature representation [36]. The paramcter
window for polynomial data fitting can have a span over sev-
cral “frames.” thus. extending the representation beyond the
strictly “short-time frame™ range.

C. Acoustic Modeling [40]

Acoustic modeling aims at finding the probabilistic be-
havior of the given data. expressed in the form of P(X|A).
[Here. we use P(X|A) in lieu of P4 (X|C) without ambi-
guity because the class label is implied in the context.] This
is often referred to as probability distribution estimation; i.e..
finding the parameter A in a certain optimal sense to define
the distribution P(X|A). For automatic speech recognition,
the first issue to be resolved is the functional form of the dis-
tribution that bhest describes the probabilistic nature of the
speech signal. Understanding ol the speech variability helps
Lo determine the appropriate form before estimation of the
parameter A can take placc.

1) Probability Distributions for Speech: The statistical
method, as discussed in the previous sections, requires that
a proper, usually parametric. distribution form for the obser-
vations be choscn in order to implement the MAP decision.
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Using the task of isolated-word speech recognition as an ex-
ample, we have 1o determine the distribution form for the
speech utterance ol each word before we employ an estima-
tion method to find the values of the parameters.

What is the right distribution form lor speech utterances?
This question involves two essential aspects: finding the
speech dimensions that carry the most pertinent linguistic
information and deciding how to statistically characterize
the information along the chosen dimensions. We discuss
these issues in this section.

Speech 1s a time-varying signal. When we speak. our
articulatory apparatus (the lips. jaw, tonguc, and velum)
modulates the air pressure and flow to produce an audible
sequence of sounds. Although the spectral content of any
particular sound in speech may include frequencies up to
several thousand hertz. our articulatory configuration (the
vocal-tract shape. the tongue movement. etc.) often does not
undergo dramatic changes more than ten times per sccond.
During the short interval where the articulatory configuration
stays somewhat constant, a region of “quasi-stationarily” in
the produced speech signal can often be observed. This is
the first characteristic of speech that distinguishes it from
other random, nonstationary signals. The temporal variation
is manifested in several ways: the timing of voicing onsets,
the vowel duration, etc. The short-time signal analysis
discussed above produces representations of speech in a
scquence ol parameter vectors containing these character-
istics. For speech recognition. however. certain kinds of
temporal variation are irrclevant to the linguistic distinction
between utterances. For example, most of the variation due
to speaking rate changes is not going to alter the linguistic
content of the utterance (although it may have semantic and
pragmatic implications that are not normally considered part
of the speech-recognition task). Representations of specch
for recognition purposes, thus, have to take this into account
and include the ability to accommodate irrelevant variations
or to suppress them.

Furthermore, speech is not a memoryless process due
to articulatory and phonotactic constraints. According to
the phonological rule of a language. there is a certain
dependency between sound pairs that occur in sequence:
some occur more often than others. while some are simply
nonexistent in the language. The speech model or distribu-
tion needs to have provisions to permit characterization of
this sequential structure, ideally in a manner consistent with
the slowly varying nature (i.c., “quasi-stationarity”) of the
speech signal.

2) Speech Model: Based on the above characteriza-
tion of the speech signal, a reasonable specech model or
distribution should have the following three components.
First, at an interval on the order of 10 ms. short-time
measurements are to be made along the pertinent speech
dimensions that best carry the relevant information for
linguistic distinction. These dimensions determine the
observation space in which the distribution is to be defined.
This is accomplished in signal analysis and the choice of
representation (Section III-B). Second, the existence of
the quasi-stationary region suggests that the neighboring
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short-time measurements on the order of 100 ms nced 1o
be simultancously considered, either as a group of inde-
pendently and identically distributed observations or as
a segment of a (perhaps nonstationary) random process
covering two quasi-stationary regions. Third. a mechanism
that describes the sound change behavior among the sound
segments in the utterance is needed. This characterization
lakes into account the implicit structure ol the uticrance
(words, syntax, and so on) in a probability distribution sense.
3) Hidden Markov Model (HMM): An HMM provides a
simple means to characterize speech signals according to the
above discussion [37]. Consider a lirst-order N -state Markov
chain governed by a stale transition probability matrix A =
[@;;]. where a; is the probability of making a transition from
state 7 to state j. Assume that at ¢ = 0 the state of the system
qo is specilicd by an initial state probability m; = P(qo =
i). Then, for any state sequence ¢ = (go. q1- - ... 7). the
probability of g being generated by the Markov chain is

P(g|lA, 7) = mg gy, Uqige - - - gp_1g7- (17

Suppose the system, when at state ¢, puts out an observa-
tion z; according to a probability density function by, (x;) =
pE|g)sqr = 1,2, .... N. The HMM uscd as a distribu-
tion for the speech utierance X is then defined as

P (X|z. A, {b;}5) =P(X|A) =) P(X. qlp)

q

> P(Xlg. A)P(ql)

1

T
Z Mgy H Qg1 b(h (.xt) (18)
q t=1

where A = (m, A, {b;}}L,) is the parameter set for the
model. Fig. 11 depicts the concept of an HMM. as a mea-
sure for probabilistic functions of a Markov chain. As shown
in the illustration, each state is associated with a random
process, governed by a distribution.

As can be seen in (18), {b,, } defines the distribution for
short-time observations and A characterizes the behavior and
interrelationship between various states ol the speech gen-
cration process. [n other words. the structure of an HMM
provides a reasonable means for characlerizing the distri-
bution of a speech signal. Normally N, the total number
of states, is much smaller than 7. the time duration of the
speech utterance. The state sequence g displays a certain de-
arec of stability among adjacent ¢;s due to the above-men-
tioned “‘quasi-stationarity.” The use of HMM as speech dis-
tributions has been shown 1o be practically effective.

The form of the in-state observation density by, () needs
to be specified. Different choices of speech dimensions for
the observation space may require different forms of the
in-state observation distribution. One general form, namely
the mixture Gaussian density [20], is commonly employed

Fig. 11, [lustration of a hidden Markov model (HMM).

due Lo its ability to approximate arbitrary density functions.
A mixture density has the form

K

blz) =Y vfilz) (19)

=1

where f;(e) is the jth component kernel function. usually a
Gaussian density, and ~; 1s the weight of the density compo-
nent. (Note that we have dropped the state index in the above
generic expression for a mixture density without ambiguity.)
By increasing the number of mixture components, a mix-
ture Gaussian density can approximate any density function
with arbitrary precision. The tradeoft is obviously among the
closeness in approximation, the increase in numbcr ol param-
eters, and the related parameter estimation reliability, which
is a function of the amount of training data. In any event,
there is always a possible discrepancy between the estimated
distribution and the true data distribution. This notion is im-
portant in the following discussion of discriminative method
(Scction 11I-C5S).

4) Model Parameter Estimation: Once the speech model
form is chosen. the parameter set A that defines the model is
to be estimated from a given set of data. This process is often
referred to as training in the context of automatic speech or
patlern recognition. For the simple case of isolated word or
discrete utterance recognition in which an uttcrance consti-
tutes an observation of a class, each token in the training
set carries a label of the class identity. Normally, a class-de-
pendent model or distribution is estimated from the data of
the same class according to some well-known statistical es-
timation criteria, “maximum likelihood™ (ML) being ane of
the most prevalent ones. Let x = {X1, X, .... X1) be
the training set for a particular class of observations. Max-
imum-likelihood estimation is to find the parameter set Ay
such that

Anp, = arg max P(Qx|A) (20)
A

where

P(Qy]A) = H P(X|A)

assuming that the utterances in the training set are indepen-
dent. The estimated model parameter set A is then associated
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with each individual word class. For an A -word vocabulary,
M such parameter scts are 1o he estimated for use in the ree-
ognizcer.,

The Baum-Welch algorithm [38]. [20] accomplishes
likelihood maximization in a two-step procedure, known
as “‘reestimation.” Based on an existing model A (or a
properly initialized model), the first step of the algorithm
transforms the objective function P(Qx|A) into a new
function Q(A’, A) that essentially measures a divergence
between the initial model A" and an updated model A. The
@ function is defined. for the simplest case, as

QA A) =" P(Qx.q Alog P(Qx ., g|A)  (21)
q

where P(2y, g| A) can be derived according to (18) and
(20). Tt can be shown that Q(A’. A) > Q(A’, A') implies
P(Qx|A) > P(Qx|A). Therefore. the second step of the
algorithm involves maximizing Q{A’. A) as a function of A
to obtain a highcr. improved likelihood. These two steps it-
erate interleavingly until the likelihood reaches a fixed point.

The ML method is. however, not the only possible choice
for solving the estimation problem. An in-depth discussion
of various estimation criteria can be found in [37]. It should
be pointed out that the ML method does not usually lead
to a minimum error rate performance for the recognizer. As
discussed above, thisis due to 1) the likely mismatch between
the chosen distribution form (HMM in the present case) and
the actual speech data and 2) the finite training (known) data
set, which is often inadequate.

5) Discriminative Training: As discussed earlier, classi-
fier design by distribution estimation often does not lcad to
an optimal performance. The problem is that in most situa-
tions, the estimated probabilities deviate from the true prob-
abilities and the exact MAP rule cannot be implemented. In
addition, when the assumed form of the distribution is dif-
ferent from the true one, the optimality of the estimated dis-
tribution has little to do with the optimality of the classifier,
particularly in terms of recognition error rate. An attempt that
has developed over the past few years Lo overcome the funda-
mental limitations of the traditional approach based on dis-
tribution estimation is to directly formulate the classifier de-
sign problem as that of classification error rate minimization.
This approach is called “discriminative training,” in which
the goal of training is to be able to correctly discriminate the
observations for best recognition/classification results rather
than to fit the distributions to the data [39].

Consider a set of discriminant functions g;(X; A).
1=1,2 ..., M defined by thc parameter set A. In its sim-
plest form for our present discussion of the HMM technique,
4i(X: A) can take cssentially the same form as (18), i.e.,

g:(X; A)y=P (XM(;‘.))

7. A0 {bﬂ”}x ) (22)

=1

-r(x

where the superscript ¢ denotes the parameter set identity as-
sociated with word (class) ¢ in the vocabulary. It is impor-
tant to note that in this formulation. we no longer consider
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only the estimation of distribution for a class of observations,
but take into account the entire parameter set of the classi-
fier A, A = {X¥), i = 1,2, ..., M} in the optimization
process. The discriminant ¢;{(X; A) can be any reasonable
functions. (Discussion of its optimality is beyond the scope
of this paper.) The choice of HMM of (18) is a reasonable one
(perhaps the best we have so far), as discussed previously.
‘The classifier/recognizer is operating under the following de-
cision rule:

C(X)=7C; if g;(X; A) =max ¢,;(X; A).  (23)
K
The goal of classifier design is again to achieve the minimum
crror probability based on the loss [unction defined in (4).
The difficulty associated with the discriminative training
approach lies in the derivation of an objective function that
has to be consistent with the performance measure (i.c., the
error rate) and also suitable for optimization. The error rate
based on a finite data sel is a piccewise constant function
of the classifier parameter A and. thus, a poor candidatc for
optimization by a simple numerical search mcthod. An em-
bedded smoothing for a loss function that is a reasonable ap-
proximation to the error probability has been proposed [39].
a) Oprimization criterion: The smoothed optimization
criterion is a function of the class discriminant functions
¢i(X: A).i=1,2,..., M. We assume that the discrim-
inant functions arc nonncgative. The key to the new error
criterion is to express the operational decision rule of (23)
in a functional form. There exist in this regard many possi-
bilities, one of which is a misclassification measure taking
the following form:

1 ,
di(X)=—g:(X. A)+ (M—_—l) _Zv[yj(?f. A
1 17
(24)
where 7; is a positive number. This misclassification measure
is a continuous function of the classifier parameters A and at-
tempts to enumerate the decision rule. For an ith class utter-
ance X, d;(X) > 0 implies misclassification and d;(X) < 0
means correct decision. When # approaches oc. the term
in the bracket becomes max;, j«; 9;(X. A). By varying the
value of 7). one can take all the competing classes into con-
sideration. according to the individual numeric significance,
when searching for the classifier parameter A.

To complete the definition of the objective criterion. the
misclassification measure of (24) is embedded in a smoothed
zero—one function. for which any member of the sigmoid
function family is an obvious candidate. A general form of
the loss function can then be defined as

Li(X; A) = £:(di(X)) (25)

where £ is a sigmoid function. one cxample of which is

1

Li(d) = 1+ exp(—pd + 6) e

with # normally set to zero. Clearly. when d;(X) is much
smaller than zero, which implies correct classification, virtu-
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ally no loss is incurred. When d;( X)) is positive, it leads to a
penalty that becomes essentially a classification/recognition
error count. Finally, for any unknown X, the classifier per-
formance is measured by

LX; A)=) " Li{X: MUX €C)) (27)

where 1(e) is the indicator function.

This three-step definition emulates the classification op-
eration as well as the performance cvaluation in a smooth
functional form. suitable for classifier parameter optimiza-
tion. Based on the criterion of (27), we can choosc to mini-
mize one of two quantitics lor the classifier parameter search:
one is the expected loss and the other the cmpirical loss. The
method of generalized probabilistic descent (GPD) has been
proposed to achieve this goal. Application of the dircct error
minimization method to HMMs for speech recognition can
be found in [40].

D. Acoustic Modeling for Large-Vocabulary Continuous
Speech Recognition

The Bayes decision theory applies straightforwardly to the
simple case ol isolated word recognition, as discussed above.
For large-vocabulary continuous speech recognition, how-
ever. several issues arisc, mainly due to the increased vari-
ability, in all stages of the speech production chain and the
complexity in the recognition process.

In a continuous specch utlerance. there exists an abun-
dance of the so-called coarticulation phenomenon. When a
sequence of sounds is being uttered, our articulatory appa-
ratus normally does not produce each sound individually.
It adjusts its configuration in anticipation of the following
sounds, often causing partial articulation or substantial
variation to the sounds. In many cases, the colloquial form
of a complete sentence may be quite different from the
phoneme sequence prescribed by the lexicon. (For example,
try to speak “Did you cal yet?” and hear how it differs from
the dictionary.) Increasc in variability means the nced of
a more complex system, using speech modcls with many
more paramcters in order to maintain the nceded modeling
performance.

The complexity of a recognition system is esscntially
proportional to the number of classes to be recognized. For
continuous speech recognition, the number of classes can
vary, depending on the choice of “unit.” If “word™ is chosen
as the fundamental building block of the spoken language
involving, say. a 20000 word vocabulary, the necessary
number of word models is then at Jeast 20000. And if the
above-mentioned variability increase is taken into account,
the number of word models can easily exceed this figure.
This is obviously a difficult task. even in training. To train
20000 good word models. the number of training tokens
will be in the millions. Collecting data itself becomes a hard
task to accomplish. Other alternatives of the recognition unit
for acoustic modcling in large-vocabulary speech recogni-
tion include syllables (on the order ol tens of thousands in
number), phonemes (~50). demisyllables (syllable doublet.

a. SENTENCE: SHOW ALL ALERTS

b o [ ]
o s s -
. )

SILENCE SHOW SILFNCE  ALL SILENCE ALERTS SILENCE

b. WORDS:
SHOW o oo
ALL —r o+ o
ALERTS o> o+ o »r o> o> o

c. COMPOSITE FSN:

" Beginning slate

ax | er t s " sil

Finzl state

Fig. 12. A composite finite state nctwork representation for
sentence “Show all alerts™ (after [37]).

~2000). and acoustic units. (Acoustic units arc “typical”
speech sounds automatically clustered from the speech data,
with a varying number in the set according to the needed
resolution in sound differenuiation.)

One popular choice of model unit is the sct of
phoneme-like units, which can be considered phonemes with
acouslic variation due to various contexts. For example, the
vowel /a/ can be represented by a number of acoustic models,
qualified by the context it appears in, such as silence-/a/-/b/.
/k/-/al-it/, and so on as ils variants. In this manner, many
morc context-dependent models are enlisted. Although only
43 or so phonemes are customarily included in American
English, an automatic speech recognition system usually
uses several thousands of these phoneme-like units.

By way of illustration, Fig. 12 shows the representation
and creation of a sentence “show all alerts™ in phoneme-like
units expressed in a finite state network. Fig. 12(a) depicts
the word sequence with possible insertions of pauscs be-
tween words in a network. Fig. 12(b) shows the lexical rep-
resentation of cach of the words in the sentence. Fig. 12(c)
displays the model for silence (a single-state HMM) and a
composite finite state network connecting all the words and
silence together in terms of the states in the phoneme-like
acoustic models. When contexi-dependent units are used,
cach phoneme-like model in the representation will need to
have the context designation.

These models can be automatically trained using the same
Baum-Welch algorithm or the segmental &-means algorithm
[37]. With the representation ol a composite finite state
model, the correspondence between the models (parameters
of which are to be estimalcd) and the speech utterance
becomes explicit much the same way as in the isolated-word
case. The same training formulation, thus. applies.

The tradeoff between high acoustic resolution and low
estimation reliability is an issuc that needs particular care
in large-vocabulary speech modeling. Recent rescarch in
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acoustic modeling for large vocabulary specch recognition
has pushed the context dependency to the level of “quin-
phone™ (a phoneme-like unit with dependency on the two
preceding phonemes and two subsequent phonemes). With
the high number of potential quinphone units to include. unit
sclection, thus, becomes critical to avoid loss of reliability
in the estimated results, causing offset to the gain from the
increased acouslic resolution. Differential likelihood (or the
Kullback-Liebler distance for HMM) [41]. [42] is ofien
used for this purpose. Another technique Lo gain reliability in
parameter estimate is the use of tying. Tying forces modcls
ol different units to share part of the network topology and
the parameters, thereby reducing the total number of model
parameters.

E. Language Modeling—From Pronunciation to Granunar

When the speech signal is converted into a (discrete) se-
quence of (unitary class) symbols, it has to conform to the
constraints imposcd by the relationship among these sym-
bols. In language, some words follow a particular word more
likely than others (i.e., the existence of a syntactical or gram-
matical relationship among words in expressions), and ac-
cording to the dictionary, phonemes do not arbitrarily follow
each other (i.e.. due to phonological rules and the Iexicon).
A spoken language system needs to invoke the knowledge of
pronunciation, lexicon. and syntax in order 10 be able to per-
form satisfactorily in decoding the speech signal into a text
sequence ready for further interpretation. Models that encap-
sulate these aspects of knowledge are indispensable. We dis-
cuss the prevalent considerations and structures in this sec-
tion.

1) Model Structure: In the current probabilistic frame-
work, the language that governs the outcome of a linguistic
event is modeled as a discrete density (W), where W =
(wy, wa. ..., wr)is a word sequence. The density function
P(W) assigns a probability to a particular word sequence W,
depending on how likely it is to appear in the task. A sentence
with words appearing in a grammatically corrcct manner is
more likely to be spoken than a sentence with an ungrammat-
ical structure, and. therefore. is assigned a higher probability.
The Janguage structure, rules, and convention are, thus, in-
tegrally considered in the probability assignment. Statistical
language modeling is to estimate P(W) from a given set of
sentences, or corpus.

Whether or not a language can be adequately described in
a statistical model has been subject of debate for some time.
Traditional linguistics considers language 1o comprise a set
of rules that define the proper expression in terms of syntax,
semantics, and cven pragmatics. It is this set of commonly
accepted and recognized rules that facilitatc communication
(which by itsclf means sharing of information). The rulcs are
fundamentally deterministic. Parsing is to map a word se-
quence into a structure that can be interpreted according to
the rules for further understanding. The complication comes.
however. from the interaction between the structure (ie., a
scnience that can be properly parsed) and the message (words
that generate the intended meaning). This interaction creates

1156

not only variations in expression, but also potential confu-
sion and difficulty in parsing. Can a parser properly parse a
sentence containing significant amounts of word and syntax
crrors for comprehension?

Similarly. can proper lexical modeling resolve ambigui-
tics in pronunciation, which often displays wide variation in
actual acoustic realizations of words and phrases? What is
the right model structure or. more precisely. the right mathe-
matical representation that allows people to characterize the
variation”? These questions point to an ensemble of problems
that are still opecn—representation ol various linguistic struc-
tures from message to articulation.

While research is still active in the pursuit of structural
representations, a number of propositions exist [43], among
them context-free grammar (CFG). finite state grammar
(FSG). probabilistic CFG., probabilistic FSG. and so on. The
finite state grammar, due to its computational synergy with
the HMM. is widely used in many engineering realizations
of spoken language systems.

2) Probabilistic  Finite State Language Model: A
finite state grammar is specified by the vocabulary
V', the current observation w; € V. the current state
Gy = (Wi—n, Wr_N41, ..., we—1), and the next state
function Gy = ¢(Gy. wy). The next state function defines
the evolution of state given the observations. One simple
form of the next state function is

Giyr = P(Cr. wy)

= (Wt N41: Wr—N42; - - -, W) (28)
which is just a shift of the word sequence window of size N.
A general and yet convenient way to visualize an FSG is the
word network. Recall an example of the grammar network.
shown in Fig. 2, specifying many possible ways to express
the notion of trying to get information about a [light. The
next state function can be probabilistic. The word window
size IV is called the order of the finite state model, which
invokes a syntactic rule or assigns a measure of probability
1o a word given its state specification. In other words, a finite
state language model defines P(uwy|Gy).

The simplest form of a first-order language modcl is the
word-pair grammar in which P(w,|G;) = P(wy|w,—1) = 1,
il the syntactic rule permits w, to follow w,_;; otherwise.
P(w|we—1) = 0. Similarly, one can defing a triplet language
model, and so on.

In speech recognition and understanding. a probabilistic
N-gram FSG has found widespread use due to its implemen-
tational case and consistency with the structure of an HMM.
An N-gram language model is a statistical model that assigns
a probability measure to a word sequence using the following
approximation:

T.
Py (W) = [] Plwelweoy, wea, - weongr). (29)
t=1
The conditional probability P(we|wi—1, we—s. . ... wi_ni1)

can be estimated by the simple relative frequency
approach-—counting the frequency of occurrences of the
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partial word sequences. To circumvent the problem of small
probability estimation (e.g., unscen events in a limited
training set), a backoff strategy based on the Good-Turing
estimator is often incorporated [12].

Associated with a statistical language model is the entropy
or perplexity that measures the complexity of a language that
the language model is designed to represent [42]. Such a
measurement in theory has to be made over all expressions
of the language. In practice, the entropy of a language ac-
cording o a language model ’x (W) is measured via a sct
of sentences and is defined as

H = Z Pn (W) log Py (W) (30)
e

where Q 1s a sct of sentences of the language. The perplexity.
which is also called the average word-branching factor. is
defined as

B=2H 3N

The perplexity, cven though it is an estimated quantity [such
as the test-set perplexity obtained via (30)]. provides an indi-
cation of the general complexity and, thus, the difficulty. of
a given language task.

It is possible to extend the fixed-order FSG to a tree-struc-
tured variable-order FSG. A variable-order FSG in general
achieves lower estimated perplexity than a fixed-order lan-
guage model. However, when applied Lo specch recognition
and understanding, the performance diffcrence in crror rate
is usually insignificant. (Sec discussions below.)

E Partern Matching and Search

Pattern matching refers to the computational procedure Lo
evaluate the similarity between the patterns that are being
compared. Such a step is necessary in every palicrn-recog-
nition system. The basis of patiern maiching is the under-
lining distortion measure that the system designer chooses a
priori. Considerations in choosing a distortion measure have
been discussed in Section III-B1. As we have pointed out,
a distortion measure is often associated with some notion in
statistical distribution, and the amount of distortion can he
interpreted as the negative log likclihood. In speech recog-
nition, the procedure of pattern matching. thus, can be con-
sidered either as the computation of distortion/dissimilarity
between two patterns or the computation of likelihood of a
source (represcnted by a model) that produced the observed
speech pattern, followed by a search and decision process.

Two basic lechniques are available for speech pattern
matching. Onc is called the Viterbi algorithm and the other
the forward—backward algorithm. These two techniques cor-
respond to the computation of the two essential quantitics,
respectively, in the formulation of a statistical model for
speech. The Viterbi algorithm allows efficient computation
of max,P(X. q|A) and the forward—backward algorithm
leads to linear-time computation ol P(X|A).

1) Dynamic Programming and the Viterbi Algo-
rithm: Evaluating the dissimilarity between (wo speech
palterns is more sophisticated than most of the traditional

paltern-matching technique that operates in a simple
fixed-dimensional vector space. One main factor that con-
tributes to this added sophistication is that speech pattern is
a temporal sequence that may be compressed or stretched
in time due to speaking rate chunges. Such a speaking rate
variation would usually result in a nonuniform duration in
the phonemic elements of the utterance during articulation.
To obtain a meaningful pattern-matching score between two
speech patterns of unequal length, some form of normal-
ization is necessary. This gives rise to the use of dynamic
time warping in defining a dissimilarity measure, beyond
the distance calculation between two short-time  vector
representations of speech.

Consider two speech paterns: X = (x1, T2 ..., T1y)
andY = (¥;. 42, ... y7,). Let d(z, g) be the distortion
measure between two short-time representations of speech z
and y. We shall also usc the following simplificd expression
d(z;. y;) = d(i. j). Also, let i, = ¢ (k) and 7, = ¢, (k)
be two time-warping functions that relate the time scale of
X.i,.and thatof Y, ¢, respectively. to an independent'time
index k. Given the two time-warping functions, onc way 0
define the dissimilarity measure between X and Y is

T

de(X. Y) = min S d(guk). ¢y(k).  (32)
k=1

Obviously. the warping function has to satisfy certain con-
straints to prevent meaningless match: for example, a close
match between “we™ and “you™ would result if ¢ is not.con-
strained o be monotonically nondecreasing.

To find the minimum in (32). proposals by Vintsyuk [9]
and by Sakoe and Chiba [ 10] in using dynamic programming
techniques prove very effective. The principle of dynamic
programming is that an overall (global) optimal path must
also be locally optimal. The principle leads to a procedure
to increment an accumulative optimal path up 10 ume: £ by
advancing to the point that would be optimal at time {+ 1.
It translates a search for global optimality into a search for
local optimality for the above linear optimization problem.
Dynamic programming, thus, achicves the optlimization ob-
jective in linear, rather than exponential, time.

The formulation in (32) has dircet correspondence in
solving the ¢valuation problem in hidden Markov modeling.
Note that the state sequence ¢ in the joint state-observation
likelihood function P(X. ¢g|A) plays the same role as the
time-warping function ¢, and the optimization objective
max, P(X, glA) is identical to that in (32) (recall that
the distortion can be viewed as negative log likclihood).
The reference pattern is now the HMM whose state dis-
tributions form essentially a “pattern.” albeit with explicil
probability assignments. The same dynamic programming
algorithm is obviously directly applicable in the calculation
of max, P(X, g|A). In this context, which is considered
maximum-likelihood “decoding™ of the code sequence g as
in data communication, it is customarily called the Viterbi
algorithm.

2) The Forward-Backward Algorithn: One of the funda-
mental problems in hidden Markov modeling is to evaluate
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P(X|A) of (18) as the likelihood of A based on the obser-
vation X. The difficulty of this evaluation problem comes
from the need 1o sum the state likelihood P(X. q|A) over
all possible state sequences ¢. For an N-state HMM and an
utterance scquence of T vectors, the total number of state
sequences amounts to N T, which can be prohibitively high
when 1 is large. A method called the torward-backward al-
gorithm lincarizes the exponential computational complexity
by making use of the forward and the backward probabilities.

The forward probability a,(7) is defined as the probability
of the partial observation sequence 2,2 . .. Z; (up to time 1)
and slate ¢ at time ¢, given the model; 1e.,

(i) = P(zyga ...z gr = i|A).

Evaluation of «(#) can be accomplished inductively as fol-
lows:

1) initialization

(i) = mibi(x1), 1<i<N
2) induction
N
e (1) = Z ar()aji | bi(Trar).
J=1

[<i<Nand 1 €tLT -1

3) termination

A

P(X|A) =" ay (i)

=1

This induction procedure requires only N 27 calculations,
a linear function in T
The backward probability can be defined in a similar way

ﬁf([) = ~P(It+1xf+2 .. .$T| gy = ‘. A)

By using these forward and backward probabilities, many
quantitics needed in hidden Markov modeling and training
can be easily computed. This is the so-called forward-back-
ward algorithm.

3) Search Algorithms for Large-Vocabulary Speech
Recognition: Evaluation of the likclihood for the unit
models is only the first step in continuous speech decoding.
As discussed previously, for large-vocabulary continuous
speech recognition, composite models comprising sequences
of unitary models arc used for “pattern matching.” During
decoding, the systcm necds to hypothesize a number of such
composite models for likelihood cvaluation and recognition
decision. Since the number of unitary models can be huge,
a naive enlisting based on c¢xhaustive combinatorics will
produce prohibitively many hypothesized sequences. Even
with the help of a language model to prescreen the sentence
hypotheses. the list can still be large and yet has the potential
pitfall of cxcluding the correct ones. A search strategy that
combines all levels of likclihood scores and uses them to
guide the hypothesis pruning process is, therefore, critical in
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any practical implementation of a large-vocabulary speech
recognition system.

Scarch algorithms can be categorized into two essential
types: best first and breadth first. An algorithm called
beam search has been extensively used with good results.
It scarches the hypothesis space only around the (instan-
taneous) best path to reduce the amount of likelihood
computation. Since the instantaneous best path may not
turn ouf to be the overall best. other strategies may be
incorporated to reduce the potential search error. The paper
by Ney [44] in this issue provides a thorough discussion of
search algorithms.

Another useful search algorithm is the N-best algorithm,
which produces not just the best but the top /¥ candidates.
The tree-trellis algorithm is particularly noteworthy forits el-
ficicncy. With a list of the top N hypotheses. one can invoke
higher level or independent knowledge (e.g.. a higher order
language model or a semantic model) to execute a “multi-
pass” strategy to improve the search result. For example. ina
task as simple as connected-digit recognition of a credit-card
number sequence, after the N top digit sequence hypotheses
are produced, one can invoke the error-protection informa-
tion (e.g.. the check-sum digit) embedded in the scquence
in making the final recognition decision. The N-best search
helps make the use of various levels of knowledge more man-
ageable and efficient, as an integrated “one-pass™ search in-
corporating all the model knowledge at once would be too
complex to be realized.

G. Understanding and Dialogue

Having decoded the speech signal into a sequence of
words, or a hypothesized sequence of words. a traditional
speech understanding systiem cmploys a senlence parser Lo
cast the word sequence into a structure to allow syntax ver-
ification and inference of meaning. The coupling between
parsing and understanding is. however. not a particularly
tight one because most parsing algorithms focus on the
linguistic structure first, rather than understanding.

At the present time, the goal of automatic understanding
of speech is limited to determining the required action based
on the speech input. Telephone call routing. which connects
a call o a proper destination based on the spoken query. is
one such example. Sample sentences collected from a field
trial at a banking institution include: "I would like to make
a deposit™—io request a connection to the deposit depart-
ment: “T'd hike to borrow money to buy a car”—the loan
department: and “My bill does not look right, can I talk to
someone? "—ihe billing department; and so on. Most of these
queries involve a single action to be taken by the machine.
Another simple speech understanding task that has been at-
tempted 1s DARPA’s Air Travel Information System (ATIS)
[45]. In the system, the user talks to the machine to obtain
flight information such as T would like to leave New York
for San Francisco on November first, pleasc list the available
flights™; “How much docs the flight cost from Dallas to De-
troit?” In this task, the action to be taken involves the need
to cope with the language structure in order to decide which
information is to be provided to the uscr.
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For the call routing type of applications. the problem is es-
sentially that of pattern recognition. The observation is the
query sentence, which contains a sequence of words. The
classes for recognition are the actions (c¢.g., routing the call
to a proper department). There can be several layers of ap-
proachces to this problem, depending on the depth of the lin-
guistic inference that the system 1s designed 10 pursue. The
simplest approach is to assumc that in most query scntences,
the intended action is going to be expressed in specific terms.
spoken in isolation or possibly embedded in a natural utter-
ance. For cxample, most people probably would instruct the
telephone operator/receptionist to connect to a loan depart-
ment by saying “loan department. please.” With the assump-
tion that actions are likely to be expressed in keywords, the
system can just employ keyword-spotting techniques to per-
form the task. This kind of systems is simple to implement.
It, however, requires the inclusion of an operator (human)
backup when none of the prescribed keywords appears in
the utterance or when the system fails to detect the key-
words. Another more complex approach that has been at-
Llempted takes into account all the words in the utterance. but
without paying particular attention to the sequential order of
the words. The method of information network [46] or latent
semantic analysis [47] has been proposed with reasonable
success. These methods use a correlation matrix or network
between the actions and the occurrence of words to facilitate
the decision process. Compared to keyword-spotting. these
methods do not separate a priori words that are keywords
and those that are not. They implicitly associate a (continu-
ously valued) significance level between the appearance of a
word and the intended action. With the added level of com-
plexity, it copes better with the natural utterance input when
the number of actions 1s more than what a system’s menu
prompt can practically cover or a normal uscr can remember.
The most complex systems for this kind of application may
involve use of a parser and attempt to address the semantic
aspect of the query. However, it is often more straightforward
to resort to a simple mixed-initiative dialogue for query clar-
ification und inlcrence than to attempt to parse the utterance
for a thorough understanding.

For voice-enabled applications in information services
such as the ATIS task, the system needs to go beyond a
simple keyword-spotting scheme. This is due to the com-
plexity of the information to be presented. In many cascs, all
the query information needed for a proper decision on what
flight information to provide is not given in a single utter-
ance. A proper response to a query like “Is there anything
cheaper?” requires the knowledge of the history and the
reference point in the transaction. 1t is. therefore, necessary
1o keep track of the state of dialogue. For applications like
ATIS that have a rather constrained set of notions (e.g..
departure city, destination, time of departure, time of arrival.
date, fare, and so on), the dialogue state can be convenicntly
represented by a template consisting ol the required query
field. The interaction between the user and the machine
is to first get the emplate filled with proper information
before the end resull is presented. The sysiem attempts 10
extract query information from the sentence. A city name

Word Sequence
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— Speech Understanding Result
Recognition  fd- oo System p——t
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Fig. 13. Block diagram of an understanding system based on
speech to word conversion.

following preposition “to” can be treated as the destination,
for example. Any blank in the template or ambiguity in the
input would induce a question from the system for further
interaction. Clarification and follow-up questions can be
intiated based on the information in the template as well as
a temporary cache that records intermediate answers.

Another area of research is also noteworthy. With today's
spoken language technology. many applications are being de-
veloped, mostly in a trial torm to collect the field data for per-
formance improvement and to refine the flow of human-ma-
chine interactions in order for the application to deliver a
user-friendly expericnee. The application development ef-
fort. nevertheless, can be at times extremely costly, as it often
requires manual adjustments in the system design. Software
tools that help abate the costly dialogue application develop-
ment are probably as important as the system technology it-
self. given the current state-of-the-art of the spoken language
technology.

H. A Detection-Based Paradigm for Speech Understanding

In our discussion of speech understanding and dialoguc
heyond a simple keyword-spotting scheme. the operating as-
sumption is that there 1s an automatic specch recognizer that
is doing 1ts best job in converting the speech signal into a sc-
quence of word, ready to be “understood.” Fig. 13 depicts
such an architecture. This is an obviously idealized situa-
tion, without taking into account the amount of recognition
errors in the decoded word sequence. How would the recog-
nition crror aflect the semantic latency machine or the in-
formation theoretic network? And even more interestingly,
is there any possibility in giving feedback from the “under-
standing module” to the speech recognition module such that
decoding hypotheses can be properly adjusted and, hope-
fully, “converge” o the “most correct” word sequence as well
as the “most correct” understanding of the utterance? Béfore
a fully integrated decoding and understanding system (with
understanding feedback) can be established practically. an al-
ternutive paradigm is 1o usc a detection-based approach.

Fig. 14 depicts the fundamental architecture of a detec-
tlion-based system, which can be applied to phoneme/word
recognition as well as linguistic event detection. Each de-
tector amms at detecting the presence of a prescribed event.
It can be a phoneme, a word, a phrase. or a linguistic notion
such as an expression of date. The detector uses a model for
the event (i.e., Ay for the 11 hypothesis) and an antimodel
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Fig. 14.  Architecture of a detection-based speech understanding
svstem.

that provides contrast to the event (i.e.. A; for the Hy hy-
pothesis). It follows the Neymann—Pearson lemma in that the
likelihood ratio is used as the test statistic against a threshold.
The prescribed event is present or detected iff
P(X|Ao)

v 2O (33)
P(X]A1)

Several issues need Lo be addressed in this new formula-
tion. First. training of the models and antimodels can follow
the usual maximum-likelihood methods, using the properly
segmented tokens for Ay and the rest of the observations
(sometimes called the garbage) for Ap. It can also follow the
idea of discriminative training, using the verification error as
the optimization criterion. The type 1 verification crror (often
called a “miss.” or failure o deteet the presence of a legiti-
mate cvent) for a known event X is. with the above verifica-
tion strategy

¢(d) = #{—log P(X|Ao) + log P(X

A+ log 0’} (34)

where £ is the sigmoid function as defined previously. The
type [l error (also called “false alarm,” crroncous detection of
aspurious event as a legitimate one) can be similarly defincd
by reversing the signs in the expression of (34). since this is
cquivalent to a two-class problem. Model paramelers can be
optimized using as the criterion a combination of the type
I and the type II error according to a prescribed operaling
strategy (i.e., the relative significance of type I and type 11
errors).

The sceond issue in this approach is the choice of detec-
tion units. Mathematically, the longer the test obscrvation is,
the more reliable the detection result will be. The tradcoff
depends on the task and the range of variability in various
levels of expressions. A rcasonable choice of units to be in-
cluded in the detector set is the words in the vocabulary, key
phrases in the task, or important language expressions such
as the date and the time, etc. It can also be exiended Lo higher
level notions such as a topic. an action, and so on, provided
it has an opcrating expression.

The third issue in this approach is the inclusion of event
context, which can help raise the performance of the system
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in the integrated search afier the detectors propose individual
decisions. Integration of language models and high-level
constraints in the search beyond the detection units is not
straightforward and is an active area of research.

Several simple implementations of this new paradigm
have shown promises in dealing with natural ulierances
containing many out-of-vocabulary words (including extra-
neous sounds such as uh’s and um'’s. partial words. repairs)
or out-of-grammar sentences [48]. Topic or theme detection
using this paradigm is yet to be realized.

IV. RESEARCH ISSUES IN AUTOMATIC SPEECH RECOGNITION
AND UNDERSTANDING

The progress toward automatic speech recognition and un-
derstanding achieved in the past two decades is quite re-
markable. There are currently many commcrcialization ef-
forts that try to capitalize on the engineering advances as out-
lincd above. There is, however, just as much desire to move
forward with further rescarch so that a machine that can truly
converse with a human becomes possible. We have discussed
In previous sections ongoing research issues associated with
each individual technological component. We further discuss
here several remaining research issues, mostly immediate
problems that arc ahcad of us. in the hope that a definable
technical direction would become obvious.

A. Robustness

The development of statistical methods, which make the
system both easy to design, in terms of implementation,
and capable of delivering somewhat sufticient performance,
in limited tasks, has attracted enthusiasm in technology
investment. However, one needs to be rather careful in
understanding the permissible operating conditions under
which deployment of the system is viable. These conditions
include the level of background noise. channel distortion
and its variation. speaker dependency. allowable speaking
styles and syntactic deviation. spontancity of the speech, and
so on. At present, a system would fail to deliver satisfactory
performance if it is not used within the intended, often
very narrowly defined. opcerating condition. Compared to
a human listener. most of the spoken language sysicms do
not perform well when actual opcrating conditions deviate
from the intended ones. This gives rise to the concern of the
robustness of a spoken language system.

With the statistical method. which is data driven, one can
in general improve the system performance by providing
training data collected under the exact intended deployment
condition. Although a system trained and opcrated under
noisy conditions will slill not perform as well as a system
traincd and operated in a quiet acoustic ambient, its per-
formance will be substantially better than that of a system
traincd in a quiet but operated in a noisy (mismatched)
condition. The problem is that collecting the “right data™
(i.e.. under a matched condition) is often very costly. This
1s particularly true in the case of voice-enabled services
in the telephone network due to the diversity in network
systems and telephone devices. (For example, Fig. 6 shows
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the range of variation in the frequency response ol tele-
phone handsets.) The same notion applies to robustness
against language modcls. speaking styles. as well as other
conditions. For a voicc-activated dictation machine serving
a specific user for a limited domain of application. training
the system to perform a particular task may not pose a
serious logistic problem. For voicc-activated services over
the communication network for thousands of users, it is
nontrivial to collect data to ensure coverage of the operating
conditions. In other words, one should expect various
degrees of condition “mismatch” between design/iraining
in the laboratory and deployment in the field in almost all
systems. The issue of robustness, thus. is to address the
system’s inherent capability in dealing with the mismaich
conditions.

In the context of statistical pattern recognition, the mis-
match means that the maximum a posteriori decision rule of
(6) is being implemented as, with Y denoting the actually re-
ceived signal

c(y)=_C, il Py (C:]Y) = max PAa(C;]Y)  (35)

1

although the parameter A has been obtained based on X.
In gencral, we assume Y = h(X. #) defined on some un-
known parameter #. The approach to the robustness issue
can, thus. be addressed in several ways. One is to find and
use an invariant feature to represent the speech. An idcal in-
variant [cature is a representation that will not fluctuate with
the signal conditions; the same parameter A trained on X
is expected to remain applicable for Y. This is obviously
difficult to achieve. Another rather prevalent approach is to
embed the function /i in the a posteriori probability, i.e., to
use Py(C;|X) = Pa(Cilh~}(Y. 8)) in the decision rule.
The interference parameter # sometimes can be estimated
from Y.

The most immediate concern in “condition mismatch™ is
noise and distortion. For additive noise. it is customary to
assume, with X and Y being the “clean™ and the “noisy™
(observed) power spectral sequences, respectively

Y=X+N (36)

where N is the sequence of noisc spectra of an unknown
(and possibly varying) level. If the interference is a lincar
distortion, then

Y = h(X)=HX (37)

where H is the frequency response of the linear distortion
model. Note that in the casc ol linear distortion, (37) reduces
to the form of (36) when a cepstral representation is used. The
two types of interference are sometimes lumped together into
a simplilicd function

Y =h(X)=HX+N. (38)

Much of the work toward robust speech recognition in the
past decade focused on estimation of the parameters (H and

N)using Y [49]. Techniques such as spectral mean subtrac-
tion, signal bias removal. and maximum-likelihood linear re-
gression fall in this category.

The robustness issue can also encompass normalization of
the observation to compensate for the variation due to talker
differences. Onc technique that attempts to normalize the
speetral dilference due to vocal tract length variation among
talkers was shown to bring about small but consistent im-
provement in speech recognition accuracy.

Another thrust to enhance the robustness in system perfor-
mance is the area of adaptation. Following the above formu-
lation, adaptation is to tind Pa- (C;|Y) trom P, (C;]X) based
on aset of newly collected/obscrved data {Y '} and some prior
knowledge of the distribution of A. The technique is effec-
tive for converting the speech model (either speaker depen-
denlt or speaker independent) to that of another talker using a
limited but reasonable amount of new data. Speaker normal-
ization and adaptation techniques 1n a nonstatistical context
have been an area of research for decades.

Adaptation techniques can also be useful for adapting the
speech models to a new operating environment [50]. The
paper by Lee and Huo [51] in this special issue attempts to
address various aspects of the adaptation framework.

Designing a speech recognition and understanding syslcm
that works for a broad range of speaking styles and syntactic
variability has not been as well understood. This is one crit-
ical arca [or research.

B. Language Structure and Representation

It is argued that an HMM with a mixture obscrvation'den-
sity in each state can adequately represent the acoustic vari-
ation manifested in the distribution of spectral paramcters.
This is due to the density approximation capability of such a
model. Beyond the variation at the local acoustic level, how-
ever, the probabilistic nature of a language is often less under-
stood. An expression of language i1s conventionally treated as
an event governed by a sct of prescribed rules rather than a
random phenomenon. Setting aside the colloquial and prag-
matic aspects of the language, we judge a (writlen) sentence
to be either grammatical or ungrammatical. but never, say,
67% grammatically correct in an analytical sense.

The lack of a systematic study in probabilistically inter-
preting a language, as well as a large collection of statis-
tical data, results in two technical areas in need of further
research. One pertains to the representation of the linguistic
structurc ready for the application of probubilistic methods
and the other the estimation method for reliable derivation of
the relevant statistics for use in speech recognition and un-
derstanding. The former issue is equivalent to the definition
of an ¢cvent space based upon which a probabilistic model can
be developed. Without such a representation, it is difficult to
analyze the outcome of the statistical model.

Grammar is the rule that governs a language. In terms of
language processing, the complexity is compounded by the
interaction between the structural rules and the lexical cle-
ments of expression such as words and phrases. Traditionally,
linguists cstablish a grammar (the structural rule) based on el-
ementary classes such as noun. verb, adjective, noun phrasc.

JUANG AND FURUIT: AUTOMATIC RECOGNITION AND UNDERSTANDING OF SPOKEN LANGUAGE 1161



and so on, devoid of dircet association of specific lexical ele-
ment. However, the variation in our expression of message or
concept comes from possibly three essential components: the
choice of lexical elements (words and phrases), the grammat-
ical structure (one may argue that it’s less probabilistic), and
the interaction between them. While developing a linguistic
theory that encompasses all these clements is possible, it is
not straightforward to address these elcments of uncertainty
and cast them in a formal probabilistic framework.

A number of grammaltical representations and parsers exist
|43]. The most pervasive is the finite state grammar (sec Sec-
tion HI-El). which provides an integrated mechanism for
addressing both variations in the scntential structure (tradi-
tionally addressed by a parser) and the choice of words. It
is, however, a simplified and crude model of language. An
N-gram language model is a special case (fixed-order) fi-
nite state grammar: it addresscs the probability of observing
a word following a particular sequence of N — 1 words.
A finite state grammar such as an N-gram model has the
advantage of implementational ease. The fundamental issue
with a finite state grammar is the difficulty in having a pre-
cise coverage. Overspecification (which often happens with a
high-order finite state machine) lcads to frequent encounters
of out-of-grammar but legitimate expressions (i.c., undercov-
erage of the overall linguistic expressions). Underspecifica-
tion, on the contrary, will have overcoverage, which, while
it alleviates out-of-grammar problems. reduces the accuracy
and the effectiveness of the estimated probabilistic language
model (e.g., many unlikely or impossible expressions in re-
ality would have nonnegligible probability assignments).

The issue of representation for a scquence of linguistic
cvents also exists at the lexical level. People pronounce
words differently due to many reasons. The realized
phonemic content of a phrase in a spoken utterance can
vary rather vastly. The lexicon a system uses for decoding
a word is usually insufficient. For example, as reported in
a study sponsorcd by DARPA, 37 different pronunciations
of the word “the” were found in a data set of fewer than
5000 word tokens. In the same data set, more than half ol
the word 1okens were not “properly™ pronounced according
to a well-compiled dictionary based on several millions
ol spoken words. The range of pronunciation variation is
enormous. The need for a pronunciation dictionary with a
proper coverage to accommodate the variation is critical for
a high-performance speech recognition system. The same
question of structural representation applies here, although
the implication of rules (grammatical versus lexical) is
diffcrent. Research in this area in the past few years only
produced slight improvements in recognition accuracy. The
fundamental issue of a proper representation is still open.

Another open issue associated with language modeling is
the criterion employed in parameter estimation. Tradition-
ally, one uses the perplexity (31) or the entropy (30) esti-
mated by the language model as a measure of quality for
thc model. Optimization in language modeling aims at min-
imizing the entropy associated with the resultant language
model. While cntropy is a measure that provides a frame-
work for analysis of the information content of a system [42],
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its correlation with the performance of a spcech recogni-
tion system is hardly proportional. In recent studies of large-
vocabulary continuous spontaneous speech recognition (the
Switch Board task of DARPA) employing either an N-gram
or a tree-structured language model. it was found that reduc-
tion in perplexity or entropy does not translate into reduction
in the recognition error rate. There are a number of rcasons.
For one, the entropy. used as an estimation criterion in lan-
guage modeling. does not have a direct coupling with the en-
tropy at the acoustic level. It is possible that a reduction in
the language perplexity (note: as measured by the language
model) may cause increase in acoustic perplexity (note: as
measured by the acoustic model). The issue of structural rep-
resentation as well as the coverage problem further makes
the optimization result difficult to interpret in terms of its
true performance. The problem in structural representation
and statistical estimation is even more serious when it comes
to spoken utterances as opposed to written texts. In spoken
ultcranccs, ill-lormed sentences with disfluencies such as re-
pair. partial, and repetitive words arc more often observed
than otherwise. These ill-formed, as well as many other col-
loquial sentences, obviously deviate from the grammatical
rules and usually lack the regularity to bring about a statis-
tical significance. Language modeling for spoken utterances,
from the structural representation to model adaptation to a
particular talker (people’s speaking habits differ). is one of
the major challenges in this field of rescarch.

Adaptation or acquisition of the language structure to a
particular communication context is also a worthwhile and
active area of research.

C. Darabase and Generalization

As discussed above, data-driven methods have brought
about fruitful results in the past decade. Unlike the tradi-
tional approach. in which knowledge of the speech behavior
is “discovered” and “documented” by human experts, statis-
tical methods provide an automatic procedure to “learn” the
regularitics in the speech data directly. The need of a large
set of good training data is, thus, more critical than ever.

Establishing a good speech database for the machine to
uncover Lthe characteristics of the signal is not trivial. There
are basically two broad issues to be carelully considered: one
being the content and its annotation, and the other the col-
lecting mechanism.

The content of a database must reflect the intended use of
the database. For simple command and control applications.
this is relatively straightforward: the data collected must con-
tain all the command words. For genceral dictation applica-
tions, the data collected for training the acoustic unit models
may not be quile the same as the data for training the lan-
guage model. mainly because the effort may be unmanage-
ablc. In order Lo train a reasonably good general-English lan-
guage model. a text databasc on the order of 100 million
words is needed. When spoken, this would amount to over
10000 hours of speech, which no single talker can accom-
plish. By scparating the text and the acoustic aspects of the
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database, one alleviates the effort problem but needs to ad-
dress the issue of cstimation consistency [52]. For speaker-
independent applications, particularly those deployed over
the telephone network, the data-collection process can be
very involved. as the system designer nceds to consider the
range of regional dialects and accents.

For natural dialogue applications such as the Air Travel
Information System in the DARPA program [45]. a wizard
setup is often used to collect the data. A wizard in this case is
a human mimicking the machine in interacting with the user.
Through the interaction, patural queries in sentential forms
are collected. A committee is called upon to resolve cases
that may be ambiguous in certain aspects. While a wizard
setup can produce a useful set of data. it lacks the diversity.
particularly in situations where the real machine may fail.
A human wizard cannot intentionally simulate a machine in
error, and, thus, the recorded data fail to provide information
of real human—machine interaction.

The recorded data need to be verified, labeled, and anno-
tated hy people whose knowledge will be introduced into the
design of the system through this learning process (i.e.. via
supervised training of the system after the data have been
labeled). Labeling and annotation for isolated word utter-
ances may be straightforward but tedious when the amount
of data is large. For continuous speech recognition and un-
derstanding. nevertheless, this process can easily become un-
manageable. For example, how do we annotate speech re-
pairs and partial words, how do the phonetic transcribers
reach a consensus in acoustic-phonetic labels when there
is ambiguity, and how do we represent a semantic notion?
Errors in labeling and annotation will result in system per-
formance degradation. How to ensure the quality of the an-
notated results is, thus, of major concern. Research in au-
tomaling or creating tools to assist the verification procedure
is by itself an interesting subject.

The data-collection mechanism has to be attended with
carc. For example. a system deployed for digital cellular
phone users needs to take inlo account the speech coder
characteristics. But, an improperly designed antialiasing
filter for analog-to-digital conversion at the front end of the
system should not be considered part of the adverse effect
or source of variability and needs to be corrected before
data collection can begin. The confusion between recorded
diversity in operating conditions and the unwanted interter-
ence or adverse cffects due to misuse of equipment oficn
exists. An unwanted interference will cause detriment in the
training result, but a true coverage of the diverse operating
condition (¢.g., real ambient noise) is crucial in guaranteeing
a satisfactory performance. Thorough understanding and
examination of the signal is very important,

Another area of research that has gained interest is a mod-
eling methodology and the associated data-collection scheme
that can reduce the tusk dependency. To maximize the perfor-
mance, one should always strive for data that truly reflects
the operating condition. It. thus, calls for a database collec-
tion plan that is consistent with the task. This data-collcc-
tion effort would soon become unmanageable if the system
designer has to redo data collection for each and every ap-

plication that is being developed. It is. therefore, desirable
Lo design a task-independent data set and a modeling method
that delivers a reasonable performance upon first use and can
quickly allow in-ficld trials for further revision as soon as
task-dependent data become available. Research results in
this area can offer the benefit of a reduced application de-
velopment cost.

D. Human-Machine Dialogue

Human—-machinge interaction certainly has various levels of
complexity. We have laid out several clementary steps. The
simplest is an isolated word recognizer that “understands™ a
human’s command. A speech recognizer operating on word-
spolling attempts to detect a human’s command or intention
by focusing on the key words or phrases embedded in the
stream of sounds, likely a natural sentence. from the talker.
A more sophisticated system can also ask the user to fill in
a set of prescribed information fields (e.g., “your birthday
please?” or “your credit-card number please?”) in order to
derive the needed action. Solicitation of information can be
cast in a natural inquisitive form such as the example above,
or as an option menu (“The [ollowing services are available.
... Which do you like?”). This type of interaction is, strictly
speaking, a onc-way communication and in the context of
human—machine dialogue is often referred to as a system-
driven dialogue.

A true dialogue goes beyond an interrogation for informa-
tion (cither from the user to the machine or vice versa). A
dialogue involves response based on the previous state of the
conversation. Both the user and the machine should be able
to ask for clarification or cxtension Lo the previous informa-
tion exchange, or to initiate a new domain of interaction. This
more natural form of dialogue is referred to as a mixed ini-
tiative or variable initiative dialogue.

Research issues in this area can be divided into two broad
categories. One involves artificial intelligence because. in
order for a machine to be able to perform natural dialogue. it
must have acquired an ability to communicate (as opposed to
just recognize). Such ability is far beyond speech recognition
and understanding: it must have a store of “knowledge” and
“content,” not just the protocol or handling of the commu-
nication mechanism, 10 support the communication. Knowl-
cdge representation and retrieval, database organization and
search, semantic inference, and decision support are all re-
quired to various degrees. This is obviously a very broad and
long-term challenge.

The other research need is much narrowcer but immediate.
Before it is possible to design a machine that can commu-
nicate, it is often desirable to provide system design tools
to allow human intervention, cither at the application design
stage or during run-time. Tools that allow the human—ma-
chine interaction system designer to develop a task based on
his or her anticipation or envisage of the system behavior in
response to a majorily of users are very useful. For example,
tols that provide efficient design of dialogue states and flow,
and allow the developer to revise and support the opcration
of the system are deemed extremely valuable.
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V. CONCLUSION

Over three decades of rescarch in spoken language pro-
cessing have produced remarkable advances in automatic
speeeh recognition and understanding that helps us take a
big stcp toward natural human—machine communication.
Signal-processing techniques led to a better understanding
of speech characteristics, providing deep insights into
acoustic-phonetic propertics ol a language. The introduction
of a statistical framework not only makes the problem of
automatic recognition of speech tractable but also paves the
road to practical engineering system designs. It was found
that a particular probabilistic measure. the HMM, provides
a speech modeling formalism that 1s powerful and yet easy
1o implement. Coupled with a finite state representation
of a language, hidden Markov modeling has become the
underpinning of most of today’s speech-recognition and
understanding systems under deployment. To accomplish
the ultimate goal of a machine that can communicate with
people, however, a number of research issues are awaiting
further study. Such a communicating machine needs to be
able 1o deliver a satisfactory performance under a broad
range of operating conditions and have an efficient way of
representing, storing. and retrieving “knowledge™ required
in a natural conversation. With the current enthusiasm in
rescarch advances. we are optimistic that the Holy Grail of
natural human—machine communication will soon be within
our lechnological reach.
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