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Recent advances in automatic speech recognition are accom-sification error learning, minimum discrimination information,
plished by designing a plug-in maximum a posteriori decision rule optimal Bayes’ decision rule, prior density, quasi-Bayes’ learning,
such that the forms of the acoustic and language model distribu- recursive Bayesian learning, statistical decision theory.
tions are specified and the parameters of the assumed distributions
are estimated from a collection of speech and language training
corpora. Maximume-likelihood point estimation is by far the most |. INTRODUCTION
prevailing training method. However, due to the problems of

unknown speech distributions, sparse training data, high spectral . .
and temporal variabilities in speech, and possible mismatch be- Modern automatic speech recognition (ASR) technology

tween training and testing conditions, a dynamic training strategy (€.9., [12], [13], [78], [7], [134], [104], [81], and [36]) is

is needed. To cope with the changing speakers and speakingbased on an information theoretical view of the generation,
conditions in real operational conditions for high-performance acquisition, transmission, and perception of speech (e.g.,
speech recognition, such paradigms incorporate a small amount of [7]). Fig. 1 (adopted from B.-H. Juang’s keynote speech

speaker and environment specific adaptation data into the training . ,
process. Bayesian adaptive learning is an optimal way to combine " NNSP'96 [88]) shows a conceptual model for speech

prior knowledge in an existing collection of general models with generation and signal capturing. Starting with a mesddge
a new set of condition-specific adaptation data. In this paper, from a message source, a sequence of wérds formed

the mathematical framework for Bayesian adaptation of acoustic through alinguistic channelDifferent word sequences will
and language model parameters is first described. Maximum a sometimes convey the same message. It is then followed by

posteriori point estimation is then developed for hidden Markov ticulat h | which ts the di t d
models and a number of useful parametric densities commonly an articulatory channgiwhich converts the discrete wor

used in automatic speech recognition and natural language pro- Seguence into a continuous speech sighabpeaker effect,
cessing. Other methods can be combined with Bayesian learningwhich accounts for a major portion of the speech variabili-
to enhance adaptation efficiency and effectiveness and, therefore ties including speech production difference, accent, dialect,
improve speech recognition performance. The same methodology, peaking rate, etc., is added at this point. Additional speech

and the set of Bayesian learning techniques can also be extended: . S .
to other real-world pattern recognition problems. distortion is introduced when the speech signal passes

) ) ) o through theacoustic channelwhich includes the speaking
Keywords—Acoustic modeling, adaptive decision rule, auto- o ironment, interfering noise, and transducers used to
matic speech recognition, Bayes’ predictive classification rule, . . . o
Bayes' risk consistency, Bayesian learning, conjugate density, CaPture the speech signal. This acoustic realizatigsithen
expectation maximization, hidden Markov model, incomplete data Passed through sonteansmission channdiefore it reaches
problem, language modeling, maximum a posterior, maximum a speech recognition system as an observed sinal
likelihood, maximum-likelihood linear regression, maximum  pqr sheach understanding, we are interested in recovering
mutual information, minimax classification rule, minimum clas- . . .
the underlying messag® from a given signalX. On the
other hand, for speech recognition, which is the focus of
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Fig. 1. Communication theoretic view of ASR.

sequencéV as aclass.Let us assume there are in tofdl Word Noisy  |Speech
unique classes. Therefore, speech recognition amounts to Sequenct|  Channel | SIERAI
finding some optimal decision rules for classification of the

observationX into one of M fixed classes. Depending on Speech | Channel Word
the evaluation criterion, there exist many decision rules. Not Signal "|  Decoding  [Sequente

all of them are of equal value in practice. Because of the
different sources of variability, as shown in Fig. 1, the speech Fig- 2. Source-channel model of ASR.
signalX is usually featured byncertainty, variability, lack

of determinismandstochasticity.This makes the statistical
pattern-matching paradigm a natural choice for formulating
and solving the ASR problem. If the joint distribution
p(W, X) is specified exactly, thBayes’ decision rulée.g.,
[42], [142], and [95]) is implemented as follows:

modeling, which includes acoustic and language modeling
from some training data, becomes a critical issue. With
these simplifications, the most popular way to solve the
ASR problem is to use the well-knowglug-in maximuma
posteriori(MAP) decision rule(e.g., [42], [142], and [95]):

W = arglr%/?xp(W, X) (1) W = arg max P(W|X)

= argmax pi (X[W) - Fp(W) )

with W being the recognized sentence. This decision rule is
known to be optimal for minimizing the decision risks. Due \yhereA andf" are the estimated parameters obtained during

to the complex channel interactions in Fig. 1,it i_s _unlil_<ely training andW is the recognized sentence during testing.
that we have complete knowledge to specify the joint distri- Thjs decision rule, derived from the optimal Bayes’ decision

bution of X andW'.

For real-world practical ASR problems, it is also difficult
to characterize the individual channels in Fig. 1. A simplified
source-channahodel, as shown in Fig. 2 is usually adopted
as follows.

1) The joint distributionp(W, X) is decomposed into
two componentsp(X|W) and P(WW), known as an
acoustic model and a language model, respectively.
The former evaluates the likelihood of the observation
X assuming the word sequen®é is given, and the
latter computes the language probabilityi&t

2) The forms of p(X|W) and P(W) are assumed
parametric probability density functions (pdfs), i.e.,
pa(X|W) and P-(W), respectively.

3) The parametera andI" of the above distributions are
to be estimated from sontining databy using some
particularpoint estimatiortechniques.

Therefore, all the contributions of the intermediate channels,

rule, is also widely used in many other pattern-recognition
applications.

To implement the plug-in MAP decision rule, there are
three major research areassgprchprocedures that find the
optimal solutiontV from the large class spaadynamic pro-
gramming(DP) anddelayed decisiompproaches are com-
monly employed; 2)speech feature representatiowhich
extracts relevant speech parameters that are easy to model,
less susceptible to measurement noise and distortion in ad-
verse conditions, and give high discrimination power; and 3)
acousticandlanguage modelinghat choose the set of units
to model and the algorithms to estimate the paramétersd
I'. In this paper, we concentrate our discussion on the third
issue of density parameter estimation.

Currently, the most widely adopted and the most suc-
cessful modeling approach to ASR is to use a set of hidden
Markov models (HMMs) as the acoustic models of subword
or whole-word units, and to use the statistidslgram

such as articulatory, acoustic, and transmission channels, arenodel or its variants as language models for words and/or
lumped together as a noisy channel. Speech recognition isword classes. The readers are referred to good tutorials in

now solved as ahannel decodingroblem in which channel
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and their applications. By using the above-mentioned come back to discuss this roadmap in more detail later.
plug-in MAP decision rule, it has been repetitively shown Roughly speaking, there are two major classes of adaptation
by experiments in the past three decades that given a largdechniques, namely, 1direct classifier parameter adapta-
amount ofrepresentativéraining speech and text data, good tion, which adapts the HMM parameters through Bayesian
statistical models of speech and language can be constructetearning, such as MAP estimation (e.g., [102], [55], [56],
to achieve a high performance for a wide range of ASR and [69]); and 2)indirect classifier parameter adaptation
tasks. This has given the speech research community a certhrough estimation of soméransformationor structure
tain level of confidence in believing that tliiscrete HMM parameters (e.g., [49]), using ML or MAP estimation. These
(DHMM, e.g., [107]), thetied mixtureor semicontinuous  two types of adaptation techniques for HMMs are illustrated
HMM (TMHMM or SCHMM, e.g., [16] and [67]), and the in Fig. 4.
mixture Gaussiagontinuous density HMNICDHMM, e.g., Bayesian adaptive learning is an optimal way to combine
[85] and [132]), together withV-gram models (e.g., [60]  prior knowledge in an existing collection of general models
and [93]), provide a good approximate parametric forms with a new set of condition-specific adaptation data. How-
for pA(X|W) and Pr(W), respectively. Although these ever, when too many parameters need to be adapted at the
models are apparently imperfect, they are mathematically same time while too little adaptation data is available, one
well defined and capable of simultaneously modeling both often relies on arauxiliary structure with less parameters
the spectral and temporal variation in speech. They are alsoto be adapted. The most often used structure is through an
well thought of because they both fit into the framework affinetransformation such as findifimear regressiorirans-
of finite-staterepresentations [111] dfnowledge sources formation of the mean vectors of the original HMMs. Both
so that the speech-recognition problem can be solved as anaximum-likelihood linear regressidqiMLLR [109], [39])
network searctproblem over a complex network represen- andmaximum a posteriori linear regressigMAPLR [154])
tation of speech and language. In addition, new models arehave been adopted with good succdsént Bayesian adap-
constantly being explored (e.g., [38], [61], and [129]). Based tation of both HMM and transformation parameters has also
on the belief that these acoustic and language models arebeen developed [155]. Itis believed that further advances will
good approximates, thmaximume-likelihoodML) estimate be made in the area of adaptation and compensation in order
for the HMM parameters [14], [112], [85] and/-gram to improve thaobustnesaindperformancef speech-recog-
model parameters (e.g., [79]) has been the most popularnition system.
parameter-estimation method. In this paper, we attempt to explain, fromstatistical
However, due to many problems, caused by incorrect decision point of view, why the pattern-recognition ap-
model specification and thaurse of dimensioim estimating proach to ASR works so well in certain conditions, and
a large number of parameters with only a limited amount more important, why it does not work as well in many other
of training data, there is often an observed performance situations. The rest of this paper is organized as follows. In
degradation when using ML estimators in cross-condition Section Il, the rationale for using the decision theoretic ap-
testing. One major reason lies in the possible mismatch proach to designing plug-in MAP decision rules for the ASR
between the underlying acoustic characteristics associatedproblem is presented. In Section I, general issues regarding
with the training and testing conditions. This mismatch may estimation of acoustic and language model parameters are
arise from inter- and intraspeaker variabilities, transducer, addressed. Adaptive point estimation will be justified. In
channel, and other environmental variabilities, and many Section IV, MAP estimation, which is a prevailing Bayesian
other phonetic and linguistic effects due to task mismatch. learning paradigm in speech recognition, is formulated
To bridge this performance gap, one possible solution is for some popular acoustic and language models. The key
to design a speech-recognition system that is robust toissues of prior density specification and hyperparameter
the above types of acoustic mismatch, and this has been astimation will also be discussed. Besides batch adaptation,
long-standing objective of many researchers over the past 20on-line incremental adaptation is of practical importance
years. Another way to reduce the possible acoustic mismatchand requires a newecursive Bayesian learningnd prior
is to adopt the so-calleddaptive learningapproach. The  evolution formulation, which is developed in Section V. In
scenario is like this: starting from a pretrained (espgaker Section VI, some ML and Bayesian learning algorithms
and/or task independenf66], [105]) speech-recognition for structure parameters are presented. Through a small set
system, for a new user (or a group of users) to use the systenof structure parameters, these techniques are designed to
for a specific task, a small amount of adaptation data is enhance learning efficiency and effectiveness, especially for
collected from the user. These data are used to construct artases with only sparse adaptation data but a large number
adaptive system for the speaker in the particular environmentof classifier parameters needs to be adapted. In Section VI,
for that specific application. By doing so, the mismatch we briefly discuss the dual issue of unsupervised adaptation
between training and testing can generally be reduced andand decision rule compensation. Many algorithms originally
the speech-recognition performance is greatly enhanced. developed for adaptation can be extended to compensation
The topic of HMM parameter estimation and adaptation and vice versa. It is important to know how adaptation
is one of the most fruitful areas in the field of automatic techniques can be used to improve robustness and compen-
speech recognition in recent years. Key technical advancessate for performance degradation in real-world, operational
are summarized in the roadmap shown in Fig. 3. We will ASR systems. In Section VIIl, we present some recent
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Fig. 3. Advances in estimation and adaptation of HMMs.

advances in extending plug-in MAP decision rules to new from a speech utterance. Let us assume Xoékelongs to a
classification rules, such asinimax classificatiofil22] and suitable signal spac&,. The pattern-recognition problem
Bayesian predictive classificatiqi4], [83]. Adaptation and is, in principle, equivalent to finding decision ruled(-) in
compensation techniques can also be incorporated into thisa set of possible decision rul&y such thatl: €2, — Qy,
new class of recognition algorithms. Finally, we summarize or simply
our findings in Section IX.
[l. STATISTICAL DECISION THEORY W =d(X), forX €2y, W€ Qw, andd(-) €D (3)
In its simplest form, let us assume that pattern recog- with W being one of theé\/ possible class labels . In
nition problem of interest is to classify a given observed this case, thelecision spacdd(X): X € Q,} of the deci-
signal X into one of M classes,W & Qy, where sionruled(-) is the same as theyy . Adecision rulei(-) € D
Qw = {W1, Ws, ..., Wy} denotes the set d¥/ classes. implies a mapping from the sample space to the class label
In the case of speech recognition, a cl&8se y may space. This mapping is known as@enrandomized decision
be of any linguistic unit, e.g., a phoneme, syllable, word, rule [48]. Define{,.(W;) = {X: X € Q,, d(X) = W;} to
phrase, semantic concept or attribute, sentence, etc. Thébe a subset of2, corresponding to the region &€ being
signal X is usually a feature vector sequence extracted mapped as clas#’; with the decision rulei(-). Then the
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Fig. 4. Direct and indirect adaptation of HMMs.

construction of a decision rule amounts to finding a parti- W. One would like the loss function to have the following
tion Q. (d(+)) = {Q, (W), Q. (Ws), ..., Q,(Wy)} of the property:
observation spac®, under the following constraints:

0 < W, W) < (W, d(X) # W). (5)
M

U QW) =Q,, Q.(V) ﬂ Q,(W;) =0, If we assume thérue distributionp(W, X) is known, then
i=1 the conditional and marginal distributions, namelyX | W),

fori#j;0,5=1,2,..., M. (4) p(W|X), P(W), andp(X), can be calculated. Now we can
define thetotal risk »(d(-)) for a decision ruled(-) as an

There may exist an infinite set of decision rules for the same expected value of the loss function, i.e.,
given classification problem. Not all of them are of equal
value in practice though. To determine whether a decision
rule is “good,” one has to agree on a reasonable set of cri-
teria for assessing the “goodness.” Let us show one possibIeT(d(.)) =Ew x[((W, d(X))]
formulation by using the classical statistical decision theory '
pioneered by Wald [171] and developed by many others (e.qg.,
[48] and [42)).

/ oW, dX)p(W, X)X (6)
wen, Jxeq,

A. Optimal Bayes’ Decision Rule for Known Distributions
. . . _ / pX)| D oW, dX)P(W|X)| dX
Let us viewW and an observatioX as a jointly dis- XeQ, Wen

tributed random paifW, X), whose joint pdf is denoted @)
by p(W, X). In the so-calledsampling paradigm we
can decomposg(W, X) into a product of the class prior
probability P(W) and the class conditional pgfX|17), Z P(W)/ LW, d(X)p(X|W) dX

i.e.,, p(W, X) = p(X|W)P(WW). One way of formalizing a WeQuy Xef,

goodness criterion is to use the knowledge of the possible (8)
consequences of the decisions. Often this knowledge can

be quantified by assigninglassthat would be incurred for ~ whereEyy x[-] denotes mathematical expectation with re-
each possible decision. L&V, d(X)) be theloss function spect to the distribution dfi’, X). The above total risk can
associated with making a decisidfiX) if the true class is  be used as a measure of the quality of decision rules. Usually
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the less the total risk, the better is the decision rule. In this Under these assumptions, the optimality criterion is the min-
framework, the issue of constructing an optimal decision rule imization of the risk functionat(d(-)), and the optimal de-

becomes the following risk minimization problem: cision rule is the Bayes’ decision rule.
min_ 7(d(-)) B. Plug-In Decision Rule for Unknown Distributions
d(-)eD

In practice, we know neither thieue parametric form of

— min / p(X)[ Z W, d(X)P(W|X)| dX. the joint distributionp(W, X) nor its true parameters. We
d(-)€D JxXcn - shall say that we havprior uncertainty[95] in this case.

(9) If we have some labelethdependentraining sample set,

X ={(W* X*);i=1,2,...,n}, wecanreduce the prior
This optimization can be solved by minimizing the expres- uncertainty by constructing a decision rule framThe deci-
sion in the square brackets in the above equation. It is clearsionruled(-) = d(X|X’) based on the training sétand used

that the solution leads to the following optimal decision rule: to classify a random observatidhthat isindependenef v,
is called anadaptive decision rul¢95]. There are several

do(X) = arg min Z LW, d(X))P(W|X) (10) principles that can be used for the construction of such rules.

S EQuyy

dX)ew L 1eg The most popular family of adaptive decision rules might be
o o the so-calleglug-in decision rules
which is also known as thBayes’ decision ruleThe re- For this approach, lef P(W), 5(X|[W)} be any statis-
sulting minimum total risk tical estimators of the true distributiodg>(W), p(X|W)}
) based on the training séf. The plug-in decision rulg58]
r(do(-) is the adaptive decision ruld, = d,(X), derived from the
_ Bayes’ decision rule in (10) by substitution of the estima-
o /xem p(X)[ Z LW, do(X)) P(WX)| dX (11) tors { P(W), p(X|W)} for the unknown true distributions
et {POW), p(X|W)}
is called theBayes’ risk.This risk value is the best that can N ) .
be achieved if the distributiop( W, X) is known. do(X) =arg, min > W, dX)PVIX) (16)
In speech recognition, a reasonable option is to assume westw
that every misclassification &K is equally serious, thereby  where
resulting in the so-calle@-1 loss function .
- X
| ~ Py = ZEWDPID g
oW, d(X)) = 0, if W = d(X)(correct decision) Zﬁ X|W)P(W)
’ 1, if W # d(X)(wrong decision)
(12) : .
) ) - . By varying the loss function and by using different kinds of
]:)obrtx € fw, d(X) € Q. Substituting (12) into (8), we estimatord P(W), p(X|W)}, afairly rich family of plug-in
decision rules can be obtained. For example, adopting the
0-1 loss function will lead to the following plug-in decision
T P(W) / p(X|W)dX (13) 5 p
o1 wgw X, (W) W) rule, dyiap(X) = W, such that
—1_ / P(W)p(X|W) dX. (14) W = arg max PW|X) = arg Ir‘l/‘E}Xp(X|W)'P(W) (18)
WeQwy XeQ.(W)

which is also known as thglug-in MAP decision rule.
Therefore, in the case of the 0—1 loss function, the total risk It can be shown [58] that the plug-in decision rulg-)
is the unconditional error probability, which is apparently a in (16) minimizes theplug-in risk #(d(-)), which is an es-
good measure of the quality of decision rules for the ASR timate of the total risk using theensity plug-in estimator
task. The optimal decision ruléy, (-) under theminimum  {P(W), 3(X[W)}, ie.,
classification error (MCE)riterion with the 0-1 loss func- 5
tion is then solved agyap(X) = W such that do() = arg P%lenﬂ () (19)

W= arg max P(W|X) = arg H‘l/‘g}xp(X|W).P(W) (15) where
HAC) = S0 POW) [ W AW ax

which is also known as thelAP decision rule. Weo XeQ,
/ w -

In summary, in constructing these optimal decision rules,

it was assumed that complete prior information about the (20)
classes is known, i.e.: The minimum plug-in risk is then(d,(-)).
1) the observation spadée, is given; . )
2) the loss functiod(W, d(X)) is given; C. Bayes’ Risk Consistency )
3) the true pdfp(W, X) or p(X|W) and P(W) are As noted in [58], the plug-in risk(d,(-)) of the plug-in
known. Bayes’ decision rule in (16), is often less than its total risk
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~

r(d,(-)) and is even optimistically biased as an estimator of ~ As for the distortions of the models for the training sam-

the Bayes’ riskr(d,(-)). ples, they can be caused by the wrong assumptions and/or
Property: If the estimatord P(W), p(X|W)} are point- inflexible parametric forms of the model, the mislabeling of
wise unbiased, then training samples, outliers in training samples, etc. To cope
R R with these problems, better models and techniques need to
E[?(do(-))] < 7(do(-)) < 7(do(-))- (21)  be developed for robust learning from data.

] o The biggest problem for ASR might be caused by the third
However, the usefulness of the plug-in Bayes' decision rule yype of distortion, the distortions of the models for the obser-
in (16) can be justified by the following theorem Bayes’  yations to be classified. In most real applications, there al-
risk consistencys8]. _ _ ways exists some form of mismatch, which causes a distor-
_Theorem: (Bayes’ Risk Consistencyj:the estimators o petween the trained models and the test data. These mis-
LP(W), p(X|W)} are strongly consistent, i.e., converge to  matches, some of them identified in Fig. 1, may arise from
the true distributions almost surely as the training sample inter. and intraspeaker variabilities; transducer, channel, and
sizen increasesi{ — oo) other environmental variabilities; and many other phonetic
. a5 and linguistic effects due to the problem of task mismatch.
PW) = P(W) How to achieve the performance robustness in this context
pX|W) =5 p(X|W), for W e Qw andX € 2, (22) has become one of the most active research areas in ASR in

o . . . ) the past decade.
then the plug-in risk for the plug-in decision rule in (16) is a

strongly consistent estimator of the Bayes' risk, i.e., I1l. PARAMETRIC MODELS AND PARAMETER ESTIMATION

Fdo(+)) 25 7(dy(-)). (23) As we mentioned above, because of the constraints of the
limited computational resources and training data in prac-
tical ASR applications, we always havedssume&ome para-

D. Violation of Modeling Assumptions metric form forp(W, X), e.g., viap, (X|W) and P(W).

The principles of the construction of the above-mentioned The parameter sgt\, I') has to beestimatedrom a given
optimal decision rule and plug-in decision rules are based training setX’ by using certain parameter estimation tech-
on some assumptions that may be violated in practice. Fromnigues. The above Bayes’ risk consistency theorem tells us
the computational modeling point of view, there are three that it is often possible to construct plug-in procedures that

main distortion types that produce violations of assumptions are Bayes’ risk consisterih the sense that the sequence of
summarized as follows [95]: plug-in risks converges to the Bayes’ risk as the training

sets increase in size. However, there is an important assump-
2) distortions of models for training samples: tion behind this argument, that is, the assumed distributions

3) distortions of models for observations to be classified. 2A(X[W)andFr- (1) obey the parametric structure in ques-
The distortions caused by small-sample effects are tion. In or_der to achleye a good approximation to reality,
typical for all statistical plug-in procedures. They arise SOMe flexible parametric models should be adopted.
from the noncoincidence of the statistical estimates _ o .
{P(W), p(X|W)} of probability characteristics and their A. Point Estimation of Decision Rule Parameters
true value P(W), p(X|W)}. We want to emphasize again As we pointed out in the introduction section, so far, the
that the plug-in decision rules described in the previous most successful modeling approach to ASR is to use a set
section are asymptotically optimal only when: of HMMs as the acoustic models of subword or whole-word
1) the training sampleg’ = {(W?, X"); i =1, ..., n} units and to use the statisticAl-gram model or its variants
are collected by a series afdependenexperiments as language models for words and/or word classes. Based on
such that{W#, X?) ~ p(W, X), or more intuitively the belief that these acoustic and language models are good

1) distortions caused by small-sample effects;

speaking,X’ should beepresentativenough with re- approximates, the widespread use of the plug-in MAP deci-
spect to the true distribution of the testing data sion rule with the ML estimators can be justified by using the
2) training sample size — oo, i.e., there is sufficient ~ above Bayes' risk consistency theorem due to the following
amount of training data available. facts:
In practice, the training sample s&talways has a finite size 1) the ML estimator of A, I') is strongly consistent, un-
(i.e.,n < o0), and in many cases, is possibly also not rep- biased, and efficient;
resentative enough. The random deviations of statistical es- 2) this can then be translated into strong distribution con-
timators,(P(W) — P(W), p(X|W) — p(X|W)), can then sistency if the chosen parametric formspaf{ X|W)
produce significant increases of the decision risk. So, the de- and Pr(W) are indeed correct.
sign and/or collection of the training samples become very According to our knowledge, it was Nadas [125] who first
critical. The key is to make the samples . follow the provided such an insight for the speech recognition commu-

intended distributiop(W, X) as closely as possible. Oth- nity.
erwise, some more intelligent ways of using the available The topic of ML estimation of HMM parameters have
training data must be developed. been developed extensively in the last two decades (e.g., [14],
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[112], and [85]). The readers are referred to some excel- Theoretically speaking, it is not clear yet which strategy is
lent tutorials (e.g., [133]) and textbooks (e.g., [47], [134], better for a moderately sized training set.

and [81]) for the formulation. AtHMM tool kit (HTK) with There are already many studies on the second issue of
source codes and software routines is also available (e.g.discriminative training, as we have described above. In
[174] and [179]). Of course, one can always argue that al- this paper, we focus our discussion on the plug-in decision
though the ML estimatord and [’ may be excellent esti-  strategy with a chosen form of parametric densities and the
mators ofA and[’, there is no guarantee th&}.(1W) and corresponding estimation techniques for designing plug-in
pi(X|W) are good guesses far(1W) and p(X|W). Nor decision rules.

c?o(-) is necessarily a good approximationdg(-). The per- ) o
formance of the plug-in rules and other procedures should B- Challenges in Speech and Language Model Estimation
really be tied to the classification accuracy instead of the be- In the past, most ASR systems rely orstatic design
havior of ([\, f) as apoint estimatorfor (A, I'). This has strategy in that all the knowledge sources needed in a system,
motivated many studies in the past two decades aiming at aincluding acoustic models of speech units, lexical models of
good alternative to ML training. One methodwénimum dis- words and phrases, and language models of word sequences,
crimination information(MDI) training [43], which adjusts are acquired at the design phase and remain the same during
the HMM parameters to minimize thiscrimination infor- the testing phase. Many good studies on acoustic modeling
mation,or directed divergencéhetween the assumed HMM  are available in literature (e.g., [107], [101], [66], [10], [77],
distribution and the best possible distribution derived from [178], and [174]). Equally as many papers are concerned with
the training data under certain constraints embedded in thelanguage modeling (e.g., [93], [9], [79], [100], [131], and
training data. Unfortunately, no significant experimental re- [18]). The performance of the ASR systems usually depends
sults have been reported to show how MDI works in a speech-on how close the training data cover the statistical variation of
recognition task. Another class of approaches is the so-calledthe signal and language from the training to the testing con-

discriminative trainingnethod. Some of them, suchmmsx- ditions and on how well the feature representation and the
imum mutual informatio(MMI) training [8], conditional trained models capture the relevant information for discrim-
maximum-likelihood estimaf{€MLE) [127], andH-criteria inating among different speech and linguistic units. Since it

[62], aim indirectly at reducing the error rate of the speech is not practical to collect a large set of speech and text exam-
recognizer on the training data. Other methods, sudoas ples, spoken and written by a large population over all pos-
rective training[11], minimum empirical error ratéraining sible combinations of signal conditions, it is likely that the

[44], [115], and (MCE) training [4], [91], [87], [28], [89], conditions in testing are different from those in training. Such

[92], try to reduce the recognition error rate on training data a mismatch is a major source of error for conventional pat-
in a more direct way. Among these approaches, MCE formu- tern-matching systems. A state-of-the-art system may per-
lation has been the most successful, which we will examine form poorly when the test data are collected under a totally

briefly in the following. different signal condition.

For the MCE approach, we view a decision rdle) as a Regarding to the possible mismatches, both linguistic and
discriminant function The discriminant/(X) classifies ob- ~ acoustic mismatches might occur.lidguistic mismatchis
servationX into one of theM classes. When MCE training mainly caused by incomplete task specifications, inadequate
is formulated as minimizing an approximampirical clas- knowledge representations, and insufficient training data,
sification error[59], [87] orexpected classification errd4], etc. On the other hand, aacoustic mismatctbetween

it can be solved by usingeneralized probabilistic descend ~ training and testing conditions arises from various sources,
(GPD) and segmental GPD algorithms (e.g., [92], [27], and including difference in desired speaking formats, task spec-
[113]). It have been extensively studied and successfully ap-ifications, and signal realizations. For example, task model
plied to speaker recognition (e.g., [113]), speech recognition and vocabulary usage heavily influence the efficacy of the
(e.g., [28], [29], [138], [105], and [136])tterance verifica- training process. For a given task, speech models trained
tion (e.g., [161] and [137], optical character recognition (e.g., Pased on task-dependent data usually outperform models
[177]), and many other applications referred to in [92]. trained with task-independent data. Similarly, speech models
So far we have considered the following two design princi- traineq based on iso'lated'word data usually have problems
ples, namely, 1) plug-in MAP decision rule with ML density capturing the coarticulation effect betwee_n words and,
estimators and 2) discriminant classifier with minimum em- thereforg, often performl not as well for con.tlnupus speech
pirical/expected classification error training. The following recognition. Another major source of acoustic mismatch de-

conclusions may be made concerning these two strategies: rives from changing signal cond|t|c_)ns. For.example, changes
in transducers, channels, speaking environments, speaker

1) the asymptotic behavior of the first approach will de- population, speaking rates, speaking styles, echoes, and
pend on the appropriateness (in the sense of estimatomreverberations, and the combination of them all contribute
consistency) of the parametric forms of the assumed to performance degradation. In addition to the previously
distributions; discussed linguistic and acoustic mismatchmasdel incor-

2) while the asymptotic behavior of the second approach rectnessand estimation error also cause robustness problems
will depend on the choice of the discriminant function. for a recognizer. Since the distortion mechanism and the
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exact signal models are often unknown or only partially as shown in the right branch of the bottom left block of
known, it makes such robustness problems more difficult to the roadmap. Finally, a formal development of joint MAP

manage. estimation of transformation and HMM parametersisrecently
_ _ established [155]. It serves as a unified framework to combine
C. Adaptive Speech and Language Modeling direct and indirect classifier parameter estimation/adaptation

An alternative to relying the performance solely on an in designing adaptive decision rules for automatic speech
appropriate training set is to usedgnamicdesign strategy. ~ recognition. Itis noted that batch and on-line joint estimation
Starting from an initial set of models, new information ©f the above two sets of parameters shown in the bottom of
is constantly collected during the use of the system and Fig. 3 provides a natural extension for adapting classifier
incorporated into the system usiraglaptive learningal- parameters. Many other technology convergence paradigms
gorithms. In this way, the set of models can be adapted can also be worked out.
over time (with new training material, possibly derived Although the theoretical discussion in Section Il offers
from actual test utterances) to the task, the language, thesome directions for designing adaptive decision rules,
speaker, and/or the environment (e.g., [160], [102], [148], there are some practical difficulties dealing with real-world
[68], [103], and [165]). Such methods of adaptive training Pattern-recognition problems, such as speech recognition. In
are usable for new speakers, tasks, and environments, andhis paper, we focus our discussion on adaptation techniques
will be shown later to be an effective way of creating that have been developed to address some of the concerns.
a good set of problem-specific models (adaptive models) We first formulate MAP estimation algorithms for a number
from a more general set of models (which are speaker, of parametric densities commonly used in ASR in Section IV.
environment, task, and probably context independent). This Detailed development is given to illustrate the procedure
can be accompﬁshed, among many possibi”tiesy by MAP for deriving MAP estimates in missing data problems such
estimation of HMM parameters (e.g., [102], [55], [66], @as the case of adaptive learning of HMM parameters. The
[69], and [139]) or ML/MAP estimation of a small number Kkey issue of prior specification, which is critical in many
of transformation or structure parameters (e.g., [109], [39], Bayesian learning problems, is also presented. We then
[147], [24], and [154]). establish the theory of recursive Bayesian learning through

For adaptation of language model parameters, it involves Prior evolution, which is important for on-line Bayesian
simultaneous estimation of many probability parameters adaptation. These three sets of fundamentals, i.e., MAP
under constraints. This is still a growing area of inten- €stimation, prior evolution, and recursive adaptation, form
sive research. Such adaptive techniques include Bayesiarthe basis for many recent advances in Bayesian adaptive
methods (e.g., [46]), MDI-based algorithms (e.g., [34], [94], learning for ASR. We will also briefly discuss the important
and [140]), maximum entropypproaches (e.g., [100] and topics of parameter reduction, correlation interpolation,
[145]), and adaptive |earning mechanisms usinbigory tying, and structure. They serve as useful side information
or cache (e.g., [79], [80], and [98]), or arigger (e.g., to improve the efficiency and effectiveness of adaptive
[100]). In the following, we limit our discussion on adaptive learning for large systems. Since there are too many HMM
acoustic modeling. It is noted that many of the principles and Parameters to be estimated, adaptation through structures
techniques presented here are equally applicable to adaptivénd constraints of the parameters is of important concern
|anguage mode”ng (e_g_, MAP in [46]) The readers are also and will be discussed in Section VI. Adaptive Iearning
referred to two papers discussing state-of-the-art languagetechniques can also be used to improve robustness of an
modeling techniques [146], [19] in this issue. ASR system by adapting the system according to the testing

A list of recent advances of acoustic parameter estimation data. This is known asompensatioror adaptation without
and adaptation is summarized in the roadmap in Fig. 3. supervision. We will address this family of problems and
Starting from the classical ML estimation approaches to point the relationship between adaptation and compensation
estimating HMM parameters shown in the upper right block in Section VIL.
oftheroadmap, there are anumber ofimportant developments
aiming ataccommodating adaptive learning of ahuge number
of HMM parameters, typically on the order of a few million
for large-vocabulary continuous speech recognition. The In the following discussion, we focus our attention on
first major area of work iglirect MAP estimation of HMM techniques specifically developed for direct adaptation of
parameters, whichissummarizedinthelowerrightblockofthe HMM parameters. Since point estimates are required to
roadmap. The second major aremidirect ML estimation of implement the plug-in MAP decoder in (2), we used the
structure parameters, which in turn provide HMM parameter Bayesian learningprinciple to derive MAP estimates of the
estimation through some form of transformations. This is parameters of some useful acoustic and speech models. The
summarized in the upper left block of the roadmap. Once the prior densityneeded in the MAP formulation is specified
framework of these two major areas is established, one couldbased on prior knowledge embedded in a large collection of
apply the MAP estimation approaches to structure parameterdata or in a set of speech and language models. The Bayesian
adaptation as shown in the left branch of the bottom left learning framework offers a way to incorporate newly ac-
blocks of the roadmap. One could also combine direct and quired application-specific data into existing models and
indirect estimation and perform hybrid ML/MAP estimation combine them in an optimal manner. It is, therefore, an

IV. MAP-BASED BAYESIAN ADAPTATION
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efficient technique for handling the sparse training data g(A|X). The MAP estimate maximizes the posterior density
problem, which is typical in adaptive learning of model

parameters. It is also noted that techniques and issues o o
discussed here can be used to derived MAP estimates of Aviar = arg mf“xgwx) T aremax FX[A)g(n).- (25)

other decision rule parameters, such as structure parameter ) )
estimation to be addressed in Section VI. Since the parameters of a prior density can, among many

Three key issues arise in the MAP formulation, namely:  Possibilities, also be estimated from an existing HMi|
1) the definition of prior densities for the model parame- this framework provides a way to combiAgwith newly ac-
ters of interest: P P quired dataX in an optimal manner.
RIS . . The prior densityg(\) characterizes statistics of the pa-
2) the estimation of the prior density parameters, some- :
. i rameters of interest before any measurement was made. It
times referred to aByperparameters; : .
. RO can be used to impose constraints on the values of the param-
3) the solution to MAP estimation. S . .
. o _eters. If the parameter is fixed but unknown and is to be esti-
All three issues are related, and a good definition of the prior y5ted from the data. then there is no preference to what the
densities is crucial in resolving these issues. For acoustic,5|e of the parameter should be. In such a case, the prior dis-
modeling of speech units and language modeling of linguistic tipution g(\) is often called aoninformative prior, which
units, continuous-variable observations are often character-is 5 constant for the entire parameter region of interest. The
ized bymultivariate Gaussiamensities angjammadensi-  \ap estimate obtained by solving (25) is, therefore, equiv-
ties; and discrete-variable observations are often modeled by,ent to the ML estimate obtained by solving (24). When the
multinomial distributions. For example, in hidden Markov prior of the HMM parameters is assumed to be the product
modeling, all the above three densities from the exponential yf ihe conjugate priors for all HMM parameters, the MAP
family have been combined to characterize the initial prob- osiimates can be solved with thrpectation—maximization
abilities, the transition probabilities, the histogram of dis- (EM) algorithm [56]. A theoretical framework of MAP esti-
crete state output probabilities for discrete HMMs, the mix- mation of HMM was first proposed by Leat al. [102] for
ture gains for tied-mixture HMMs and continuous density egtimating the mean and the covariance matrix parameters
HMMs with mixture Gaussian state densities, the duration of 3 CDHMM with a multivariate Gaussian state observation
probability, the/V-gram probabilities in language modeling,  gensity. It was then extended to handle all the HMM param-

etc. In most cases, the use of tamjugate prioformulation,  eters, including the initial state probabilities, the transition
such as irichlet densityfor the estimation of the param-  ropapilities, the duration density probabilities, the energy
eters of multinomial pdfs and mormal-Wishart densitjor histogram probabilities, and the state observation probabili-

the estimatipn of the parameters of Gaussian pdfs, has beerﬁes, of a CDHMM with mixture Gaussian state density [55],
found effective [102], [55], [56], [69]. _ [56]. The same Bayesian formulation has also been applied
The MAP-based adaptive learning algorithms have been g the estimation of the parameters of discrete HMMs and of
applied to a number of applications, including speaker and tjed-mixture (or semicontinuous) HMMs [69].
task adaptation [102], [55], [103], [69], context adaptation |5 apalogy to the two well-known ML estimation
[55], corrective training [55], parameter smoothing [102], approaches, thdorward—backward MAP[56] and the
[55_], spgakergroup modelmg [55], on-line incremental gdap— segmental MAP[102], [55], [56] algorithms have been
tation with stored history data [120], amd-gram and his-  geyeloped to solve for the MAP estimates. When conjugate
togram probability smoothing and adaptation [55]. The same priors for the complete-datadensities are assumed, the
approach can also be extended to the problems of speakefap estimates can be expressed as a weighted sum of two
normalization, nonnative speaker adaptation, rapid Speakercomponents: one depends on the information in the prior
enroliment, transducer and channel adaptation, speaking engensity (e.g.,\o) and the other depends on the new set of

vironment adaptation, etc. _ adaptation data [56]. It can further be shown that the MAP

_ Foragiven set of training/adaptation dathe conven- g the ML estimates assymptotically equivaleri§6]. We

tional ML estimation assumes that the HMM parametes now describe MAP adaptation algorithms for some useful

fixed but unknownand solves parametric densities commonly used in speech recognition.
A, = arg max FXN (24) A. MAP Estimation of Multinomial Densities

Let wi be the probability of observing théth dis-
wheref(X|\) is the likelihood ofX. On the other hand, the  crete evente; among a set ofK possible outcomes
MAP formulation assumes the parameteto be arandom  {e, & = 1,..., K} and 3%  w, = 1. Then, the
vector with a certain distribution. Furthermore, there is an probability of observing a sequence of independently
assumed correlation between the observation vectors and thand identically distributed (i.i.d.) discrete observations
parameters so that a statistical inference\afan be made X = (z, ..., ) follows a multinomial distribution
using a small set of adaptation d&a Before making any
new observations, the parameter vector is assumed to have a K
prior densityg(1). When new datX are incorporated, the i i
parameter veéto)r is characterized byasterior density Poss s rln, s wic) o kl;llwk (20)
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wheren;, = Ef:l 1(z¢ = ey) is the number of occurrence
of observing the:th event in the sequence witl{£) being
the indicator function defined on the logical variabfe

Here, we use &” to denote proportionality. Many useful

density can be interpreted as a density associated with a
statistical population, which is a mixture &f component
populations with mixing proportiongws, ..., wg). In
other words,f(X|6) can be viewed as a marginal pdf with

random variables used in speech recognition and languagdehe parametef of a joint pdf expressed as the product

processing, includingv-grams, histograms, mixture gains,

and discrete HMM probabilities, can be modeled this way.
The prior density of(w;, ..., wx) can be assumed as a

Dirichlet density (e.g., [33]), which is a conjugate prior for

the parameters of a multinomial density, i.e.,

K
g(wlv ...,CUK)O( szk_l (27)
k=1
where{1s, > 0,k =1, ..., K} is the set of hyperparame-

ters. The MAP estimate can be easily solved as (e.g., [33])

. ng+vp—1
Wk = T

Z(?’Lk +uv,—1)

k=1

(28)

B. MAP Estimation of Multivariate Gaussian Mixtures

LetX = (x4, ..., x7) be a sample of i.i.d. vector ob-
servations drawn from a mixture & D-dimensional mul-
tivariate normal densities

K

FI0) =" wrN (x|ma, 1) (29)
k=1
where
9:(w1,...,wK,m1,...,mK,Tl, ...,7’]() (30)

is the parameter vector and, denotes the mixture gain
for the kth mixture component subject to the constraint

i‘zl wp = 1. N(x|my, 7)) is the kth normal density
function denoted by

N (x|my,m1) o [ri |2 exp[—1(x — ma)'ra(x — ma)]
(31)

wherem;, is the D-dimensional mean vector ang is the
D x D precision matrix, which is defined as the inverse of
the covariance matriX;,, i.e.,r,j1 = Y. Here, we usér|
to denote the determinant of a matridands! to denote the
transpose of the matrix or vecterIn the following, we will
also user(r) to denote the trace of the matrix

GivenX = (xy, ..., xr), its joint pdf (or the likelihood
function of ) is specified by the equatién

T K
FX10) =T D wnN (xelmn, 7).

t=1 k=1

(32)

It is well known that nosufficient statisticsof a fixed
dimension exists for the parameter vectoin (30) (e.g.,
[141], [159], [64], and [56]), therefore, no joint conjugate
prior densities can be specified. However, a finite mixture

1In this study, the same terif{-) is used to denote both the joint and the
marginal pdfs since it is not likely to cause confusion.
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of a multinomial density (for the sizes of the component
populations) and multivariate Gaussian densities (for the
component densities). If we vieWws, ..., wx) as the
parameter vector of a multinomial density, then the joint
conjugate prior density fofw;, ..., wk) is a Dirichlet
density as shown before. Similarly, for the vector parameter
(my, r) of the individual Gaussian mixture component,
the joint conjugate prior density is a normal-Wishart density
[33] of the form

g(mu, Tiler)

Ti
o |7’k|(ak7D)/2 eXP[—Ek (ma, — ) (. — lik)}

-exp[— & tr(urr)] (33)
whereys, = (&, px, o, ug) is the hyperparameter vector
suchthaty, > D—1, 7 > 0, uy is avector of dimensio®y
anduy is aD x D positive definite matrix. Assuming inde-
pendence between the parameters of the individual mixture
components and the set of the mixture weights, the joint prior
densityg(#) is the product of the prior pdfs of the form

K

g(0) =glwi, ..., wk) H glmp,r).

k=1

(34)

The EM algorithm is an iterative procedure for approx-
imating ML estimates in the context of incomplete-data
cases such as mixture density and hidden Markov model
estimation problems [15], [37]. This procedure consists of
maximizing, at each iteration the auxiliary functiap(6|6)
defined as the expectation of tltwmplete-datdog-like-
lihood given the incomplete dat® = (xi, ..., xr) and
the current fitd. For a mixture density, the complete-data
likelihood is the joint likelihood ofX and the unobserved la-
bels referring to the mixture componentss (I1, ..., Ir),
ie., Y (X, 1). By defining the auxiliary function as
Q(016) = Eflog h(Y|6)|X, 4]. The EM procedure derives
from the facts thatog f(X|6) = Q(0|6) — H(#|0) where
H(6]0) = Eflog h(Y|X, )X, §)] and H(6|6) < H(6)|6),
and, therefore, whenever a valisatisfies9(8]6) > Q(4|6)
then £(X|6) > f(X]6). It follows that the same iterative
procedure can be used to estimate the mode of the pos-
terior density by maximizing the auxiliary function,
R(0|16) = Q(60)8) + log g(6), at each iteration instead of
the maximization of9(#|#) in conventional ML procedures
[37].

Let U(0|#) = exp R(A|6) be the function to be max-
imized. Define the followingmembershigunction for the
mixture Gaussian density

wk/\/(xt|mk, Tk)
K )
ZE]N(XHW[, Fl)

=1

(35)

Crt =
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Using the equality

T
> ere(xe — ma) i (xe — my,)
t=1
= cp(my, — ik)tm(mk —Xp) +tr(Sprr)  (36)

it follows from the definition off(X|6) andQ(6|6) that

U(0|6) xg(6 ch"|7k|c"/2
c
- exp [—% (my, — %)

- m(mk - ik) % tr(Sm’k)} (37)

th?l’e cr = Z:trzl Crt, Xp = Zle— thxt/ck, and Sk =
> o1 ax(xe — Tr) (% — T1)t are weighted count, weighted

sample mean vector, and weighted sample covariance matrixstate sequence, and= (1, ...,

for the kth mixture component.

It can easily be verified from (37) and (34) thi¢-|6) be-
longs to the same distribution family a§-), and they form
a conjugate pdf family for the complete-data density. The
mode ofU(-|6), denoted by s, 7, 1), may be obtained
from the modes of the Dirichlet and normal-Wishart densities
based on well-known formulation of these pdfs in statistics
literature [33]. Thus, the EM reestimation formulas are de-
rived as follows:

l’k — 1 Z Clet
Or = — (38)
> |-+ z]
=1 =1
T
Tr bk + Z CrtXt
i, = = (39)
TE + Z Cit
=1
=
T
uk“l‘zckt e — 1 ) (Xe —0op ) 4+ (e — 1) (pen — 101
=1
T
(a, — D)+ Z Cht
t=1
(40)

guasi-Bayesiamlgorithm to be developed later in this paper
is a completely different approach.

C. MAP Estimation of HMM Parameters

The development in the previous section for a mixture of
multivariate Gaussian densities can be extended to the case
of HMM with Gaussian mixture state observation densities.
For notational convenience, it is assumed that the observa-
tion pdfs of all the states have the same number of mixture
components.

Consider anN-state CDHMM with parameter vector
A = (m, A, 6), wherer is the initial probability vector,

A is the transition probability matrix, and is the pdf
parameter vector composed of the mixture parameters
0; = [(wik, My, mix): k=1, ..., K] for each state.

For a samplé&X = (xy, ..., x7), the complete data is
Y = (X, s, 1), wheres = (sq, ..., sr) is the unobserved
Ir) is the sequence of the
unobserved mixture component labels,c [1, 2, ..., N]
andl; € [1, 2 , K. It follows that the pdf ofX has the
form

X|)‘ ZWSO Han 15¢ ZwakN Xt|m5fk7 75? )
(41)
where
e initial probability of stater;
a5 transition probability from state to

statey;

parameter vector of thieth normal pdf
associated with state, and the first
summation in (41) is over all possible
state sequences.

If no prior knowledge is assumed aboAitand, or alter-
natively if these parameters are assumed fixed and known,
the prior densityg(-) can be chosen to have the following
form g(A) =T, g(6;), whereg(6;) is defined by (34). In the
general case where MAP estimation is applied not only to
the observation density parameters but also to the initial and
transition probabilities, the prior density for all the HMM pa-
rameters can be assumed as

N
A) x H H an”
i=1

where{n; } is the set of parameters for the prior density of the
initial probabilities{r; } and{r;, } is the set of parameters for

Oir. = (mak, 7ix)

(42)

It can be seen that the new parameter estimates are simplythe prior density of transition probabilitigs.,; }, all defined
aweighted sum of the prior parameters and the observed datdhe same way as a Dirichlet density.

(a form applicable to both parameter smoothing and adapta-

tion). If it is assumed that;. > 0, then the EM reestimation
formulas for the MAP and ML approaches are asymptoti-

In Section IV-C2, we examine two ways of approxi-
mating Amar by local maximization off(X|A)g(A) or
F(X, s|A)g(A). These two solutions are the MAP versions

cally equivalent [55], a desirable property in many applica- of the forward—backward algorithm [15] and of the seg-
tions. According to our knowledge, it was Hamilton who first mentalk-means algorithm [132], [86], algorithms that were
developed the MAP estimation of parameters for mixtures of developed for ML estimation.

normal distributions, under the name of the quasi-Bayesian 1) Forward—Backward MAP Estimationtn the ML
approach [64]. We want to warn the readers here that theformulation, the auxiliary function of the EM algorithm
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can be decomposed into a sum of three auxiliary functions

Q(7|\), Q4(A, ), and Qg(f, X) such that they can be

2) Segmental MAP EstimatiorBy analogy with the seg-
mentalk-means algorithm [132], [86], a similar optimization

independently maximized [85]. The three functions take the criterion can be adopted. Instead of maximizifg|X), the

following forms:

N
Qr(7[N) = vio logm; (43)
=1

mmm=2@wﬂ>

N T N

= Z ZZSW log a;;

i=1 |t=1j=1

(44)

QuO) = 3 @0 (61

N T K

= Z Z Z cikt logwi N (z4|0:) | (45)

i=1 Lt=1 k=1

whereg;;; = Pr(s;_1 = 4, s; = j|X, A) is the probability
of making a transition from stateto statej at time¢ given
that the modeh generateX, andc;;, defined as
. Wi N (% [T, Tine)
Cikt = it 3¢
ZwilN($t|mila Til)

=1

(46)

is the probability of being in statewith the mixture com-
ponent labek at timet given that the model generates;,
with v;» = Pr(s, = 4|X, A). Both probabilities can be com-

joint posterior density of parametéand state sequeneg
g(A,s|X), is maximized. The estimation procedure becomes

A= arg max max g(A, s|X)
S

= argmaxmax F(X, s|N)g(N). (48)

\is referred to as theegmental MAP estimaf&02], [55],
[56] of A. Similar to the case for the segmentaineans algo-
rithm, it is straightforward to prove that starting with any es-
timate A", alternate maximization overand\ gives a se-

guence of estimates with nondecreasing valugg &f s|X),
i.e., gAY | smED) XY > (A0 50X with

s = argmax f (X7 s ‘ )‘(m)) (49)
AT — e In)g\fo (X, g(m) )\) g(N). (50)

The most likely state sequenc&™ is decoded with
the Viterbi algorithm. Maximization over\ can also
be replaced by anyhill climbing procedure overAi
with the constraint, f(X, s A+ g(A(m+Dy >
(X, st g(A(™)), The EM algorithm is once again
a good candidate to perform this maximization uskig

as an initial estimate. It is straightforward to show that the
forward—backward reestimation equations still holds if we
set&, = (s — i)5(s™ — §) and, = §(s\™ — 4),
whereé(-) denotes the Kronecker delta function.

puted at each EM iteration using the forward—backward algo- b |nitial Prior Specification

rithm [15]. We can recognize from (46) that the membership

function ¢;;; has a similar form as was seen gy in (35)
for the mixture Gaussian case.

Similar to the mixture Gaussian case, estimating the modePror Pdf g(Al¢),
of the posterior density requires the maximization of the aux-

iliary function, R(A[X) = Q(A|X) + log g()\). The form
chosen for the prior densig(A) in (42) permits independent
maximization of each of the followin(2N + 1) HMM pa-
rameter sets{my, ..., mx}, {@i1, .-+, @n }i=1, . ~, and
{0, }i=1, .., ~. The MAP auxiliary function

RO = Ba(rl0) + 3 R (%) + 3 o (6:[%) (47)

In MAP-based HMM adaptation and other Bayesian
learning scenarios, it critically depends on the choice of a
which is often assumed to be a member
of a preassigned family of prior distributions. In a strict
Bayesian approach, the hyperparameter vegtas also
assumed known based on some subjective knowledge about
A. In reality, it is difficult to possess a complete knowledge
of the prior distribution. An attractive compromise between
the classical non-Bayesian approach, which uses no prior
information and the strict Bayesian one is to adopt the
empirical Bayes’ (EB) approach [143], [117], [21]. By this
we mean the hyperparameters are derived somehow from
data. When replacing by any estimate derived from the

where each term represents the MAP auxiliary function asso-already observed data, the previous and current data are
ciated with the respectively indexed parameter sets. Equationlinked in the form of atwo-stage samplingcheme by a

(38) can be used to derive the reestimation formulas famd

A by applying the same derivations as were used for the mix-

common prior pdi(A|¢) of the unknown parameters
Generally speaking, prior density estimation and the

ture weights. The reestimation formulas (38)-(40) can also choice of density parameters depend on the particular appli-

be used to maximizé&y, (4;|\) [56], [69].

cation of interest. They also depend on the physical meaning

So far we have only discussed MAP estimation for a single of the variability or uncertainty we want to model and repre-
observation sequence. For multiple independent observationsent by using the prior pdf(\|¢). For example, in speaker
sequences, which is a more realistic situation in our applica- adaptation application, prior densgyA|¢) is used to model
tions, we can modify the auxiliary equation to include a sum- and represent the information of the variability of HMM
mation over all data instances; the same reestimation equaparameters\ among a set of different speakers. In another

tions can easily be extended [56].
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models from context-independent models, the prior density attractive adaptation scenario, which is known as the on-line
g(A|e) will be used to represent the variability afcaused (or incremental sequentigl adaptation. This scheme makes
by different contexts. In the following, we highlight three the recognition system capable of continuously adjusting to
approaches that we have used in the past several years and new operational environment without the requirement of
work quite well in a number of applications such as speaker storing a large set of previously used training data. Among
adaptation, task adaptation, environment adaptation, etc. many possibilities (e.g., [110], [166], [70]-[73], [84], [41],

If the training data se&’ for estimating hyperparameters [26], and [172]), Bayesian inference theory again provides
@ is rich enough to cover the interested variability of a good vehicle to formulate and solve this problem. In
speech signal, we can then dividé into different subsets  this section, we will discuss one type of on-line adaptation

X ={x0 x@ . x@} according to the variability — approach, which is based on a key concept capedr
factors of interest. One can then estimate a set of HMMs, evolution.
{A1, A2, ..., Ag} from the above sets of training data.
One then pretend to viey);} as the random observations A. General Concept and Methodology
with the densityg(A|¢). Themethod of momertetailed in Suppose there ate! speech units in a speech recognizer,
[69], [72] can then be used to estimate This provides a  each being modeled by a Gaussian mixture COHMM. Con-
theoretically sound solution. sider a collection of such/ CDHMMs A = {\,: ¢ =

If the training data sett’ is not big enough, then we 1 ... M}, where), = (W(q)7 A@, g(q)) denotes the set
can use another method callpdor-weight initialization. of parameters of theth N-state CDHMM used to charac-

This method requires a set of seed models. Using theseterize thegth speech unit. In a Bayesian framework, we in-
seed models and the conventional batch-mode ML training tend to consider the uncertainty of the HMM parameters
method, a set of statistics can be collected from a single passpy treating them as if they were random. Our prior knowl-
through the training dat&’. Using the collected statistics edge about\ is assumed to be summarized in a known joint
and a prior weight, the hyperparameters for CDHMMs can  a priori pdf p(A|¢(®) with hyperparametersy(®), where

be specified as detailed in [71]. The prior weightontrols A e ©, Q2 denotes an admissible region of the HMM param-
the broadness of the prior pg{\|¢). One such example eter space. Such prior information may come from subject

has been recently developed [76]. matter considerations. It can also be derived from previous
The third method is called-initialization [102], [55], experiences, e.g., training datg as we discussed in the pre-

[103]. For this method, with the assistance of a user-defined vious section. Left" = {&}, &>, ..., A,,} ben indepen-

control parameter, the hyperparameter vecter is spec- dent sets of observation samples which are incrementally ob-

ified directly from the parameters of existing seed models tained and used to update our knowledge abolepending
such that the mode of the derived prior pdf\|¢) is taken  on different assumptions to make, constraints to apply, and
at the value of seed model parameters. Similar to the role knowledge sources to use, there are many waysvtive
of ¢ in prior-weight initialization, is used to control the  ;(A). The central idea is that the intended evolving prior pdf
broadness of(\|¢). This method is attractive for those Pintend (A| X)) summarizes, in a way specified by each spe-
applications where only pretrained seed models are availablecific prior evolution scheme, the information inherited from
and the training data’ is not accessible during the prior  the prior knowledge and learned from the observation data
specification. A7, From the evolving prior distribution, the intended in-
ference and/or decision can be made. For example, we can
derive apoint estimate\ from Pintena(A| A7) (€.9., taking a
mode) and then use the conventional plug-in MAP decision
The previously discussed MAP estimation methods imply rule for recognition to achieve a better performance. This
batch algorithms that require processing the available datatype of updating and use df is known as on-line Bayesian
as awhole. In a variety of speech-recognition applications, it adaptation in the speech community [70]-[73]. A block dia-
is desirable to process the data sequentially. The advantaggram of such an on-line adaptation scheme based on the con-
of a sequential algorithm over a batch algorithm is not nec- cept of prior evolution is shown in Fig. 5.
essarily in the final result, but in computational efficiency, Given a new block of input speech, feature extraction is
reduced storage requirements, and the fact that an outcomdirst performed to derive the feature vector sequences used to
may be provided without having to wait for all the data characterize the speech input. It is followed by some kind of
to be processed. Moreover, the parameters of interest areacoustic normalization to reduce the possible mismatchin the
sometimes subject to changes, e.g., they are time varyingfeature vector space. The processed feature vector sequences
just like above-mentioned acoustic mismatch problem fre- are then recognized based on the current set of HMMs. After
guently encountered in real speech-recognition applications.the recognition of the current block of utterances, the prior
In such cases, different data segments often correspond tgdfs for the relevant speech units, which are the results of
different parameter values. Processing of all the available the previous prior evolution step, are evolved to derive a set
data jointly is no longer desirable, even if we can afford of intendedposterior distributions, which will be served as
the computational load of the batch algorithm. To alleviate the prior for the next round of prior evolution. By taking a
such problems, a sequential algorithm can be designed topoint estimate from the evolved prior distributions, the re-
adaptively track the varying parameters. This leads to anlated HMM parameters are adapted, and the updated models

V. PRIOR EVOLUTION AND ON-LINE ADAPTATION
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nommalzation Wi S recognition resutt consider what happens after a single adaptation utterance
¥ MAP rule ] (sample); = {X} is observed. For an observation se-
unsupervised quenceX = (X17 X2, ..., XT), lets = (80, S1, «vny ST)
feature point estimate, updated
extraction prior pdf be the unobserved state sequencelard (I1, Io, ..., I)
be the associated sequence of the unobserved mixture com-
. oror svonaton ororvion ponent labels. The posterior pdf dfafter observingX is
gt e | prorovison |

T
supervised
L SEDIRLI | ARG RS

-g(N) (53)

where the summations are taken over all possible state and

. . . mixture component label sequences. So the exact posterior
f .Th - : . X )
are used to recognize future input utterance(s). The prior evo pdf p(A|X) is a weighted sum of the prior pgf \), which

lution algorithm usually requires some form of supervisionin T . . .

terms of the word (or phone) transcription of the speech utter- |trr10(ljudes(Nn~ If/ ) ; texrmsr; dsi;rl:ccesr‘r?lt\)/ire; thi) n:}puftflﬁlonrol‘/i(Sl) n-

ances. Such atranscription can be provided either byahumaq oduces an ever-expanding co ation ofthe previous pos-
erior pdfs and thus quickly leads to the combinatorial explo-

transcriber or by the correction made by the user on the rec- . ) : .
sion of terms. As a result, formal recursive Bayes’ learning

ognized output during actual usage. This adaptation scheme o . )
is often calledsupervisedidaptation. On the other hand, the procedures of this kind are not feasible and some approxima-

supervision information can also be derived directly from the go?s iare ?eeded d'?npr?:tlc\?v'h'io‘ Eeinetral app:ro:;:mgtmn p,rcr)ce-
recognition results, and this is often referred tauasuper- ure 1S propose [71], ch Is 10 apply the bayes' re-

visedadaptation. For real-world applications, the unsuper- g;ﬁ'Olgsoz(()igd'ggzrgtegtg:]yé V\I';tir; ?&ﬁ)&;?greaofjf;\é?:gn
vised mode is usually more realistic and desirable. P ) y P

In the following, we discuss the theoretical and practical proximation to the resuilting posterior pdf so as to obtain re-

issues related to several prior evolution schemes and explaincurS'Ve estimates of the hyperparameters of the approximate

how to use them for on-line adaptation of HMM parameters. posterior pdf. This is typically accomplished by restricting
the approximated pdf to be in the class of conjugate pdfs

of thecomplete-datalistributions. One such approach called

quasi-Bayes’ (QB) learning for HMM has been developed in
One way to evolvg(A) is to adopt the recursive Bayesian  [69], [71], and [72].

learning framework [159]

Fig. 5. On-line Bayesian adaptation based on prior evolution.

B. Prior Evolution Based on Recursive Bayesian Learning

) o C. Prior Evolution Based on Quasi-Bayes’ Learning
p(A|ATY) = P(A[A) -p(AJAT) . (51) The quasi-Bayes’ procedure is an approximate solution
/p(xn|A) p(A)ATTH dA motivated by aiming at achieving computational simplicity

Q while still maintaining the flavor of the formal Bayes’ proce-
dure. In the context of finite mixture distribution identifica-
tion, the quasi-Bayes’ approach was originally proposed by
Makov and Smith [116], [157] to conduct recursive Bayes’
estimation of the mixture coefficients while the mixture com-
ponents are assumed fixed. In the sense that the approximate

posterior distribution has a mean identical to that of the true

Starting the calculation of posterior pdf frgrA|¢(9), a re-
peated use of (51) produces a sequence of dengitids’}),
p(A]X2), and so forth. It can be easily verified [159] that the
above recursive way of computation fefA| A7) will give

the same result as the one by using the following batch-mode

computation: posterior distribution, the convergence properties were estab-
PPN - p (A|<P(O)) lished. We first adopted this approach to on-line adaptation of

p(A|A]) = L . (52) the mixture coefficients in the tied-mixture HMM case [70].
/p(Xf|A) -p (Alp®) dA Itwas then extended to incremental adaptive learning of all of

Q the CDHMM parameters in [71], [72]. In the following, we

will explain our quasi-Bayes’ learning framework in detail.

Depending on different assumptions to make and con-
straints to apply, we have studied several ways of defining
p(Alp®). The simplest case is to assutigs are indepen-
dent, i.e.,

If the computation in (51) can be carried out, this will give

us an attractive sequential Bayesian estimation method.
Unfortunately, the implementation of this learning proce-

dure for HMM raises some serious computational difficulties

because of the nature of tha@ssing-datgroblem caused by

the underlying hidden processes, i.e., the state mixture com- M

ponent label sequence and the state sequence of the Markov p (A ‘ <p(°)) =q (A‘ <p(°)) = H g ()\q ‘ <p510)) (54)

chain for an HMM. It is well known that there exist no re- g=1

producing (natural conjugate) densities [159] for HMM. To

illustrate this problem more clearly, let us consider the prior Whereg(),|¢y) takes the same form as (42) , aptf) =

evolution for a single HMMA\. Let us begin withg(\) and {<p510): g=1,2,..., M}. This class of prior distributions
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{g1(-)} actually constitutes a conjugate family of tbem- ] |
plete-datadensity and is denoted &3 . AN '

Under the above independence assumption, each mode /7 |\ == approximate POF
can only be adapted if the corresponding speech unit has beer
observed in the current adaptation data. Consequently, only
after all units have been observed enough times can all of the
HMM parameters be effectively adapted. To enhance the ef-
ficiency and the effectiveness of Bayes’ adaptive learning, it
is desirable to introduce some constraints on the HMM pa-
rameters. By this means, all the model parameters can be ad-
justed at the same time in a consistent and systematic way, mode
even though some units are not seen in the adaptation data.
One way to achieve the above objective is to explicitly con-
sider the correlation of HMM parameters corresponding to . e .
different speech units (e.g., [99], [160], [180], [149], and and the above prior pcij(z_\|<p( 1)),,the Q.B procedure IS,
[72]). For example, we can assume that the covariance ma—alt each step of_the recursive Bayes’leaming, to approximate
trices of HMMS,{EEZ)}, are known. The initial prior pdf of the true posterior distributiop(A|'.)

A (excluding{EEZ)}) is then assumed to be p(X,|A) - g (A|¢(n—1))

p(A]@) =02(8]¢®) = g0m H9 W) 5) /Qp(XnIA) -9 (Alp=D) dA

true PDF

Fig. 6. Schematic illustration of quasi-Bayes’ procedure.

p(AX,) = (58)

by the “closest” tractable distributiogi{A|o (™) within the
where given class?, under the criterion of both distributions having
N the same (local) mode [71], [72]. Hegd™ denotes the up-
o Aﬁ;) x H [m(q)}m H [ (q):| Qatec_i hyperpara}mete_rs after obgery|ng the samh{ej hls
o idea is schematically illustrated in Fig. 6. More specifically,
for any given estimatd let us define the auxiliary function

: <ﬁ [WEZ)}V§§>_1> (56) R(A[A) =p-log g(A ‘ <p<"*1))

k=1 + Eflog p(Va|A)| X, A] (59)

=1

is the product of a series of Dirichlet pdf (sometimes called _ _ _
multivariate beta pdf), and thus takes the special form of a where0 < p < 1 s a forgetting factor to be explained later
matrix beta pdf [119] with sets of positive hyperparameters andp = 1 means that there is no forgetting. By choosing

of {n! (D, {n! 7)} {,, )}, and the initial prior pdf to be the conjugate family of tlk®m-
plete-datadensity, it can be verified that with an appropriate
g(m) = N(mlp, U) (57) normalization factor?, such that
has a joint normal pdf with mean vectgr = Vec{u(q)} C - exp{R(A|A}
and covariance matrixU [99]. Here, we denote
No= (7@ 0@ w®) and definem = vec{m®} belongs to the same distribution family @&\ | ~%)), and

to be the collection of the mean vectors of all the Gaussian thus is denoted ag(A|¢) with the hyperparameters de-
mixture components of CDHMMs and denoted simply by tailed in [71] and [72]. By repeating the following EM steps,
an operator Yec.” This class of prior distributionsg.(-)}, ~ We can geta series of approximate pdf with the fgi|¢)
constitutes another conjugate family of themplete-data ~ Whose mode is approaching the modé the true posterior
density and is denoted ®s. In the following discussion, we ~ Pdf p(A|Xy).
will use P to refer to eitherP; or P, and its true meaning E-step: ComputeR(A|A~1=1) as in (59);
can easily be inferred from the context. ) M-step: Choose

Consider at time instamtan adaptation set,, = {x,""’} . 11
and prior knowledge aboutA approximated by APTED = arg mXLXR(A ‘ Al 1)) (60)
g(Ale=D) € P. Here,x™ denotes therth adap-

) ] . ) - wherel =1, 2, ..., Listheiterationindex. is
tation observation sequence of Ien(j’bi‘?”) associated with the total number of EM iterations performed, and
the gth speech unit, and each unit hé&™ such observa- A(=L s the estimated parameter at iteration
tion sequences. L&Y, = (4, Z,) denote the associated I, with A9 = A(=1,1) — A peing the
complete-datand Z,, IS 7 1"} be corresponding initial estimate at the beginning of the next EM
missing data,where s(q’ denotes the unobserved state iteration.

sequence and(q’ " is the sequence of the unobserved 2t king, EM algorithn [37] | eeth de of th
. rictly speaking, algorithm can only guarantee the mode of the
mixture Component labels corresponding to the observation approximate pdf to approach a local maximum of the true posterior pdf in

sequence:n ). Given the set of observation sequenggs (58).
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Thus, the hyperparameteg$™ are obtained at the last (ac-  linear constraints imposed. As a final remark, the above QB
tually Lth) EM iteration to satisfy framework is also flexible enough to include the batch-mode
MAP estimation as a special case, which can be viewed as a
one-step prior evolution with QB, followed by a point estimate
taking a mode) from the evolved prior.

g (A‘ <p<">) o< exp{R(A |A("‘17L‘1))}. (61) (taking ) P

D. Multiple-Stream Prior Evolution and Posterior Pooling

In this way, the old priog(A|¢™ 1) is evolvedto the new
prior g(A|p(™) via the adaptation dat&;,,. The CDHMM
parameters\(®) = A(*—1. L) are then updated accordingly
as in (60) by taking the mode gfA|x(™) as detailed in [71]
and [72]. The updated HMMs are used in plug-in MAP rule
to recognize future input utterance and this completes one
step of on-line QB adaptation.

In addition to the above method of prior evolution, we can
also, for example, assunteto evolve in a moreonstrained
way asA™ = H,(A), whereH,, represents a mapping
from A to A®) and can béncrementallylearned from the
observation data7. Then fromp(A|¢(®), we can derive
a new posterior distributiop;yiena(A|XT) = p(A™) as

Itisclearfromthe above discussionthatusingthe conce tofthe result of prior evolution. Of course, there are other ways
9 POl evolvep(A). Each leads to a different on-line adaptive

(rjnenns;lt)lll app(r:im?rr:stlcr)]the ?B ?Igr]nor;thrm 'i?ﬁ S|gnerd )t(?r:]nire' learning algorithm. Moreover, the prior evolution can start
entatly update the nyperparameters on t€ approxXimateé posy., , aither a single prior pdf, or more generally, different
terior distribution. Actually, the posterior distribution can fur- prior pdfs for different schemes. Depending on the specific

f[herbe manipulated, forexample, iftheinitial priorknowle_dge meaning of the prior pdf and the way of prior evolution, dif-
IS to? s”trong or aftt;r {ahlot of ad(;ipt?t?n d dat? have ﬁeﬁn 'ncrel'ferent schemes might reflect different aspects of the learning.
mentaly processed, the new adaptation datausually have only, 1, 5| way of obtaining an enhanced learning algorithm
asmallimpacton parameter updating inincremental learning. is to simultaneously maintain multiple streams of prior evo-
To continuously track the variations of the model parameters lution. During the process of the prior evolution, we can de-
correspgngltng t%the ?hew (:fata;, sfofne?egmg m;a_chamslmt_s tsign aposterior poolingscheme, which combines different
?r:e neeade ?dret ucI:etheebec otpasto lstgrva lons :je alve 10 reams of evolved pdfs to derive an intended pdf for fur-

enewinputdata. in the above prior evolulion procedure, We o i cerence or decision-making. Such a framework called
actuallymtroducgdlaexponentlalfc_>rgettmgcheme by using multiple-stream prior evolution and posterior poolifas
a forgetting coeﬁ‘l_uenp as shown in (59). This is analogous been recently developed in [73] and is briefly described in
to that proposed in [173] and [96]. .

: . the following.
The exponential forgetting is expected to be helpful for

handling the sl h f i di bet The use of multiple stream prior evolution is well moti-
andling he slow changes of acoustic conditions BEWeeN, ;04 1his is because the speech signal is very rich, which

cr:)nﬁgcutlvz uttelr:ancEs bi; deemprflasmr;]g the cor;trlbuél_o_n ofincludes the desirable linguistic information for recognition
the history ‘”?‘ta- ort €a .rupt (or fast) changes of con Itlon’as well as many other undesirable variationmAltifacet
a}fast forgett!ng mechanisis more helpful. Suph a forget- learning algorithm can thus be designed to elicit from
ting mechanism calletfyperparameter refreshingas pro- a rich set of training datat’ a set of prior distributions
posed in [71]. It can be roughly viewed as inflating the vari- {p(i)(A|(p(0)) i—1 2 I}. Eachp® (A|<p(0)) reflects,
ance ofg(A|¢(™)) while maintaining the mode unchanged. how HMM p’aramezcer’gx vélries according to one type of
It can also be viewed as an additional evolution step: from iability f K Ki i q
(Alp(™) to g(A]¢™) via thevariance inflationor hyper- variability factors (e.g., speakers, speaking styles, data
g\ne g\n|e yp ; i .

. . . capturing and transmission conditions, etc.). We can treat
parameter refreshingConsequently, we obtain essentially a eachp® (A (0)) as aknowledge sourceyhich reflects one
posterior distributiominsena(A|X7), Which is different from A \

aspect of the speech signal.

the true posterior distributiop,..(A| A7) but includes the ; )
information needed for adaptation from the observation data \ter we have prepared the set 66 (Alo; )} from
training datat’, we can then use them toomposeand

AT, The difference between the algorithms in [71] and [72] deri diton-d q distributi e
lies mainly in the fact that different constraints on HMM pa- erivea con ftion- epen ent distributiQiluseaa (A| “"W.)
guided by task specifications and a small amountafdi-

rameters are applied.
Pb K tion-dependentadaptation data (possibly derived from test

Recently, inspired by the above general QB framewor q hi hi | f
and the general approximate recursive Bayesian learning. ata)XneW'_ TO, achieve this goal, we can first compose an
intended distribution

framework in [20], a sequential learning method of mean
vectors of CDHMM based on a finite mixture approximation
of their prior/posterior densities has also been investigated Pintend (AN Xaew) = Z e x p® (A‘ (pgo)) (62)
[84]. More recently, by adopting a simple transformation (i.e., .

bias for mean vector and scaling for variance of CDHMM)

and assuming a specific prior pdf for these transformation wheree; (0 < ¢; < 1and}_, ¢ = 1) is thefusion weighto
parameters, such a simple “transformation-based” QB adap-control therelative importanceof the different knowledge
tation algorithm has been developed in [26] by using the sourceSp(i)(A|<p§0)). The ¢;'s can either be automatically
general QB framework in [71]. This algorithm can be viewed trained from the adaptation data... or just be specified ac-
as another way of prior evolution with the above-mentioned cording to task specifications and modeling intention. Then
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we can use a manageable distributiai|¢) to approxi- malization. We will also briefly discuss a way to align prior

matefintend (A Xnew) DY minimizing theKullback-Leibler information in a hierarchical tree of the models firuc-
directed divergencf97] as follows: tural Bayesian adaptatiarThe combination of structure and
. model parameter estimation opens up brand new ways to de-
¢ = arg min/ﬁimend(Aanew) 10%¢M dA. sign plug-in MAP decision rules. Some of them are shown
® p(Alp) in the left half of the roadmap in Fig. 3. This new set of aux-
(63) iliary structures also provides a mathematical framework to

approximate some of the missing channel information, such
as speakers and microphones, illustrated in Fig. 1 butignored
in the simplified source-channel model shown in Fig. 2.

With p(A|¢), we can derive a point estimate (e.g., taking a
mode) of A and then to use thplug-in MAP decision rule

to construct a speech recognizer. In [73], we have shown
an implementation of the aboweformation fusionmethod A Model Transformation and Interpolation

when we only consider the uncertainty of the mean vectors . )
of CDHMMs. The most studied structures are those defined through con-

straints on the model parameters. Such methods bind the
models in ways that all the parameters are adjusted simul-
taneously according to the predetermined set of constraints,
e.g.,multiple regression analysas suggested in the classical
technique can be used to derie\|3) and to construct the paper by Furui [49]. Instead of local esFimation or adaptation
for HMM parameters, the transformation-based approaches

speech recognizer accordingly. If the application involves .
many utterances during the real use of the ASR system, theSapture some global behavior of the parameter space. There-

above scheme can be operated in an incremental mode Thig;ore, it works better for small-size adaptation data or no data
technique ofmultiple-stream prior evolution and posterior atall in the case of unsupervised adaptation (or compensa-

pooling can thus be used to continuously improve the ASR tion). This rich family of techniques are highlighted in the left
performance with the increasing amount of condition-de- half of th_e roadma_p In F'g: 3. In the upper part, M_L estima-
pendent speech data. In [73], we have proposed severafion and interpolation are illustrated. A MAP version of the

architectures fomultiple-stream prior evolutionln a case chart 1S s%m?z:/lr;_zed in th_e bottczjmlv:ifltapzrt and_a hy;o:i/l\'/\ir-
study where two-stream prior evolution is used and only sion, in whic estimation an adaptation o

the uncertainty of the mean vectors of the CDHMMs are parameters are combined, is shown in the bottom right.

considered, good results are obtained for efficient speaker In general, the above constraint S?t Is introduced through
adaptation application some form of parameter transformationgy = Fo(Ax), in

The above approach of prior evolution and posterior which Ax and A denote the original and the transformed

pooling opens up many new research opportunities. The parameter vectors, respectively; () is a transformation of

key to the success of these approaches depends on whethdpterest, andd is a small set of transformation parameters

the imposed constraints really exist in the entities under chgrgcterizing the mode| transformation. Then.given aset of
investigation. By using multiple-stream framework, we can training/adaptation daid’, we obtain an ML estimate ap

always exploit multiple sources of knowledge and/or apply and hence\x- by solving
different kinds of constraints to facilitate learning. It is s
believed that the best setup will depend on the purpose of ¢ =arg m§Xp(X|AX’ ®) (64)
modeling and learning as well as the nature of the specific . . .
applications. Intelligent use of the previously discussed wherep(X|Ax, @) = p(X|Ax) is the observation pdf with

flexible tools for different purposes in different applications the transformed para}metery. Alternatively, one can as-
will be an important part of the future research. sume the transformation paramegeto be a random variable

and specify a prior densiy(®) to capture some prior knowl-
edge abouf. Then the MAP estimate @ can be solved as

Alternatively, we can first evolve( (A|x'”) by using
the adaptation datat,.,, and an appropriate prior evo-
lution method to obtain a set of intended distributions
{pi(;)tend(Awnew)}. Then the above information fusion

VI. ML/MAP E STIMATION OF STRUCTURAL PARAMETERS

The Bayesian adaptation approach we discussed so far ¢ = argmax p(X|Ax, ©) - p(P). (65)
provides an optimal mathematical framework for combining ®
information in a general set of stochastic models and a spe-One popular way is to directly impose a regression constraint
cific set of adaptation data. However, in order to improve ef- on the model mean vectors and estimate the linear regres-
ficiency and effectiveness when dealing with adaptation of sion parameters, as in MLLR, using an EM algorithm (e.g.,
many parameters with a very limited set of data, new tech- [109]). Just like MAP, MLLR has been adopted by many
nigues have been proposed recently in exploring structuresrecent ASR systems for its simplicity and effectiveness. The
embedded in the feature and model spaces. Successful usageaders are referred to a recent review [176] covering this
of these structures allows us to incorporate this newly avail- rich family of techniques. In the MLLR framework, variance
able set of structural parameters into many of the parametercan also be estimated similarly [53]. Constrained estimation
estimation and adaptation algorithms. In the following, we of Gaussian mixture parameters can be considered as a
discuss a number of such techniques, including model pa-constrained MLLR approach and has been studied in [39].
rameter transformation, interpolation, correlation, and nor- When more adaptation data are available, more transfor-
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mations are needed. These transformations are made clask also retains the nice asymptotic properties of MAP esti-
specific so that different units can be adapted differently mation. Other possibilities of combining existing techniques,
depending on their corresponding acoustic or linguistic such as on-line recursive Bayesian learning of tree-structured
classes (e.g., [110]). As we mentioned above, MAP, insteadtransformation [172], have been recently studied. More are
of ML, can be used for estimating the regression parametersexpected as implied in the bottom block of Fig. 3.
as shown in [154]. To obtain a closed-form MAP solution,
a family of elliptically symmetricmatrix variate priorsvas B. Parameter Correlation
adopted [30], [63] to specify the prior of the parameters in
the linear regression matrix. The above MLLR and MAPLR
approaches work well, especially in the case of adaptation
with a small amount of data as well as in unsupervised
adaptation (e.g., [175] and [154]).

Another way to accomplish speaker adaptation is through
a simple affine transformation between reference and adap-
tive speaker feature vectors. It is then translated into a bias

vector and a scale matrix, which can be estimated with an EMt . that all th del ; be adiusted at th
algorithm in the adaptation process [39], [147], [182], [144]. ying so that all th€ model parameters can be adjusted at the
same time in a consistent manner, even though some units

Model-based bias adaptation has been a well-studied topicare not seen in adaptation data
for robust speech recognition. Some applications to compen- B dl fini ptatior t di i'b i havi HMM
sation will be discussed in the next section. mare?r?aﬁsfir eegglhn%n?tjoilsna é?ﬁ?(l:ulljtlpgl; t\?v\gnglt:pnatives
As expected, when combined with Bayesian adaptation, havg been used. First ,instead of assji n’in a single label to
simple transformations show a good adaptation efficiency e ' >9ning 9
: . each adaptation data segment, multiple labels can be used.
(for short adaptation data) and a good asymptotic property

. . ° For example, a speech segment can be associated with both
(converging to speaker-dependent models). When mOOIeIIngcontext—de endent and context-independent labels so that it
channel as a bias transformation (e.g., [147]), MAP adapta- P P

tion can also be used to improve recognition performance can be used to adapt both types of HMMs (Type Il training

(e.g., [23] and [169]). Stochastic matching has been com- in [55]). Secon.d, a correlation structure between parameters
bined with MAP adaptation in [24]. can be establlshed_ gnd the correlation parameters can be
Yet, another alternative to accomplish the above is to de- es_tlmated when training the general models or c_onstructlng
i ' ) tying structures [167]. Parameters of unseen units can then

fine a vector fieldfor the set of mean parameters and as- be adapted accordingly (e.g., [99], [32], [180], [167], [149]
sume that the adaptation data vectors are used to transfefzz] and [72]) Regression.—b'élse d,mo dél pred’icti(ml\,/IP) '
the vector field of the reference model to that of the new ' :

speaker in a consistent manner so that the mean vectors o¥49]’ [31] combined with a Bayesian approach has also been

. . : studied [2]. This area of work is summarized in the bottom
unseen units can be interpolated from the estimated mean

vectors of observed units. It can be considered as a constrain{Ight block of the technology roadmap shown in Fig. 3. An-

. other way is to introduce correlation through a hierarchical
to preserve the structure of the vector fields before and after .
. . structure as in the extended MAP [180] and the structural
the vector transfer and smoothing operation. For the mean

vector of each unseen unit model, such an interpolation is MAP [151], [26] approaches. The MAP algorithm is in spirit

) ) . : similar to an ML version, the so-callemitonomous model
usually confined to a neighborhood in the vector field of : ) .

. complexity contro]150], to determine the complexity of the
the reference model so as to improve the robustness of themodels based on the size of the training data
transfer [65], [128]. When combined with Bayesian adapta- '
tion, vector field smoothingVFS) has been shown effective ) )
for both batch [168] and incremental adaptation [166]. SM C- Structural Bayesian Adaptation
and VFS have also been compared and combined with MAP  The definition of a structure to aid MAP estimation is a
adaptation to improve speech recognition, as shown in [25]. key procedure in the structural Bayes’ approach [151]. Con-

Before we close this important subject, it is noted that sider for the set of all the Gaussian mixture components
formal joint MAP estimation of the transformation and in a set of CDHMMs dree structurewhere Kis the total
HMM parameters can also be obtained via number of layers or the depth of the tree. Each node in the
Kth layer (leaf node) corresponds to one Gaussian mixture
component. The root node (the first layer) corresponds the
whole set of the mixture components. Each intermediate
node corresponds to a subset@afand each of its subordi-
with p(Ax, ®) being the joint prior of the two parameter nate leaf nodes corresponds to an element of a subset.
sets. Care is needed when solving through an iterative EM By assuming that the prior knowledge in a tree node can be
procedure [155] that findé givenA x, thenA x given. It used to construct prior density needed for MAP estimation of
was found that the results obtained with the joint estimation all the parameters in the successive child nodes, astrei-
procedure are better than those obtained with MAPLR of  tural maximum a posteriolfSMAP) algorithm [151], [152]
or with MAP of A x alone in all adaptation sizes tested [155]. has been developed for speaker and environment adaptation.

In a conventional HMM-based Bayesian adaptation frame-
work, the parameters between different HMMs are usually
assumed independent. Therefore, each HMM can only be
adapted if the corresponding unit has been observed in the
adaptation data. Since it is unlikely to have observed all the
units enough times in a small adaptation set, only a small
number of parameters can be effectively adapted. Itis, there-
fore, desirable to introduce some parameter correlation or

(Ax, ®) = arg max p(X|Ax, ®)-p(Ax, ®) (66)
(Aqu))
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It allows simultaneous adaptation of all the mixture Gaussian small amount of adaptation data to obtain an artificial bigger
parameters, even with only one adaptation utterance. size training set for speaker adaptation. Instead of mapping
Three key steps are required in formulating the proposedtraining data, linear regression transformations have also
SMAP approach. First, a tree is used to characterize thebeen used to map the selected speaker cluster models
acoustic space represented by the HMM parameters. Inbased on small-size adaptation data and then compose a
[151], an information theoretical criterion is used to cluster speaker-adaptive model [54]. Furthermore, these transfor-
all the Gaussian mixture component densities typically used mations have been used to normalize the so-céatleldvant
to model state observation densities in HMM. Next, given variabilities in an integrated MLspeaker adaptive training
all the density clusters used to characterize nodes in a tree(SAT) scheme [5] to obtain a set of generic speech models.
we need to find a Gaussian density to summarize all the Since the variations contributed by speakers is reduced first,
Gaussian components in the cluster so that the likelihood of athe resulted speaker independent models are in principle
sequence of observation vectors representing the adaptatiomore compact, i.e., requiring less parameters. However, in
data can be evaluated at the node level and, therefore, thehis case, an MLLR or MAP speaker adaptation routine
MAP estimate at any node in the tree can be computed. Forusually has to be performed to achieve a good performance
the third step, the prior density at each tree node needs to bdor a new speaker. Such procedures can also be carried
defined. In order to use every observation sample to estimateout on speaker clusters, such as female and male groups,
all the HMM parameters, we usehdgerarchical prior evo- and on other channel factor classes shown in Fig. 1. It is
lution approximatiorby assuming that the hyperparameters important to know the interactions among normalization,
characterizing the prior density at each node are evaluatedcompensation, and adaptation procedures to maximize the
based on the knowledge embedded in the prior density of its utility for designing plug-in decision rules for ASR.
parent node. Once the three key steps are established, the
SMAP estimation algorithm is then derived.
The SMAP procedure was shown to be effective for su-

pervised batch adaptation [151], unsupervised incremental \We have discussed a number of parameter adaptation tech-
adaptation [152], and combined supervised rapid adaptationniques to estimate the acoustic and language models for de-
and unsupervised incremental adaptation [152] in order to Signing a p|ug-in MAP decoder for ASR. However, in many
reduce the amount of adaptation data needed to achieve &ituations, such adaptive decision rules are still not capable
reasonable level of performance and to improve performanceof coping with the changing conditions and, therefore, mis-
degradation in mismatch conditions. Some recent work in match from training to testing_ The most effective way to
extending SMAP to handle structural parameters such ashandle mismatch seems to be finding invariant features so as
MLLR, called SMAPLR [156], has also demonstrated the to minimize the effect of acoustic mismatch between training
effectiveness of structural Bayesian adaptation approaches. and testing environments. Even though some features have
been shown less affected by a certain type of distortion, such
as linear microphone or channel effect, no feature has been
Structural parameters, such as those in affine transfor-discovered that is invariant across all adverse acoustic con-
mations, can also be used for normalizing the influence ditions. To circumvent this difficulty, a straightforward so-
of speakers, channels, and environments as suggested itution is to collect additional adaptation data in a specific
Fig. 5 so that the heterogeneity embedded in a large set oftesting condition and then to adapt the recognizer parameters
acoustic training data can be reduced and a compact setccordingly to work in the prescribed scenario. A more real-
of acoustic models can be estimated. The normalization istic approach is to again perform adaptive learning during
process can be carried out both in the feature, and modeltesting assuming no knowledge about the new acoustic con-
spaces (e.g., [181]). For example, the popukgstral mean ditions or the actual sentence (or transcription) spoken. This
normalization(CMN) algorithm [6] can be applied to every  process is often referred to as compensation, as opposed to
training utterance to reduce some channel and speakerdaptation. Compensation can be considered as a form of un-
effect. Codeword-dependent cepstralnormalizat{@DCN) supervised adaptation in which only the testing utterances
[1] and its variations [114] can be considered as extensionsare used. Many other names have also been adopted, e.g.,
of CMN. Speaker normalization througiocal tract length self adaptationauto adaptationinstantaneous adaptation
normalization (VTLN) using frequency warpinghas also or stochastic matching (e.g., [180], [182], [147], [53], [164],
been proposed (e.g., [108]). ML-based feature normaliza- and [123]). For robust speech recognition, compensation can
tion, such asignal bias removalSBR) [135] andstochastic be accomplished in the signal, feature and model spaces in
matching(SM) [147], which was originally developed for  order to reduce the distortions shown in Fig. 7 (adopted from
compensation, can also be performed before model training[147]). The readers are referred to a recent review on the
or adaptation (e.g., [181]). A frame-synchronous stochastic topic of feature and model compensation (e.g., [106]). In
matching algorithm has also been proposed for real-time this section, we focus our discussion on the relationship be-
processing [35]. Both piecewise linear transformation tween adaptation and compensation and on how to apply
(the so-calledmetamorphicnormalizatiofl7]) and linear some of the adaptation techniques discussed in previous sec-
regression transformation [130] have been applied to maptions to improve robustness of speech recognizers. Itis noted
training data of certain selected training speakers based on d@hat algorithms originally developed for adaptation, such as

VII. A DAPTATION, COMPENSATION, AND ROBUSTNESS

D. Adaptation and Normalization
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Fig. 7. Conceptual diagram of mismatch between training and
testing.

MLLR, can also be applied directly to compensation. Sim-

timated with an EM algorithm [147], [182]. The extended
MAP approach [180] and MLLR/MAPLR have also been
shown applicable to self-adaptation (e.g., [175] and [154]).
Because the amount of adaptation data is limited to the
testing utterance itself in self-adaptation, constraints are
needed to reduce the number of parameters to be adapted.
For example, in stochastic matching, such a constraint is
introduced through some form of parameter transformation
Ay = I's(Ax), in which Ax and A5 denote the orig-
inal and the transformed parameter vectors, respectively,
Fy(-) is a transformation of interest anbl is a small set
of transformation parameters characterizing the model
transformation. Then self-adaptation amounts to solving the

ilarly, techniques designed to handle compensation, such asp|jowing optimization problem:
model-based stochastic matching, can also be used for adap-

tation and normalization. For more general discussions on

robust speech recognition, the readers are referred to a few

recent publications (e.g., [90] and [158]).

One of the earliest studies on feature compensation is
cepstral mean normalization [6], which removes the cepstral
mean of each utterance before training and testing. CMN
was shown to be robust to microphone and channel distor-
tion in many systems. By making CMN more effective for
different sounds in different speaking conditions, CDCN
and its derived techniques [1], [114] were then developed.
A simplified version known as signal bias removalsignal
conditioningwas shown to be effective for several applica-
tions (e.g., [182] and [135]Hierarchical spectral clustering
in designing vector quantization codebook for normalization
has also been proposed [50]. Typically, a codebook is used
to represent the reference acoustic space and then a set
biases can be derived to compensate cepstral differenc
between testing feature vectors and reference codebook
When no training data are available to create the codebook,
a natural extension is to use the information embedded in
the acoustic HMMs to aid the feature compensation process
(e.g., [182] and [147]). In stochastic matching [147], which
is in essence a model-based equalization algorithm, the
entire set of HMMs is used to perform feature compensation
and solved for the recognized sentence.

A. Self-Adaptation or Compensation

(W, &) = arg max p(X|W, &, A)P(W)  (67)
where the nuisance parametéris solved together with
performing plug-in MAP decoding by iterative algorithms

[147], [53], [164].

B. Model Compensation

Although model-based feature compensation s effective in
some situations, there are many types of distortion that cannot
easily be realized by a simple feature transformation. Some-
times the exact distribution of the transformed feature vectors
can not be derived in a useful form for decoding, i.e., a nu-
merical procedure might be required. Model compensation
provides an attractive alternative. For example, if the feature

ias is time varying, i.ez: = w + b with b, being asto-

03hastic biad147], then the feature compensation vector can
ot be computed exactly. ¥ is a random vector with mean

vectoru, and covariance matrixX, and is independent from

. the speech featuresg, then it is equivalent to solving the bias

density parameters by the following model transformations:
Ha =ty + pp andE, = 2, 4+ E,. The nuisance parameters
iy andX, are solved either with a ML-based EM [147] or by a
MAP-based EM algorithm [24]. Other structures can also be
employedtoreducethe numberof parameterswhileimproving
compensation efficiency and effectiveness (e.g., [106]).
Other transformations, such dserarchical VQ [50],
probabilistic spectrum fitting[31], context modulation

In the previous sections, we have discussed techniques thaf181], spectral equalization[165], affine transformation

require a set of data to perform rapid batch or incremental

[39], and the widely used MLLR [109], although originally

adaptation. However, adaptation can also be performed atdeveloped for speaker adaptation, can also be used for

runtime on the testing data in an unsupervised manner. This
process is often referred to aslf-adaptationThe idea is to

model compensation. Care is needed when applying such
adaptation algorithms for compensation. First, compensa-

introduce additional parameters or structures to account fortion is equivalent to adaptation without transcription for
some models of mismatch in testing, and such parameters arsupervision, as shown in Fig. 5. Therefore, only reliable

to be estimated along with the recognized sentence duringunsupervised adaptation algorithms can directly be used for
actual testing. This is an important way to enhance robust- compensation. Another concern is that the number of the
ness toward varying environments, microphones, channelsparameters to be compensated should be limited because
and speakers. One way to do self-adaptation is through thetypically, only a small amount of testing utterances is used
Type Ill Bayesian adaptation [55] where the same testing ut- for compensation. Tying of transformation parameters (e.g.,
terance is used to obtain MAP estimator of all unit parame- [40] and [110]) needs to be considered in order to have an
ters without using the recognized unit labels. A second ap- effective compensation.

proach is through stochastic matching in whithsance pa- If the additive bias is an HMM, then, is also an HMM.
rametersfor distortion, and the recognized sentences are es-However, the topology and the state observation densities of
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x; can be very different from those ¢f, the original speech  model, withI'y being the set of language model parameters
HMM. Therefore, new models af, need to be estimated and  estimated from the training text data.

implemented during decoding. This family of algorithms is

known asmodel decompositiofi 70], parallel model com-  A. Minimax Classification

bination(PMC) [52], ormodel compositiofiL18]. The orig- Let n.(Ao) denote the uncertainty neighborhood of the
inal algorithms [170], [53] were designed to handle additive true model parameters, i.e., A € ne(Ao), whereA, is the
noise only. It was later extended to cope with both additive set of model parameters estimated from the training data
and convolutional noises [51]. Other algorithms that estimate ande can be viewed as a generic parameter to characterize
the joint densities of speech and noise have also been sugthe degree of the distortion. Then, we have

gested (e.g., [45] and [144]). We believe compensation to-

gether with adaptation and normalization are some keys to ME = {pa(X|W)|A € n(Ao)} (68)

future technology advances in robust speech recognition.

whereM? is the set of distorted models. Withi*, a func-

tional, namely, amipper boundf theworst case probability

of classification errorcan be defined [122]. A decision rule
As we discussed in Section Il, the plug-in MAP decoder that minimizes this functional is as follows:

minimizes the recognition error only if the form of the dis-

tributions of the data to be recognized and the corresponding 1 = arg max Pr,(W)- max pa(X|W)|. (69)

parameters are known exactly. The above adaptation and w Aenc(ho)

compensation strategies improve the robustness of SpeeCI:|'h|s is the so-called minimax classification rule, which was

recognition systems by making the distributipp(X|W)

reflect more faithfully the true distribution of(X|W) for

utteranceX to be recognized, while keeping the plug-in

MAP classification and decision rules intact. Another

possibility to improve the robustness of an ASR system is N

to modify the plug-in MAP decoder. This area has not at- Aw = argAEUtrEi)fm) Pa(X[IW) (70)

tracted much research attention, partly because the dynamic ’

programming-based search strategies for implementing the hereA(“) denotes pretrained model parameters for word
plug-in MAP decoder are by far the most efficient imple- W Then we apply the plug in MAP decision rule, withy
mentation for solving speech recognition solutions. Any replacing the ongmaIA W) Therefore conceptually, the
modification of the prevailing DP search algorithm requires minimax decision rule deS(.:ribed in (69’) can be viewéd as a

a considerable amount of work. However, there exist robust o .
decision rules that can be imolemented without changin procedure that modifies the (plug-in) MAP decoder shown
1St u 'mp withou 9ng (2) with an extra step as in (70) to find a modified point

too mggh of the existing DPtb.ased algorithms. , estimate in the neighborhoog( Ao ng A(w )} of the
Intuitively speaking, a decision strategy (rule) is called ro-
original classifier parameters, =

bustifitis not very sensitive to the previously discussed prior he ab b | f | K
uncertainty (or distortions). The readers are referred to [95] T € abovero ust minimax c a§3| |ce}t|on rule makes no as-
sumption about the form of the distortion. However, its effi-

for a formal definition ofdecision rule robustnessn the ; e
following two sections, we show two examples of such ro- ©2¢¥ does depend on an appropriate spemﬂcat‘lgn of the pa-
rameter uncertainty neighborhogd Ao) = {ng(AgJ ))}. In

bust decision rules, namelyinimax classification ruland L7 /
Bayesian predictive classificatiogBPC) rule, respectively. e past several years, some other specific techniques have
Both of them assume the following: also belen develot;))ed tdo implement th((a abm[relm]ax c:je[m-])
N sion rulein HMM-based ASR systems (e.g., [124] and [82]).
1 ;Zi](zsst“s;tfzgg?;(}gg%;ne C:g(nm)eignﬁn%%%)to They are shown to be effective in dealing with noisy speech
and P 8/‘/)_ P P recognition and the mismatch caused by different recording
F 1 .y
conditions.

2) _thetrue_parameters ofthese d_lstrlbutlonks,andl“, “e. There are also other possibilities to model the admissible
in a neighborhood of the estimated (or hypothetical) distortionsAM*. For example, if we use

ones;
3) the, thereforeprior uncertainty can be modeled by M* = XA = To(A 71
defining anuncertainty neighborhooaf the model < = A X[W)| s(ho)} (1)

parameters\ and[" and/or possibly a distribution of - \yhere7;(A,) denotes a specific transformation & with
model parameterg(A, I') on thisuncertainty neigh-  harameters. In this way, the uncertainty of can be char-
borhood acterized by the uncertainty 6f Then theminimax decision

With these assumptions, the specific minimax decision rule rule with respect to the abov&t* will be

and predictive decision rule can be constructed accordingly

to satisfy some desired robustness properties. To simplify - _ _

our discussion, we further assume that we do not consider W=ag Ria Pro (W) IHI?XP(X'W’ A =T(M))

the uncertainty of?(W) and uselr, (W) as the language (72)

VIIl. RoBUST DECISION RULES

first studied by Merhav and Lee [122]. It can be solved in two
steps. First, we estimate the underlying parameters using the
ML approach within each nelghborhoqd(A )
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The so-callednodel-space stochastic matchingethod de- 1) the definition of the prior density(A|¢) for modeling

scribed in [147] and [164] can be theoretically justified in the uncertainty of the HMM parameters;
this way. 2) the specification of the hyperparametess,
3) the evaluation of the predictive density.
B. Bayesian Predictive Classification Readers are referred to [74], [75], [83], and [84] for details

As we discussed before, minimax classification tries to On how the above issues are addressed in a series of prelimi-
handle the worst case mismatch by assuming a uniform dis-nary studies and how the BPC approach enhances robustness
tribution in the uncertainty neighborhood for all possible de- When mismatches exist between training and testing condi-
viation from the nominal parametets. Instead of assigning ~ tions.
anothemoint estimateA as done in the minimax classifica- o
tion rule discussed above, one can alserage outhe effect ~ C- Reélated Robust Decision Approaches
of the possible modeling and estimation errors by assuming If training data can be incorporated into designing deci-
a general prior pdf foA to characterize the parameter vari- sion rules, some new possibility opens. One such example
ability while making classification decisions. In this way, a is theapproximate Bayesia(AB) decision rulefor speech
new robust decision strategy can be derived and is often re-recognition, which was based on the generalized likelihood
ferred to as a Bayesian predictive classification rule (e.g., ratios computed from the available training and testing data.

[126] and [74]). Such an AB rule operates as follows [121]:

The principle behind the BPC approach is quite straight-
forward. Because we assume no knowledge about the pos- max[p(X|A, W) - p(X]A, W]
sible distortions, we thus rely on a quite general prior pdf to W =arg max max p(X[A, W] Pr, (W).
characterize the variability of the HMM parameters caused A ’
by the possible mismatches and errors in modeling and esti- (76)
mation. Let us consider the uncertainty of the model param- _ ) o o
etersA by treating them as if they were random. Quiior As discussed previously, the minimax classification rule

uncertaintyaboutA is then assumed to be summarized in a ¢&n be viewed as a two-step procedure and implemented in
known jointa priori densityp(Aly), with A € €4, where (69). First, each testing utterance is treated as possibly be-
Q, denotes an admissible regiondfndy is the set of pa-  10nging to any word sequence, and a constrained ML esti-
rameters of the prior pdf. In this way, we are essentially con- Mate of the related HMM parameters is obtained. Then, a

sidering the following admissible distorted set of data model PIUg-in MAP rule is used for speech recognition by using
M* the updated HMM parameters. We can use another estima-

tion technique in the first step and end up with a modified
M = {pa(X[W)|A ~ p(Alp); A € Q) (73) minimax decision rule, e.g.,

where we can viewas a parameter to characterize the broad- W = argmax{p(X|Antar, W) - Pr, (W)] - (77)
ness of the distributiop(A|¢) or, equivalently, the degree

of the distortion. If we want to account for model parame-
ters’ uncertainty imecognition,anoptimal Bayes’ solution
namely, BPC, exists. It selects a speech recognizer to mini- : e I )
mize theoverall recognition error(this is when the average ~ Bayesian minimax rulgo emphasize its difference from
is taken both with respect to the sampling variation in the ex- € original minimax approach in [122]. The readers are
pected testing data and the uncertainty described by the priof€/€Ted to [82] for a performance comparison of different

distribution). Such a BPC rule operates as follows: implementations of the minimax rule.
We have previously discussed BPC approach as a new

where Amap is an MAP estimate, Ayap =
argmaxaecq, p(X|A, W)p(Alp). For the convenience of
reference, we call this modified minimax decision rule a

“ . decision rule that averages out the sampling error in HMM
W = arg max p(W|X) o .
w parameter estimation. A related but simpler approach can
= argn‘l%xﬁ(X|W) - Pr,(W) (74) also be used for model compensation and adaptation. By
assuming the CDHMM and/or transformation parameters to
where be uncertain, Bayesian predictive densities can be computed

for a subset of the parameters. In [149], such an idea is
. explored in the context of Bayesian speaker adaptation
PX|W) = /p(X|A’ Wip(Ale) dA (75) where a Gaussian prior pdf for the mean vector is adopted
and theBayesian predictive densityf each Gaussian mix-
is called thepredictive pdf(e.g., [3], [57], and [142]) of the  ture component is calculated to serve as the compensated
observatiorX given the wordW. The crucial difference be-  distribution of that component which is used in the plug-in
tween the plug-in and predictive classifiers is that the former MAP decision rule in (2). In [83], a similar idea is applied
acts as if the estimated model parameters were the true onegp noisy speech recognition where a uniform prior pdf on a
whereas the predictive methods average over the uncertaintyprespecified uncertainty neighborhood for the mean vector
in parameters. Three key issues thus arise in BPC: is adopted. Th8ayesian predictive compensatifi62] and
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Bayesian predictive adaptatidtt63] are designed to handle observation spac@,,, the loss functiod(W, d(X)), and the

a small number of transformation parameters instead of thejoint pdf p(17, X). Based on the previous discussion, it is

entire set of CDHMM parameters. Both techniques were quite clear to us now that the performance of the currently
found to be robust to speaker and channel distortions whenpopular ASR systems, which adopt a plug-in MAP decision

a small size adaptation set was used. rule with ML/MAP-estimated densities, will depend on the
following conditions:
IX. DISCUSSION ANDCONCLUSION 1) whether the assumed parametric models are accurate

. . . and flexible enough to appropriately model the highly
We have revisited the classical Bayes’ decision theory and complex and variable speech signals or the extracted
discussed how it has been used to design pattern-recogni- feature vectors:
tion decision rules such as an automatic speech-recognition 2) whether the training data set is sufficient and represen-

f':ll_gor(ljt_hm_.b Dl_Je tofthe lack of ad c?mplete_ knowlt_ad%e of the tative enough to guarantee good parameter estimation
joint distribution of patterns and classes in practical pattern- and generalizability:

recognition problems, a designer usually assumes a partic- 3y \yhether the assumed models and the related parameter
ular form of a parametric distribution and estimates the pa- estimation methods are computationally efficient and
rameters needed to evaluate the joint distribution from a col- robust enough to take care of the possible distortions

lection of labeled training data. An adaptive decision rule, between models and training samples;

such as the plug-in maximum posterioridecision rule, is 4) whether the distortions between the trained models and
then adopted to perform the desired pattern-recognition op- the actual testing data are small enough to avoid the
eration. We have explained several key concepts about the breakdown of the whole approach

op'qmal decision rule, plug-in decision ruIe., gnd robust de- We can always try to improve the ASR performance by:
cision rule. We have shown how these decision rules can be 1) findina i b hi X b
derived under different assumptions and optimality criteria. 1) Slzn)-mg invariant or robust speech features (i.e., a better

A clear understanding of these aspects will guide us to ap- . . . .
preciate why the current ASR technology is so successful ~2) developing better modeling and learning techniques
[i.e., a bettep(W, X)];

in certain applications, and more important, why it fails in Vi d . hni ) b
many other situations. Although ASR is chosen as the ap- 3) app ylng. adaptation  techniques [i.e., a better
plication discussed in this article, we deliberately make our p(W’ X)l; - L

4) using robust decision strategies (i.e., try to make the

discussions as general as possible so that most of them can bost decision based lofth iable inf _
be applied to other pattern-recognition problems employing estdecision based on all of the available information).

the same decisiontheoretic formulation. Among many research issues, we want to emphasize the im-
After a careful review of the theoretic foundations of the Portance of the foIIovymg ISsues:

modern ASR technology, it is quite clear that in order to de- 1) how to collect/find useful real speech data; N

sign an automatic speech recognizer that works well for dif- ~ 2) how to efficiently and intelligently use these training

ferent tasks and speakers over unexpected and possibly ad- ~ data to discover useful knowledge sources;

verse conditions, all of the three distortion types, namely, 3) how to use the above derived knowledge sources in
the small sample effect, the training model and estimation designing a robust ASR system;

errors, and the mismatched testing conditions, discussed in 4) how to incorporate confidence measures into recog-
Section 1I-D, need to be appropriately treated to deal with nized words and phrases to improwgelligence of
these violations of modeling assumptions. Not all of them speech-recognition systems.

has been seriously addressed in the past. In this paper, wdechnical advances are needed in discovering new structures
have mainly addressed issues related to adaptive modeling ofn signal, feature, and model representations and their inter-
speech and linguistic units. We have also briefly discussed aactions with the speaker and speaking environment in which
recent research trend in designing some new robust decisiorthe speech signal is generated. This will allow us to incorpo-
rules. These rules will be especially attractive for the class of rate more knowledge sources in the source-channel models
robust speech-recognition problem in which: shown in Fig. 2 to more faithfully reflect the actual channel

1) mismatches between training and testing conditions information illustrated in Fig. 1. Our discussion in this paper
exist: about model estimation, adaptation, compensation, and nor-

2) an accurate knowledge of the mismatch mechanism is Malization coupled with these new advances will guide us
unknown: in designing high-performance and robust decision rules in

parameters. tions for automatic speech recognition and many other pat-

More fundamental work and research innovations are needeotern-recognltlon problems.

in this area.

Before we close this paper, we want to emphasize again
that in order to derive an optimal decision rule, itisimportant ~ The authors gratefully acknowledge the contributions of
to have correct knowledge of three key factors, namely, the many of their past and present collaborators, including C.

ACKNOWLEDGMENT

1264 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000



Chan, C. Chesta, J.-T. Chien, W. Chou, J.-L. Gauvain, H.
Jiang, B.-H. Juang, S. Katagiri, C.-H. Lin, B. Ma, T. Mat-
suoka, N. Merhav, T. A. Myrvoll, L. R. Rabiner, M. Rahim,
A. Sankar, K. Shinoda, O. Siohan, and A. C. Surendran. Their [18]
insight and hard work have made the topics of decision rule
design and decision parameter adaptation two of the most [19]
fruitful areas in the field of automatic speech recognition in
recent years. The materials presented in this paper are largely [20]
extracted from some of their joint publications or discussions

with the authors.

The authors also thank O. Siohan for sharing with them the  [21]
initial versions of the roadmap in Fig. 3 and the illustration 55,
of direct and indirect HMM adaptation in Fig. 4. Both figures
were later updated by the authors to reflect recent advances of [23]
parameter adaptation and joint estimation of transformation
and HMM parametersforspeechrecognition. Theauthorsalso
owe their appreciation to two anonymous reviewers, whose
comments helped the presentation of this paper.

[17]

[24]

[25]
REFERENCES
(1]
(2]

[26]
A. Acero, Acoustical and Environmental Robustness in Automatic
Speech Recognition Norwell, MA: Kluwer, 1993.
S. M. Ahadi and P. C. Woodland, “Combined Bayesian and pre-
dictive techniques for rapid speaker adaptation of continuous den-
sity hidden Markov models,Comput. Speech Langrol. 11, pp.
187-206, 1997.
J. Aitchison and I. R. DunsmoreStatistical Prediction Anal-
ysis Cambridge, U.K.: Cambridge Univ. Press, 1975.
S. Amari, “A theory of adaptive pattern classifierdBEE Trans.
Electron. Comput.vol. EC-16, no. 3, pp. 299-307, 1967.
T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A
compact model for speaker adaptive training,’Proc. ICSLP-96
Philadelphia, PA, 1996, pp. 1137-1140.
B. S. Atal, “Effectiveness of linear prediction characteristics of the
speech wave for automatic speaker identification and verification,”
J. Acoust. Soc. Amewol. 55, no. 6, pp. 1304-1312, 1974.
L. R. Bahl, F. Jelinek, and R. L. Mercer, “A maximum likelihood
approach to continuous speech recognitidEEE Trans. Pattern
Anal. Machine Intell.vol. PAMI-5, no. 2, pp. 179-190, 1983.
L. R.Bahl, P.F. Brown, P. V. De Souza, and R. L. Mercer, “Maximum
mutual information estimation of hidden Markov model parameters
for speech recognition,” ifProc. ICASSP-86Tokyo, Japan, 1986,
pp. 49-52.
——, “Tree-based language model for natural language speech
recognition,”|EEE Trans. Acoust., Speech, Signal Processio
37, pp. 1001-1008, July 1989.
L. R. Bahl, P. V. De Souza, P. S. Gopalakrishnan, and M. A.
Picheny, “Context dependent vector quantization for continuous
speech recognition,” iProc. ICASSP-93Minneapolis, MN, 1993,
pp. 11-632—11-635.
L. R. Bahl, P. F. Brown, P. V. De Souza, and R. L. Mercer, “Esti-
mating hidden Markov model parameters so as to maximize speech
recognition accuracy,lEEE Trans. Speech Audio Processingl.
1, no. 1, pp. 77-83, 1993.
J. K. Baker, “Stochastic modeling for automatic speech under-
standing,” inSpeech RecognitioD. R. Reddy, Ed. New York:
Academic, 1975, pp. 521-542.
——, “The Dragon system—An overview/EEE Trans. Acoust.,
Speech, Signal Processingl. ASSP-23, pp. 24-29, Jan. 1975.
L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic func-
tions of Markov chains,’Ann. Math. Statist.vol. 41, pp. 164-171,
1970.
L. E. Baum, “An inequality and associated maximization techniques
in statistical estimation for probabilistic functions of Markov pro-
cesses,Inequalities vol. 3, pp. 1-8, 1972.
J. R. Bellegarda and D. Nahamoo, “Tied mixture continuous param-
eter modeling for speech recognitiot2EE Trans. Acoust., Speech,
Signal Processingvol. 38, pp. 2033—2045, Dec. 1990.

[27]
(28]
(3]
(4]
(5]

[29]

[30]

(6]
(31]

(7]
(32]

(8] (33]
(34]

El
(35]

[10]
[36]

[37]
[11]

(38]

[12]
(39]

[13]
[40]
[14]
[41]

(18]
[42]

[16] [43]

LEE AND HUO: ADAPTIVE DECISION RULES FOR AUTOMATIC SPEECH RECOGNITION

J. R. Bellegarda, P. V. De Souza, A. J. Nadas, D. Nahamoo, M. A.
Picheny, and L. R. Bahl, “The metamorphic algorithm: A speaker
mapping approach to data augmentatidBFE Trans. Speech Audio
Processingvol. 2, pp. 413-420, July 1994.

J. R. Bellegarda, “A multispan statistical language modeling for
large vocabulary speech recognitionZEE Trans. Speech Audio
Processingvol. 6, pp. 456—467, Sept. 1998.

——, “Exploiting latent semantic information in statistical language
modeling,”Proc. IEEE vol. 88, pp. 1279-1296, Aug. 2000.

J. M. Bernardo and F. J. Giron, “A Bayesian analysis of simple mix-
ture problems,” irBayesian Statistics, 3. M. Bernardo, M. H. DeG-
root, D. V. Lindley, and A. F. M. Smith, Eds. Oxford, U.K.: Oxford
Univ. Press, 1988, pp. 67-78.

B. P. Carlin and T. A. LouisBayes and Empirical Bayes Methods
for Data Analysis London, U.K.: Chapman & Hall, 1996.

S. Chen and P. V. De Souza, “Speaker adaptation by correlation
(ABC),” in Proc. DARPA SLT Workshpfh997.

J.-T. Chien and H.-C. Wang, “Telephone speech recognition
based on Bayesian adaptation of hidden Markov mod&pgech
Commun,.vol. 22, pp. 369-384, 1997.

J.-T. Chien, C.-H. Lee, and H.-C. Wang, “A hybrid algorithm for
speaker adaptation using MAP transformation and adaptation,”
IEEE Signal Processing Lettvol. 4, pp. 167-168, June 1997.

—, “Improved Bayesian learning of hidden Markov models for
speaker adaptation,” iRroc. ICASSP-9Munich, Germany, 1997,
pp. 1027-1030.

J.-T. Chien, “On-line hierarchical transformation of hidden Markov
models for speech recognition|EEE Trans. Speech Audio Pro-
cessingvol. 7, pp. 656—667, Nov. 1999.

W. Chou, B.-H. Juang, and C.-H. Lee, “Segmental GPD training
of HMM based speech recognizer,” froc. ICASSP-92San Fran-
cisco, CA, 1992, pp. 473-476.

W. Chou, C.-H. Lee, and B.-H. Juang, “Minimum error rate
training based on the N-best string models,"Hroc. ICASSP-93
Minneapolis, MN, 1993, pp. 11-652—I1-655.

——, “Minimum error rate training of inter-word context depen-
dent acoustic model units in speech recognitionPiioc. ICSLP-94
Yokohama, Japan, 1994, pp. 439-442.

W. Chou, “Maximum posterior linear regression with elliptically
symmetric matrix variate priors,” iRroc. EuroSpeech-98udapest,
Hungary, 1999, pp. 1-4.

S. J. Cox and J. S. Bridle, “Unsupervised speaker adaptation by
probabilistic fitting,” inProc. ICASSP-8%Glasgow, U.K., 1989, pp.
294-297.

S. J. Cox, “Predictive speaker adaptation in speech recognition,”
Comput. Speech Langol. 9, pp. 1-17, 1995.

M. DeGroot,Optimal Statistical Decisions New York: McGraw-
Hill, 1970.

S. A. Della Pietra, V. J. Della Pietra, R. L. Mercer, and S. Roukos,
“Adaptive language modeling using minimum discriminant estima-
tion,” in Proc. ICASSP-92San Francisco, CA, 1992, pp. 633-636.
L. Delphin-Poulat, C. Mokbel, and J. Idier, “Frame-synchronous sto-
chastic matching based on the Kullback—Leibler information,” in
Proc. ICASSP-98Seattle, WA, 1998, pp. 89-92.

R. De Mori, Ed.,Spoken Dialogues with ComputersNew York:
Academic, 1998.

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithmJ! Roy. Statist. Soc.,®ol.

39, no. 1, pp. 1-38, 1977.

L. Deng, “A dynamic feature based approach to the interface be-
tween phonology and phonetics for speech modeling and recogni-
tion,” Speech Commurwol. 24, no. 4, pp. 299-323, 1998.

V. V. Digalakis, D. Ritchev, and L. G. Neumeyer, “Speaker adap-
tation using constrained estimation of Gaussian mixturtSEE
Trans. Speech Audio Processingl. 3, pp. 357-366, Sept. 1995.

V. V. Digalakis and L. G. Neumeyer, “Speaker adaptation using com-
bined transformation and Bayesian methodEEE Trans. Speech
Audio Processingvol. 4, pp. 294-300, July 1996.

V. V. Digalakis, “Online adaptation of Hidden Markov models using
incremental estimation algorithmdEEE Trans. Speech Audio Pro-
cessingvol. 7, pp. 253-261, May 1999.

R. O. Duda and P. E. HarRattern Classification and Scene Anal-
ysis  New York: Wiley, 1973.

Y. Ephraim, A. Dembo, and L. R. Rabiner, “A minimum discrim-
ination information approach for hidden Markov modelintEEE
Trans. Inform. Theoryol. 35, pp. 1001-1013, Sept. 1989.

1265



(44]

(45]

[46]

(47]
(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

1266

Y. Ephraim and L. R. Rabiner, “On the relations between modeling
approaches for speech recognitiofFEE Trans. Inform. Theory
vol. 36, pp. 372-380, Mar. 1990.

Y. Ephraim, “Statistical model based speech enhancement systems,”
Proc. IEEE vol. 80, pp. 1526-1555, Oct. 1992.

M. Federico, “Bayesian estimation method &f-gram language
model adaptation,” ifProc. ICSLP-96 Philadelphia, PA, 1996, pp.
240-243.

J. Ferguson, EdKlidden Markov Models for SpeechPrinceton,

NJ: IDA, 1980.

T. S. FergusonMathematical Statistics: A Decision Theoretic Ap-
proach New York: Academic, 1967.

S. Furui, “A training procedure for isolated word recognition
systems,”|EEE Trans. Acoust., Speech, Signal Processil.
ASSP-28, no. 2, pp. 129-136, 1980.

—, “Unsupervised speaker adaptation method based on hierar-
chical spectral clusteringlEEE Trans. Acoust., Speech, Signal Pro-
cessingvol. 37, pp. 1923-1930, Dec. 1989.

M. J. F. Gales and S. J. Young, “Robust speech recognition in ad-
ditive and convolutional noise using parallel model combination,”
Comput. Speech Langol. 9, pp. 289-307, 1995.

——, “Robust continuous speech recognition using parallel model
combination,”|EEE Trans. Speech Audio Processivgl. 4, pp.
352-359, Sept. 1996.

M. J. F. Gales and P. C. Woodland, “Mean and variance adaptation
within the MLLR Framework,"Comput. Speech Langol. 10, pp.
249-264, 1996.

Y.-Q. Gao, M. Padmanabhan, and M. A. Picheny, “Speaker
adaptation based on pre-clustering training speakers,Pric.
EuroSpeech-9/Rhodes, Greece, 1997, pp. 2091-2094.

J.-L. Gauvain and C.-H. Lee, “Bayesian learning for hidden Markov
models with Gaussian mixture state observation densitigsgech
Commun.vol. 11, no. 2-3, pp. 205-214, 1992.

—, “Maximum A posteriori estimation for multivariate Gaussian
mixture observations of Markov chain$EEE Trans. Speech Audio
Processingvol. 2, pp. 291-298, Apr. 1994.

S. Geisser,Predictive Inference: An Introduction New York:
Chapman & Hall, 1993.

N. Glick, “Sample-based classification procedures derived from
density estimators,J. Amer: Statist. Assqorol. 67, pp.116-122,
1972.

——, “Sample-based classification procedures related to empiric
distributions,”IEEE Trans. Inform. Theorwol. IT-22, pp. 454-461,
1976.

I.J.Good, “The population frequencies species and the estima-
tion of population parametersBiometrikg vol. 40, pp. 237-264,
1953.

Y. Gong, “Stochastic trajectory modeling and sentence searching
for continuous speech recognitionZEE Trans. Speech Audio Pro-
cessingvol. 5, pp. 33-44, Jan. 1997.

P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, D. Nahamoo, and M.
A. Picheny, “Decoder selection based on cross-entropies?tac.
ICASSP-88New York, 1988, pp. 20-23.

A. K. Gupta and T. VargaElliptically Contoured Models in Statis-
tics. Norwell, MA: Kluwer, 1993.

J. D. Hamilton, “A quasi-Bayesian approach to estimating parame-
ters for mixtures of normal distributionsJ! Bus. Econ. Statistvol.

9, no. 1, pp. 27-39, 1991.

H. Hattori and S. Sagayama, “Vector field smoothing principle for
speaker adaptation,” iRroc. ICSLP-92 Banff, Alberta, Canada,
1992, pp. 381-384.

H.-W. Hon, “Vocabulary-independent speech recognition: The
VOCIND System,” Ph.D. dissertation, School of Comput. Sci.,
Carnegie-Mellon Univ., Pittsburgh, PA, 1992.

X. Huang and M. A. Jack, “Semi-continuous hidden Markov models
for speech signal,Comput. Speech Langol. 3, no. 3, pp. 239-251,
1989.

X. Huang and K.-F. Lee, “On speaker-independent speaker depen-
dent and speaker-adaptive speech recogniti®fEE Trans. Speech
Audio Processingvol. 1, pp. 150-157, Apr. 1993.

Q. Huo, C. Chan, and C.-H. Lee, “Bayesian adaptive learning of the
parameters of hidden Markov model for speech recognitittEE
Trans. Speech Audio Processingl. 3, pp. 334-345, Sept. 1995.
——, “On-line adaptation of the SCHMM parameters
based on the segmental quasi-Bayes learning for speech
recognition,” IEEE Trans. Speech Audio Processingl. 4, pp.
141-144, Mar. 1996.

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

(94]

[95]

Q. Huo and C.-H. Lee, “On-line adaptive learning of the contin-
uous density hidden Markov model based on approximate recursive
Bayes estimate,|[EEE Trans. Speech Audio Processingl. 5, pp.
161-172, Mar. 1997.

——, “On-line adaptive learning of the correlated continuous den-
sity hidden Markov models for speech recognitiolEEE Trans.
Speech Audio Processingpl. 6, pp. 386—-397, July 1998.

Q. Huo and B. Ma, “On-line adaptive learning of COHMM parame-
ters based on multiple-stream prior evolution and posterior pooling,”
in Proc. EuroSpeech-9Budapest, Hungary, 1999, pp. 2721-2724.
Q. Huo and C.-H. Lee, “A Bayesian predictive classification ap-
proach to robust speech recognitiohZEE Trans. Speech Audio
Processingvol. 8, pp. 200—-204, Mar. 2000.

——, “Robust speech recognition based on adaptive classification
and decision strategies,” Speech Commun., to be published.

Q. Huo, N. Smith, and B. Ma, “Efficient ML training of COHMM
parameters based on prior evolution posterior intervention and feed-
back,” inProc. ICASSP-20Q0rurkey, to be published.

M.-Y. Hwang, “Subphonetic acoustic modeling for speaker-indepen-
dent continuous speech recognition,” Ph.D. dissertation, School of
Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, 1993.

F. Jelinek, “Continuous speech recognition by statistical methods,”
Proc. |IEEE vol. 64, pp. 532-556, Apr. 1976.

F. Jelinek, R. L. Mercer, and S. Roukos, “Principles of lexical
language modeling for speech recognition,’Aidvances in Speech
Signal ProcessingS. Furui and M. M. Sondhi, Eds. New York:
Marcel Dekker, 1991, pp. 651-699.

F. Jelinek, B. Merialdo, S. Roukos, and M. Strauss, “A dynamic lan-
guage model for speech recognition,”Rmoc. DARPA Speech and
Natural Language WorkshoPacific Grove, CA, 1991, pp. 293-295.

F. Jelinek Statistical Method for Speech RecognitiorCambridge,
MA: MIT Press, 1997.

H. Jiang, K. Hirose, and Q. Huo, “A minimax search algorithm for
CDHMM based robust continuous speech recognition,Pioc.
ICSLP-98 Sydney, Australia, 1998, pp. 11-389-11-392.

——, “Robust speech recognition based on a Bayesian prediction
approach,”|EEE Trans. Speech Audio Processingpl. 7, pp.
426-440, July 1999.

——, “Improving Viterbi Bayesian predictive classification via se-
quential Bayesian learning in robust speech recogniti@m&ech
Commun.vol. 28, no. 4, pp. 313-326, 1999.

B.-H. Juang, S. E. Levinson, and M. M. Sondhi, “Maximum like-
lihood estimation for multivariate mixture observations of Markov
chains,”IEEE Trans. Inform. Theoryol. IT-32, no. 2, pp. 307-309,
1986.

B.-H. Juang and L. R. Rabiner, “The segmertaimeans algorithm

for estimating parameters of hidden Markov modelEEE Trans.
Acoust., Speech, Signal Processiugl. 38, pp. 1639-1641, Sept.
1990.

B.-H. Juang and S. Katagiri, “Discriminative learning for minimum
error classification,”IEEE Trans. Signal Processingol. 40, pp.
3043-3054, Dec. 1992.

B.-H. Juang, “Automatic speech recognition: problems progress &
prospects,” presented at ti®96 IEEE Workshop on Neural Net-
works For Signal Processinglyoto, Japan, 1996.

B.-H. Juang, W. Chou, and C.-H. Lee, “Minimum Classification
Error Rate Methods for Speech RecognitiolsEE Trans. Speech
Audio Processingvol. 5, pp. 257-265, May 1997.

J.-C. Junqua and J.-P. HatoRpbustness in Automatic Speech
Recognition: Fundamentals and ApplicationdNorwell, MA:
Kluwer, 1996.

S. Katagiri, C.-H. Lee, B.-H. Juang, and T. Komori, “New discrim-
inative training algorithms based on a generalized probabilistic de-
scent method,” presented at tReoc. IEEE-SP Workshop Neural
Networks for Signal Processingrinceton, NJ, 1991.

S. Katagiri, B.-H. Juang, and C.-H. Lee, “Pattern recognition using a
family of design algorithms based upon the generalized probabilistic
descent method Proc. IEEE vol. 86, pp. 2345-2373, Nov. 1998.

S. M. Katz, “Estimation of probabilities from sparse data for the
language model component of a speech recognifEEE Trans.
Acoust., Speech, Signal Processingl. ASSP-35, pp. 400-401,
Mar. 1987.

R. Kneser, J. Peters, and D. Klakow, “Language model adaptation
using dynamic marginals,” inProc. EuroSpeech-97Rhodes,
Greece, 1997, pp. 1971-1974.

Y. Kharin, Robustness in Statistical Pattern RecognitiofNorwell,

MA: Kluwer, 1996.

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000



[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

LEE AND HUO: ADAPTIVE DECISION RULES FOR AUTOMATIC SPEECH RECOGNITION

V. Krishnamurthy and J. B. Moore, “On-line estimation of Hidden
Markov model parameters based on the Kullback—Leibler Infor-
mation measure,1EEE Trans. Signal Processingol. 41, pp.
2557-2573, Aug. 1993.

S. Kullback,Information Theory and Statistics New York: Wiley,
1959.

R. Kuhn and R. De Mori, “A cache-based natural language model
for speech recognitionEEE Trans. Pattern Anal. Machine Intell.
vol. 12, pp. 570-583, June 1990.

M. J. Lasry and R. M. Stern A posterioriestimation of correlated
jointly Gaussian mean vectordEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-6, pp. 530-535, Apr. 1984.

R. Lau, R. Rosenfield, and S. Roukos, “Trigger-based language
models: A maximum entropy approach,” iAroc. ICASSP-93
Minneapolis, MN, 1993, pp. 11-45-11-48.

C.-H. Lee, L. R. Rabiner, R. Pieraccini, and J. G. Wilpon, “Acoustic
modeling for large vocabulary speech recognitid®dgmput. Speech
Lang, vol. 4, pp. 127-165, 1990.

C.-H. Lee, C.-H. Lin, and B.-H. Juang, “A study on speaker
adaptation of the parameters of continuous density hidden Markov
models,”IEEE Trans. Signal Processingol. 39, pp. 806—-814, Apr.
1991.

C.-H. Lee and J.-L. Gauvain, “Speaker adaptation based on MAP
estimation of HMM parameters,” iRroc. ICASSP-93Viinneapolis,
MN, 1993, pp. 11-652—11-655.

C.-H. Lee, F.-K. Soong, and K.-K. Paliwal, Ed&ytomatic Speech
and Speaker Recognition: Advanced TopicSlorwell, MA:
Kluwer, 1996.

C.-H. Lee, B.-H. Juang, W. Chou, and J. J. Molina-Perez, “A
study on task-independent subword selection and modeling for
speech recognition,” iflProc. ICSLP-96 Philadelphia, PA, 1996,
pp. 1816-1819.

C.-H. Lee, “On stochastic feature and model compensation ap-
proaches to robust speech recognitidBgeech Communvol. 25,

pp. 29-47, 1998.

K.-F. Lee,Automatic Speech Recognition—The Development of the
SPHINX-System Norwell, MA: Kluwer, 1989.

L. Lee and R. C. Rose, “Speaker normalization using efficient
frequency warping procedures,” Rroc. ICASSP-96Atlanta, GA,
1996, pp. 353-356.

C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density
hidden Markov models,”"Comput. Speech Langvol. 9, pp.
171-185, 1995.

——, “Flexible speaker adaptation using maximum likelihood linear
regression,” inProc. ARPA SLS Technology Workshd995, pp.
110-115.

S. E. Levinson, “Structural methods in automatic speech recogni-
tion,” Proc. IEEE vol. 73, pp. 1625-1650, 1985.

L. R. Liporace, “Maximum likelihood estimation for multivariate
observations of Markov sourcesEEE Trans. Inform. Theorwol.
IT-28, no. 5, pp. 729-734, 1982.

C.-S.Liu, C.-H. Lee, W. Chou, A. E. Rosenberg, and B.-H. Juang, “A
study on minimum error discriminative training for speaker recog-
nition,” J. Acoust. Soc. Amewxol. 97, no. 1, pp. 637-648, 1995.

F.-H. Liu, “Environment adaptation for robust speech recognition,”
Ph.D. dissertation, School of Comput. Sci. Carnegie-Mellon Univ.,
Pittsburgh, PA, 1994.

A. Ljolje, Y. Ephraim, and L. R. Rabiner, “Estimation of hidden
Markov model parameters by minimizing empirical error rate,” in
Proc. ICASSP-901990, pp. 709-712.

U. E. Makov and A. F. M. Smith, “A quasi-Bayes unsupervised
learning procedure for priors[|EEE Trans. Inform. Theoryvol.
IT-23, no. 6, pp. 761-764, 1977.

J. S. Maritz and T. LwinEmpirical Bayes Method®2nd ed. New
York: Chapman & Hall, 1989.

F. Martin, K. Shikano, and Y. Minami, “Recognition of noisy speech
by composition of hidden Markov models,”Rroc. EuroSpeech-93
Berlin, Germany, 1993, pp. 1031-1034.

J. J. Martin, Bayesian Decision Problems and Markov
Chains New York: Wiley, 1967.

T. Matsuoka and C.-H. Lee, “A study of on-line Bayesian adapta-
tion for HMM-based speech recognition,” Rroc. EuroSpeech-93
Berlin, Germany, 1993, pp. 815-818.

N. Merhav and Y. Ephraim, “A Bayesian classification approach
with application to speech recognitionZEE Trans. Signal Pro-
cessingvol. 39, pp. 2157-2166, Oct. 1991.

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]
[143]

[144]

[145]

N. Merhav and C.-H. Lee, “A minimax classification approach with
application to robust speech recognitiolsEE Trans. Speech Audio
Processingvol. 1, pp. 90-100, Jan. 1993.

C. Mokbel and L. Delphin-Poulat, “A Unified framework for auto-
adaptive speech recognition,”Rroc. Workshop Robust Methods for
Speech Recognition in Adverse Conditicfempere, Finland, 1999,
pp. 227-230.

S. Moon and J.-N. Hwang, “Robust speech recognition based
on joint model and feature space optimization of hidden Markov
models,”|EEE Trans. Neural Networksol. 8, pp. 194-204, Mar.
1997.

A. Nadas, “A decision theoretic formulation of a training problem
in speech recognition and a comparison of training by unconditional
versus conditional maximum likelihood,JEEE Trans. Acoust.,
Speech, Signal Processingl. ASSP-31, pp. 814-817, Apr. 1983.
——, “Optimal solution of a training problem in speech recog-
nition,” IEEE Trans. Acoust., Speech, Signal Processing.
ASSP-33, pp. 326-329, Jan. 1985.

A. Nadas, D. Nahamoo, and M. A. Picheny, “On a Model-robust
training method for speech recognitionlEEE Trans. Acoust.,
Speech, Signal Processingl. 36, pp. 1432-1436, Sept. 1988.

K. Ohkura, M. Sugiyama, and S. Sagayama, “Speaker adaptation
based on transfer vector field smoothing with continuous mixture
density HMMs,” inProc. ICSLP-92Banff, Alberta, Canada, 1992,
pp. 369-372.

M. Ostendorf, V. V. Digalakis, and O. A. Kimball, “From HMMs to
segment models: A unified view of stochastic modeling for speech
recognition,” IEEE Trans. Speech Audio Processingl. 4, pp.
360-378, Sept. 1996.

M. Padmanabhan, L. R. Bahl, D. Nahamoo, and M. A. Picheny,
“Speaker Clustering and transformation for speaker adaptation in
speech recognition system$FEE Trans. Speech Audio Processing
vol. 6, pp. 71-77, Jan. 1998.

P. Placeway, R. Schwartz, P. Fung, and L. Nguyen, “The estimation
of powerful language models from small and large corporaprot.
ICASSP-93vol. 2, Minneapolis, MN, 1993, pp. 33-36.

L. R. Rabiner, J. G. Wilpon, and B.-H. Juang, “A segmental
K-means training procedure for connected word recognition,”
AT&T Tech. J.vol. 65, pp. 21-31, 1986.

——, “A tutorial on hidden Markov models and selected applica-
tions in speech recognitionProc. IEEE vol. 77, no. 2, pp. 257-286,
1989.

L. R. Rabiner and B.-H. Juangundamentals of Speech Recogni-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1993.

M. Rahim and B.-H. Juang, “Signal bias removal by maximum like-
lihood estimation for robust telephone speech recognititBEZE
Trans. Speech Audio Processjngl. 4, pp. 19-30, Jan. 1996.

M. Rahim and C.-H. Lee, “Simultaneous feature and HMM design
using string-based minimum classification error training criterion,”
in Proc. ICSLP-96Philadelphia, PA, 1996, pp. 1820-1823.

M. Rahim, C.-H. Lee, and B.-H. Juang, “Discriminative utterance
verification for connected digit recognition|EEE Trans. Speech
Audio Processingvol. 5, pp. 266—277, May 1997.

C. Rathinavelu and L. Deng, “Use of generalized dynamic feature
parameters for speech recognition: Maximum likelihood and min-
imum classification error approaches,®noc. ICASSP-9®etroit,

MI, 1995, pp. 373-376.

, “Speaker adaptation experiments using nonstationary-state
hidden Markov models: A MAP approach,” ifroc. ICASSP-97
Munich, Germany, 1997, pp. 1415-1418.

W. Reichl, “Language model adaptation using minimum discrimi-
nation information,” inProc. EuroSpeech-9®Budapest, Hungary,
1999, pp. 1791-1794.

R. A. Redner and H. F. Walker, “Mixture densities maximum likeli-
hood and the EM algorithmSIAM Rev.vol. 26, no. 2, pp. 195-239,
1984.

B. D. Ripley, Pattern Recogniton and Neural
works Cambridge, U.K.: Cambridge Univ. Press, 1996.
H. Robbins, “The empirical Bayes approach to statistical decision
problems,”Ann. Math. Statist.vol. 35, pp. 1-20, 1964.

R. C.Rose, E. M. Hofstetter, and D. A. Reynolds, “Integrated models
of speech and background with application to speaker identifica-
tion in noise,”|IEEE Trans. Speech Audio Processivgl. 2, pp.
245-257, Apr. 1994.

R. Rosenfeld, “Adaptive statistical language modeling: A maximum
entropy approach,” Ph.D. dissertation, School of Comput. Sci.,
Carnegie-Mellon Univ., Pittsburgh, PA, 1994.

Net-

1267



[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]
[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

1268

——, “Two decades of statistical language modeling: Where dowe [172] S. Wang and Y. Zhao, “On-line tree-structured transformation of

go from here?,'Proc. IEEE vol. 88, pp. 1270-1278, Aug. 2000. hidden Markov models for speaker adaptation,Pioc. 1999 IEEE

A. Sankar and C.-H. Lee, “A maximum likelihood approach to sto- Workshop Automatic Speech Recognition and Understanlieg
chastic matching for robust speech recognitidBEE Trans. Speech stone, 1999.

Audio Processingvol. 4, pp. 190-202, May 1996. [173] E. Weinstein, M. Feder, and A. V. Oppenheim, “Sequential algo-
R. Schwartz and F. Kubala, “Hidden Markov models and speaker rithms for parameter estimation based on the Kullback—Leibler
adaptation,” irSpeech Recognition and Understanding—Recent Ad- information measure,1EEE Trans. Acoust., Speech, Signal Pro-
vances Trends and Applicatigreer. NATO ASI F75, P. Laface and cessingvol. 38, pp. 1652-1654, Sept. 1990.

R. De Mori, Eds., 1991, pp. 31-57. [174] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young, “Large
B. M. Shahshahani, “A Markov random field approach to Bayesian vocabulary continuous speech recognition using HTK, Piroc.
speaker adaptation|EEE Trans. Speech Audio Processirgl. 5, ICASSP-94Adelaide, 1994, pp. 11-125-11-128.

no. 2, pp. 183-191, 1997. [175] P. C. Woodland, D. Pye, and M. J. F. Gales, “Iterative unsupervised
K. Shinoda and T. Watanabe, “Speaker adaptation with autonomous adaptation using maximum likelihood linear regression,” in Proc.
model complexity control by MDI principle,” ifProc. ICASSP-96 ICSLP-96, Philadelphia, PA, 1996, pp. 1133-1136, submitted for
Atlanta, GA, 1996, pp. 717-720. publication.

K. Shinoda and C.-H. Lee, “Structural MAP speaker adaptation [176] ——, “Speaker adaptation: Techniques and challengesPrarc.
using hierarchical priors,” iProc. 1997 IEEE Workshop Automatic 1999 IEEE Workshop Automatic Speech Recognition and Under-
Speech Recognition and UnderstandiSgnta Barbara, CA, 1997, standing Keystone, 1999.

pp. 381-388. [177] C. Yen, S.-S. Kuo, and C.-H. Lee, “Minimum error rate training for
——, “Unsupervised adaptation using structural Bayes approach,” PHMM-based text recognition|EEE Trans. Image Processingpl.

in Proc. ICASSP-98Seattle, WA, 1998, pp. 793-796. 8, pp. 1120-1124, Aug. 1999.

O. Siohan and C.-H. Lee, “Iterative Noise and channel estimation [178] S.J. Young, J.J. Odell, and P. C. Woodland, “Tree-based state tying
under the stochastic matching algorithm framewotEEE Signal for high accuracy acoustic modeling,” Rroc. ARPA Human Lan-
Processing Lettvol. 4, pp. 304-306, Nov. 1997. guage Technology Worksha©94, pp. 307-312.

O. Siohan, C. Chesta, and C.-H. Lee, “Hidden Markov model adap- [179] S. Young, J. Odell, D. Ollason, V. Valtchev, and P. Woodlare
tation using maximura posteriorilinear regression,” iProc. Work- HTK Book (for HTK Version 2.1) Cambridge, U.K.: Cambridge
shop Robust Methods for Speech Recognition in Adverse Conditions Univ. Press, 1997.

Tampere, Finland, 1999, pp. 147-150. [180] G. Zavaliagkos, R. Schwartz, and J. Makhoul, “Batch incremental
——, “Joint maximuma posterioriadaptation of transformation and and instantaneous adaptation techniques for speech recognition,” in
HMM parameters,” in Proc. ICASSP-2000, Turkey, pp. 965-968, to Proc. ICASSP-9%Detroit, MI, 1995, pp. I-676-1-679.

be published. [181] Y. Zhao, “An acoustic-phonetic-based speaker adaptation technique
0. Siohan, T. A. Myrvoll, and C.-H. Lee, “Structural maximum a for improving speaker-independent continuous speech recognition,”
posteriori linear regression for fast HMM adaptation,”, submitted for IEEE Trans. Speech Audio Processingl. 2, pp. 380-394, July
publication. 1994.

A. F. M. Smith and U. E. Makov, “A quasi-Bayes sequential proce- [182] ——, “Self-learning speaker and channel adaptation based on spec-
dure for mixtures,’Roy. Statist. Soc. J, Bol. 40, no. 1, pp. 106-112, tral variation source decompositior§peech Communol. 18, pp.
1978. 65-77, 1996.

“Special issue on Robust speech recogniti@p&ech Communica-
tion, vol. 25, no. 1-3, 1998.

J. Spragins, “A note on the iterative application of Bayes’ rule,”
IEEE Trans. Inform. Theoryol. IT-11, no. 4, pp. 544-549, 1965.

R. M. Stern and M. J. Lasry, “Dynamic speaker adaptation for fea-
ture-based isolated word recognitioffEE Trans. Acoust., Speech,
Signal Processingvol. ASSP-35, pp. 751-763, June 1987.

R. A. Sukkar and C.-H. Lee, “Vocabulary independent discrimi-
native utterance verification for nonkeyword rejection in subword
based speech recognitiolEEE Trans. Speech Audio Processing
vol. 4, pp. 420-429, Nov. 1996.

A. C. Surendran and C.-H. Lee, “Predictive adaptation and compen-
sation for robust speech recognition,” froc. ICSLP-98 Sydney, work on connected word recognition. In 1984,
Australia, 1998. | he became affiliated with Digital Sound Corpo-
——, “Bayesian predictive approach to adaptation of HMMs,” in ) ration, Santa Barbara, CA, where he engaged
Proc. Workshop Robust Methods for Speech Recognition in Adverse in research in speech coding, speech recognition, and signal processing
Conditions Tampere, Finland, 1999, pp. 155-158. for the development of the DSC-2000 Voice Server. Since 1986, he has
A. C. Surendran, C.-H. Lee, and M. Rahim, “Non-linear compensa- been with Bell Laboratories, Murray Hill, NJ, where he is currently a
tion for stochastic matching|EEE Trans. Speech Audio Processing  Distinguished Member of Technical Staff and Head of Dialogue Systems

Chin-Hui Lee (Fellow, IEEE) received the B.S.
degree from National Taiwan University, Taipei,
in 1973, the M.S. degree from Yale University,
New Haven, CT, in 1977, and the Ph.D. degree
from the University of Washington, Seattle, in
1981, all in electrical engineering.

In 1981, he joined Verbex Corporation,
Bedford, MA, and was involved in research

vol. 7, pp. 643-655, Nov. 1999. Research Department. He has published more than 200 papers in journals
K. Takagi, H. Hattori, and T. Watanabe, “Speech recognition with and international conferences and workshops on the topics in automatic
rapid environment adaptation by spectrum equalization Prioc. speech and speaker recognition. His research scope is reflected in an
ICSLP-94 Yokohama, Japan, 1994, pp. 1023-1026. edited bookAutomatic Speech and Speaker Recognition: Advanced Topics
J.-l. Takahashi and S. Sagayama, “Vector-field-smoothed Bayesian (Norwell, MA: Kluwer, 1996). His current research interests include
learning for incremental speaker adaptation,Piroc. ICASSP-95 multimedia signal processing, speech and language modeling, adaptive and
Detroit, Ml, 1995, pp. 696—699. discriminative modeling, speech recognition, speaker recognition, spoken
——, “Tied-Structure HMM based on parameter correlation for ef-  dialogue processing, biometrics, and human—-machine interface.

ficient model training,” inProc. ICASSP-9fAtlanta, GA, 1996, pp. Dr. Lee is a recipient of the 1994 SPS Senior Award and the 1997 and
467-670. 1999 SPS Best Paper Award in Speech Processing. He was a winner of the
M. Tonomura, T. Kosaka, and S. Matsunaga, “Speaker adaptation prestigious Bell Laboratories President Gold Award in 1997 for his con-
based on transfer vector field smoothing using maxinauposte- tributions to the Bell Labs Automatic Speech Recognition algorithms and
riori probability estimation,” ifProc. ICASSP-9Detroit, Ml, 1995, products. Recently, he was named as one of the six distinguished lecturers
pp. 1-688-1-691. of SPS for the year 2000. From 1991 to 1995, he was an Associate Editor for

S. Vaseghi and B. Milner, “A comparative analysis of channel-robust the IEEE TRANSACTIONS ONSIGNAL PROCESSINGand TRANSACTIONS ON
features and channel equalization methods for speech recognition,” SPEECH AND AUDIO PROCESSING He was a member of the ARPA Spoken

in Proc. ICSLP-96Philadelphia, PA, 1996, pp. 877-890. Language Coordination Committee during the same period. Since 1995, he
A. Varga and R. Moore, “Hidden Markov model decomposition of has been a member of the Speech Processing Technical Committee of the
speech and noise,” iRroc. ICASSP-90Albuquerque, NM, 1990, |IEEE Signal Processing Society (SPS), in which he served as Chairman from
pp. 845-848. 1996 to 1998. In 1996, he helped promote the newly formed SPS Multimedia
A. Wald, Statistical Decision Functions New York: Wiley, 1950. Signal Processing (MMSP) Technical Committee and is now a member.

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000



Qiang Huo (Member, IEEE) received the

B.Eng. degree from the University of Science
and Technology of China (USTC), Hefei, China,
in 1987, the M.Eng. degree from Zhejiang
University, Hangzhou, China, in 1989, and the
Ph.D. degree from the USTC in 1994, all in
electrical engineering.

From 1986 to 1990, his research work focused
on the hardware design and development for
real-time digital signal processing, image
processing and computer vision, speech and
speaker recognition. From 1991 to 1994, he was with the Department of
Computer Science, The University of Hong Kong (HKU), where he worked
on speech recognition. From 1995 to 1997, he was with ATR Interpreting
Telecommunications Research Laboratories, Kyoto, Japan, where he
engaged in research in speech recognition. He joined the Department of
Computer Science and Information Systems, HKU, again in 1998 as an
Assistant Professor. His current major research interests include speech and
speaker recognition, computational model for spoken dialogue processing,
Chinese character recognition, biometric authentication, adaptive signal
modeling and processing, and general pattern recognition theory.

LEE AND HUO: ADAPTIVE DECISION RULES FOR AUTOMATIC SPEECH RECOGNITION 1269



