
Instruction Fetch Architectures and Code Layout
Optimizations

ALEX RAMIREZ, JOSEP L. LARRIBA-PEY,AND MATEO VALERO, FELLOW, IEEE

Invited Paper

The design of higher performance processors has been following
two major trends: increasing the pipeline depth to allow faster clock
rates, and widening the pipeline to allow parallel execution of more
instructions. Designing a higher performance processor implies
balancing all the pipeline stages to ensure that overall performance
is not dominated by any of them. This means that a faster execution
engine also requires a faster fetch engine, to ensure that it is pos-
sible to read and decode enough instructions to keep the pipeline
full and the functional units busy.

This paper explores the challenges faced by the instruction fetch
stage for a variety of processor designs, from early pipelined pro-
cessors, to the more aggressive wide issue superscalars. We de-
scribe the different fetch engines proposed in the literature, the per-
formance issues involved, and some of the proposed improvements.
We also show how compiler techniques that optimize the layout of
the code in memory can be used to improve the fetch performance
of the different engines described.

Overall, we show how instruction fetch has evolved from fetching
one instruction every few cycles, to fetching one instruction per
cycle, to fetching a full basic block per cycle, to several basic blocks
per cycle: the evolution of the mechanism surrounding the instruc-
tion cache, and the different compiler optimizations used to better
employ these mechanisms.

Keywords—Branch prediction, code layout, instruction fetch,
trace cache.

I. INTRODUCTION

Superscalar processors represent the major trend in high-
performance processors in the past several years [54]. These
processors naturally evolve from pipelined architectures, and
try to obtain higher performance in two ways: first, by si-
multaneously executing several independent instructions in
parallel; second, by increasing the clock rate to speed up in-
struction execution.

Manuscript received January 17, 2001; revised June 15, 2001. This work
was supported by the Ministry of Education and Science of Spain under
Contract TIC-0511/98 and by CEPBA.

The authors are with the Universitat Politecnica de Catalunya, D6
08034 Barcelona, Spain (e-mail: aramirez@ac.upc.es; larri@ac.upc.es;
mateo@ac.upc.es).

Publisher Item Identifier S 0018-9219(01)09684-0.

Fig. 1. Example stages of instruction execution.

When designing a high-performance processor, it is im-
portant to keep all parts of the processor balanced, avoiding
bottlenecks whenever possible. For example, as shown in
Fig. 1, if we design a high-performance processor capable of
executing five ALU operations at once, it is also important
to ensure that we can feed the ALU stage and retire those in-
structions without stalling the pipeline. This means fetching
and decoding at least five instructions per cycle, to keep the
ALU stage busy, and writing results and graduating instruc-
tions at a fast enough rate.

But the fetch stage does not behave like other pipeline
stages in the sense that it can not be widened by simply repli-
cating it, or adding more functional units. It has to follow the
control path defined by branch instructions, which have not
been executed yet. The fetch stage first evolved to include
branch prediction, and used it to fetch instructions from spec-
ulative execution paths.

This ability to follow speculative paths independently of
the execution stages leads to a decoupled view of the pro-
cessor, as shown in Fig. 2. The fetch engine reads instructions
from memory and places them in an instruction buffer. Then,

0018–9219/01$10.00 © 2001 IEEE

1588 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 2. Decoupled view of the processor: a fetch engine produces
instructions, and an execution engine consumes them.

an execution engine reads instructions from the buffer and
generates the required results, providing feedback to the fetch
engine regarding the actual outcome of branch instructions.

But the fetch engine also has had to adapt to the increasing
clock rates of each new processor generation. This usually
implies moving the more complex parts of the fetch process
out of the critical path, and adding a new hierarchy to the
different memory structures used, like the branch prediction
tables.

This paper shows how the fetch engine evolves with each
new generation of processors, increasing fetch performance
to keep up with the execution engine. We show the different
fetch mechanisms proposed and the different performance
issues related to those fetch engines.

This paper also shows how compiler techniques such as
trace and superblock scheduling [11], [20], [30], or code
layout optimizations [4], [15], [19], [25], [42]–[45], [59] af-
fect all aspects of fetch engine performance, from instruction
cache misses, to branch prediction accuracy, and the effec-
tive fetch width. Throughout the paper, we show detailed re-
sults on how the use of the different reordering techniques
improves the performance of the discussed fetch engines.

As we advance through the paper, we show how the intro-
duction of novel architecture features required the fetch en-
gine to evolve, introducing newer challenges, and introducing
newer performance metrics to measure fetch performance.

For example, while executing only one instruction at a
time (with no pipeline stage overlapping), the only obstacle
faced by the fetch mechanism is the memory latency. The
time it takes to read an instruction from memory is computed
together with the time taken to execute the instruction. If the
memory latency is large, it quickly becomes the major com-
ponent of the processor time. Minimizing this memory delay
is usually approached using cache memories and prefetching
schemes. Given the popularity of caches, the fetch perfor-
mance metric used for these processors is usually the instruc-
tion cache miss rate.

Pipelined processors quickly became the major organiza-
tion technique used by computer designers to reach higher
single-processor performance [31], [32]. By overlapping the
execution of several instructions, pipelined processors allow
the processor to complete the execution of one instruction

every cycle, instead of taking several cycles to execute one
instruction.

In addition to the instruction cache performance, the fun-
damental problem of the fetch engine of pipelined archi-
tectures is that branch instructions disrupt the flow of in-
structions through the pipeline. The problem arises because
the outcome of the branch is not known until several cycles
after it has been fetched, depending on the pipeline depth.
By the time the branch has been fully resolved, several in-
structions may have entered the pipeline and may need to be
squashed. If instruction squashing can not be implemented,
the processor pipeline is stalled for several cycles every time
a branch is fetched.

The fetch performance metric used for these processors is
the branch execution cost, which measures how many cycles
it takes to effectively execute a branch, including any delays
introduced in the pipeline. The way branches are executed,
the number of pipeline stages, and other factors, will deter-
mine the amount of execution slots lost to each branch exe-
cuted. It was the need to keep fetching instructions without
waiting for a branch to resolve which quickly led to branch
prediction, and speculative instruction execution.

Superscalar processors attempt to obtain higher execution
performance by exploiting instruction level parallelism
(ILP), which basically means replicating the different
pipeline stages to execute several instructions in parallel. In
order to execute multiple instructions per cycle, it becomes
imperative to fetch multiple instructions per cycle. But
simply duplicating the number of functional units in the
fetch stage does not resolve the problem. The fetch engine
evolves to increase its capabilities and read a full basic block
of instructions from memory in a single cycle [4], [48], [64].

With superscalar processors, a single-cycle delay repre-
sents an undetermined number of wasted instructions, which
increases the importance of an accurate branch prediction
mechanism. The performance metric changes from branch
execution cost to branch execution penalty, which measures
the number of wasted cycles due to a branch instruction.
Given that the number of instructions executed per cycle
varies depending on the available ILP, the number of lost
cycles can not be easily translated to the number of lost
instructions.

Wide superscalar processors try to achieve even higher
performance by exploiting larger amounts of ILP, using
large numbers of functional units, speculative techniques
for memory disambiguation, and value prediction to execute
eight to 16 instructions per cycle. An execution engine
capable of issuing 16 instructions per cycle requires a fetch
engine capable of supplying at least the same amount of
instructions, which requires even higher fetch performance.

With an average basic block size of 5–6 instructions,
integer codes require multiple basic blocks per cycle to feed
a 16-wide execution engine. This need to fetch instructions
past several branches in a single cycle introduces two new
challenges: first, it is necessary to obtain multiple branch
predictions in a single cycle; second, instructions belonging
to different basic blocks may not be stored in sequential
memory positions, not even in the same cache line. This

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1589

(a) (b)

Fig. 3. Example of the software trace cache basic block chaining algorithm. Basic blocks are
mapped so that the execution trace is consecutive in memory.

introduces the problem of the effective fetch width of the
fetch engine [8], [13], [41], [50], [61].

To this point we have identified three elements that de-
termine fetch performance: instruction cache misses, branch
prediction accuracy, and the effective fetch width.

This paper does not discuss the fetch engine of VLIW and
CISC processors. Although they present interesting and hard-
to-solve problems of their own, we will concentrate instead on
the fetch engine of superscalar processors. Also, we will con-
centrate on the description of the branch architectures used in
the fetch engine. Other elements found in the front-end engine
of superscalar processors, such as the instruction decode and
rename logic stages, will not be treated here.

It is also worth noting that we did not reproduce all prior
work to generate the results for this paper. Instead, we present
results taken from previously published work. This means
that the data presented in two separate graphs was generated
using two different simulation environments, and that their
results should not be compared directly.

The rest of this paper is organized as follows. In Sec-
tion II, we describe code reordering optimization algorithms
that will been used throughout the paper to improve fetch
performance. Section III shows how branch prediction and
speculative execution were introduced in pipelined architec-
tures. Fetching multiple instructions per cycle is approached
in Section IV with superscalar architectures, and Section V
explores wide superscalar architectures from the fetch per-
spective, focusing on the trace cache. Finally, in Section VI,
we present our concluding remarks.

II. CODE REORDERINGTECHNIQUES

Along this paper, we show how code layout optimizations
improve the different aspects of fetch performance, from in-
struction cache miss rate to the effective fetch width.

By introducing the different code layout optimizations
first, we intend to provide the reader with a clearer idea of
how they help improve the fetch performance of the different
fetch architectures that will be presented later.

We can divide code layout optimizations in three parts:
the layout of the basic blocks inside a routine, the splitting
of a procedure into several different routines or traces, and
the layout of the resulting routines or traces in the address
space. In this section, we will describe some algorithms for
each of these optimizations, and point the benefits that can
be obtained from them.

A. Basic Block Chaining

Basic block chaining organizes basic blocks into traces,
mapping together those basic blocks that tend to execute in
sequence. There have been several algorithms proposed to
determine which basic blocks should build a trace [1], [11],
[19], [42], [44], [59].

As an example, Fig. 3 shows the chaining algorithm used
in [19], [44], [59]. It is a greedy algorithm, which given a
seed, or starting basic block, follows the most frequent path
out of it. This implies visiting the routine called by the basic
block, or following the most frequent control flow out of the
basic block. All secondary targets from that basic block are

1590 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

(a) (b)

Fig. 4. Examples of the procedure splitting algorithm. Infrequently used basic blocks are mapped to
a different procedure, and moved away of the execution path.

added to the list of seeds to be explored later. If the most
likely path out of a basic block has already been visited, the
next possible path is taken. If there are no possible paths out
of a basic block, the algorithm stops, and the next seed is
selected.

A second alternative is thebottom-upalgorithm proposed
in [42]. The heaviest edge in the graph (the edge with the
highest execution count) is selected, and the two basic block
are mapped together. The next heaviest edge is taken, and
processed in the same way, building basic block chains.
Edges reaching or leaving a basic block in the middle of an
already existing chain are ignored. After all basic blocks
have been mapped to chains, the different chains are mapped
in order so that conditional branches map to forward/usually
not taken branches.

But a control flow graph with weighted edges does not
always lead to a basic block representing the most frequent
path through a subroutine. The solution to this problem is
path profiling [1]. A path profile counts how many times
each path through a subroutine was followed, not simply how
many times a branch was taken/not-taken. This gives an im-
mediate correspondence between basic block chains and the
profile data.

The chaining optimization improves fetch performance in
several ways: it improves instruction cache performance by
increasing the amount of spatial locality available, because
basic blocks that execute in sequence will usually be mapped
together, and because unused basic blocks will be moved to-
ward the end of the procedure, avoiding unused space in the
cache lines. It can also improve branch prediction accuracy,
specially for the static prediction schemes (Section III), by
aligning branches in a given direction. Finally, it can also in-
crease the effective fetch width by reducing the number of
taken branches, which allows fetching of more consecutive
instructions (Section V).

B. Procedure Splitting

After a new ordering of the basic blocks has been estab-
lished for a given procedure, the frequently executed basic
blocks are mapped toward the top of the procedure, while in-
frequently used basic blocks will move toward the bottom of
the procedure body. Unused basic blocks will be mapped at
the very end of the routine. By splitting the different parts of
the procedure we can significantly reduce its size, obtaining
a denser packing of the program.

Fig. 4 shows two different ways of splitting a procedure
body. A coarse grain splitting would split the routine in two
parts [42]: one containing those basic blocks which were ex-
ecuted in the profile (the hot section), and another one con-
taining those basic block which were never executed for the
profiling input (the cold section).

A fine grain splitting would split each basic block chain
as a separate procedure [19], [44], [59]. The end of a chain
can be identified by the presence of an unconditional con-
trol transfer, because after reordering it is assumed that all
conditional branches will be usually not-taken. Unused basic
blocks would form a single chain, and be kept together in a
new procedure.

The procedures resulting from splitting do not adhere to
the usual calling conventions, there is no defined entry or
exit point, and do not include register saving/restoring. This
is done to avoid overhead associated with standard procedure
control transfers.

The benefits of the procedure splitting optimization do not
lay within the splitting itself. That is, there is no immediate
benefit in splitting a procedure into several smaller ones.
The benefit of splitting reflects on the improvements ob-
tained with the procedure placement optimizations, because
mapping smaller procedures gives these optimizations a finer
grain control on the mapping of instructions without undoing
what the basic block chaining optimizations obtained.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1591

(a)

(b)

Fig. 5. Two different algorithms for procedure mapping.

C. Procedure Mapping

Independently of the basic block chaining and procedure
splitting optimizations, the order in which the different rou-
tines in a program are mapped has an important effect in the
number of code pages used (and, thus, on the instruction TLB
miss rate), and on the overlapping between the different pro-
cedures (and, thus, on the number of conflict misses).

The simplest procedure mapping algorithm is to map rou-
tines in popularity order: the heaviest routine first, and then
in decreasing execution weight order. This ensures that there
will not be conflicts among two equally popular routines.

Fig. 5(a) shows the mapping algorithm used in [7], [36],
[42], [57]. It is based on a call graph of the procedures with
weighted edges. The edge weight is the number of times each
procedure call was executed. This algorithm can be extended
to consider the temporal relationship between procedures and
the target cache size information, as described in [15].

Starting from the heaviest edge, the two connected nodes
are mapped together, and all incoming/outgoing edges are
merged together. When two nodes containing multiple
procedures should merge, the original (unmerged) graph is
checked to see which way they should join. For example,
the third merging joins nodes (B,D) and (A,C). The original
graph shows that A-B is the strongest relationship, thus, they
merge as (D,B-A,C). The fourth (final) merging also checks

the original graph, and determines that D-E is the strongest
relationship.

Fig. 5(b) shows the software trace cache mapping algo-
rithm [43], [44]. Derived from the algorithm used in [59],
it follows the basic block chaining phase described in Sec-
tion II-A. After all basic blocks have been mapped to chains,
the chains are ordered by popularity. The most popular traces
are mapped to the beginning of the address space, while the
least popular traces are mapped toward the end. Chains con-
taining the unused basic blocks are mapped at the very end
of the program.

In addition to mapping equally popular chains next to each
other, a fraction of the instruction cache will be reserved for
the most popular chains by ensuring that no other code maps
to that same range of cache addresses. This ensures that the
most frequently used traces will never miss in the cache due
to a conflict miss.

In [17] and [25], an optimized procedure layout is gener-
ated by performing a color mapping of procedures to cache
lines, inspired in the register coloring technique, taking into
consideration the cache size, the line size, the procedure size,
and the call graph.

The mapping optimizations mainly improve the instruc-
tion cache performance, by reducing the number of conflict
misses. Also, in combination with the procedure splitting op-
timization, it improves spatial locality by moving the unused

1592 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 6. Effect of different code reordering techniques on instruction cache performance.

procedures to a separate region of the code, obtaining a better
packaging of instructions to cache lines. In addition to im-
proving instruction cache performance, procedure mapping
optimizations have a beneficial effect on all the instruction
memory hierarchy: the instruction TLB, and the L2 cache.
Plus, the reduced instruction miss rate in the shared L2 cache
can have a beneficial impact in the data miss rate, due to the
reduced interference between data and instructions.

D. Code Placement and Instruction Cache Performance

The layout of the instructions in memory determines their
mapping onto the instruction cache. For this reason, the map-
ping of the program routines largely determines the number
of conflict misses that will be encountered in the instruction
cache. At the same time, the mapping of the basic blocks in-
side a routine in conjunction with the cache line size deter-
mines the amount of spatial locality exploited, and can also
affect the number of instruction cache misses encountered.

Fig. 6 shows the effect of several code reordering algo-
rithms on the instruction cache miss rate. The different setups
explored are a baseline setup with a direct mapped instruc-
tion cache, the baseline setup using a code optimized using
the Pettis & Hansen algorithm [42], a code optimized using
the Torrellas, Xia, and Daigle algorithm for operating system
code [59], a code optimized with the software trace cache al-
gorithm [44], the baseline code layout using a two-way set
associative cache, and the baseline setup using a 16-way fully
associative victim buffer.

The results show that code reordering techniques can be
very effective at reducing instruction cache miss rate, for both
small and large sized caches. The effectivity of code layout
optimizations proves much better than that of pure hardware
approaches, like set associativity [18], [52], victim caches
[24], and prefetching schemes like stream buffers [10], next
line prefetching [28], [60], and context sensitive predictors
[23], [49].

III. PIPELINED PROCESSORS

Before pipelined processors, instructions were executed
one at a time. The instruction is fetched from memory, and it
goes through all stages of execution. Once it has been com-
pleted, the next instruction is read from memory, and the
process continues.

The only performance bottleneck for the fetch engine
of these processors is the perceived memory latency. Only
one instruction is needed at a time, and there is no need
to speculate on the program control flow, as the previous
instruction has completed its execution, and the next PC is
known. But if reading the next instruction from memory
takes too long, instruction execution must stop waiting for
that instruction.

Pipelined processors introduce the problem of fetching
one instruction per cycle without waiting for the previous in-
struction to finish. In an attempt to fetch and execute one
instruction per cycle, the outcome of a branch instruction is
unknown until one or more cycles after the instruction was
fetched, making the program control flow uncertain at that
point, and introducing execution bubbles in the pipeline. That
introduces the branch architecture as a major fetch issue, next
to the memory latency problem. Fetching one instruction per
cycle makes the fetch width issue unimportant, as reading a
single word does not pose any problem.

For example, in the early Berkeley and Stanford RISC ma-
chines, the pipeline required one empty execution slot after
each branch to account for its execution delay. With a 20%
branch frequency, those machines saw a loss of 6% to 30%
compared to another machine with single-cycle branches. A
two-cycle delay in the branch execution could easily account
for a 40% performance loss, and a three-cycle delay for a
60% waste [31].

A first solution encountered for that limitation is making
the problem visible to the programmer, continuing to fetch
and execute instructions sequentially until the branch is re-

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1593

Fig. 7. Pipelined execution of a branch instruction. The branch is not resolved until the ALU stage,
which introduces two delay slots.

solved. These are the architected delay slots present in the
IBM 801, RISC II, and MIPS architectures.

Fig. 7 shows the pipelined execution of a branch instruc-
tion. The branch instruction is fetched in cycle 1. At the end
of cycle 1, the branch has not yet resolved, and the target
address is still unknown. In cycle 2, the branch is decoded,
but its outcome is still unknown. In cycle 3, the branch condi-
tion is evaluated and the target address calculated in the ALU
stage. Meanwhile, the next instruction has been fetched. In
cycle 4, the correct instruction can be fetched by setting the
PC to the computed branch target. If the architecture does
not define branch delay slots and the branch was taken, the
instructions fetched in cycles 2 and 3 must be squashed, and
they represent wasted cycles. If the architecture defines delay
slots, the instructions were meant to be executed anyway, so
they do not waste any resources.

The fetch performance of such mechanism with archi-
tected delay slots heavily depends on the ability of the
compiler to allocate useful instructions to the delay slots.
A single branch delay slot can be successfully filled with a
useful instruction around 70% of the time, a second delay
slot can only be filled 25% of the time [31].

The performance degradation due to longer pipelines mo-
tivated the research in branch prediction techniques. There
are two aspects in branch prediction: predicting a conditional
branch direction (taken versus not taken) [53], [63], and pre-
dicting the branch target address [29]. Predicting the branch
direction can reduce the branch delay by one cycle if the
branch is predicted not taken, but introduces an additional
penalty if the branch was mispredicted. Plus, in order to re-
duce the delay due to taken branches, it is also necessary to
predict the branch target address. If both direction and target
are predicted in the fetch stage, the next correct path instruc-
tion can be fetched the next cycle, and no delay is paid. If
one or both predictions are wrong, it will be necessary to
squash the wrongly fetched instructions, and maybe pay an
additional penalty.

Fig. 8 shows the execution cost of a branch instruction for
several branch architectures as shown in [31].1 The execution
cost of a branch shows the average number of cycles it takes
to correctly execute a branch.

1bigfm, dnf, hopt (Fortran applications). Average of 63% taken branches
(37% not taken).

The results shown correspond to a five-stage pipeline ar-
chitecture (such as the one shown in Fig. 7), which executes
branches in the third pipeline stage (the ALU stage). This
stage both evaluates the branch condition, and calculates the
branch target address.

The different branch architectures shown are as follows.

Delayed branch:The architecture defines two branch
delay slots. As stated before, the first delay slot could
be filled 70% of the time, and the second delay slot was
filled only 25% of the time.
Predict not taken: Assume that the branch will be not
taken, and keep fetching instructions sequentially. If the
assumption was incorrect, the wrongly fetched instruc-
tions must be squashed.
Predict taken: Assume that all branches will be taken,
and stop fetching until the target address is calculated at
the decode stage.
Branch target buffer: Uses dynamic branch prediction
to decide the branch direction using a 2-bit counter [53],
and a cache memory to determine the target address.
Fast compare: Implement certain comparison opera-
tions in the decode stage, so that branches depending
on easy compares (compares against zero) can execute
early. This reduces the number of delay slots to just one.
Profiled fast compare:Same as fast compare, but uses
profiling to restructure the code and to fill the delay
slots.
Squashing branch: Always fills the delay slots with
potentially useful instructions, assuming that the
branch will be taken. If the branch is not taken, and
the squashing bit is on, the instructions from the delay
slots are squashed.
Profiled squashing branch: Same as squashing
branch, only the branch prediction is given by profile
data. If the branch was mispredicted, and the squashing
bit is on, the delay slots are squashed.

The main problem of the compiler approach is filling the
branch delay slots with useful instructions, which causes the
poor performance of thedelayed branchapproach. Mean-
while, the differentfast compareapproaches obtain much
better performance because they require only a single delay
slot, which can be filled with useful instructions most of the
time. Thesquashing branchapproach ensures that the delay

1594 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 8. Comparison of the branch execution cost for different branch architectures using both
software and hardware techniques.

slots can always be filled with useful instructions, adding an
instruction squash mechanism that activates on a wrong as-
sumption.

However, the results show that dynamic branch prediction
using a BTB and 2-bit saturating counters provides the best
fetch performance. But the implementation cost of a 256-
entry BTB was too high at that point, which made software
approaches much more amenable.

A. Branch Alignment Techniques

The need to use static branch prediction techniques and
other software approaches to implement efficient branch ar-
chitectures motivated the research on code layout optimiza-
tions to reduce the cost of branches. In addition to improving
instruction cache performance, code reordering techniques
can map basic blocks so that the conditional branches con-
tained follow the heuristic expected by the architecture.

Branch alignment optimizations [5] usually rely on pro-
file data to obtain information about the most likely branch
direction. Once the branch behavior is known, then it is pos-
sible to map the two possible successors in a way that make
the branch adhere to a specific heuristic that can be com-
puted at run-time. For example, assume a given branch has
two targetsA andB, and the most likely target isA. If the
run-time heuristic used is to assume that all branches will be
taken, then we would map our code (and set the branch con-
dition) so thatB is the fall-through target of the branch. If the
run-time heuristic says that branches will be not taken, we
would mapA as the fall-through target for the branch.

Looking at the results in [45],2 it can be observed how the
use of code layout optimization can be very successful at

2SPECint95 except go, and adding PostgreSQL running TPC-D.

aligning branches toward a specific heuristic. For example,
aligning branches so that they are usually not taken improves
the prediction accuracy of analways not takenpredictor
from 49% to 77%, and aligning them to use abackward
taken/forward not takenheuristic improves from 60% to
81%, coming close to the 92% prediction accuracy of a
perfect static predictor.

It is important to note that the use of reordering optimiza-
tions to align branches does not limit their ability to reduce
the instruction cache miss rate.

Further performance improvements can be obtained by en-
hancing the branch alignment optimization with other code
transformations that increase the static branch prediction ac-
curacy. Among these optimizations we find unconditional
branch removal [35], conditional branch removal [34], using
branch correlation in static predictions [26], [65], and value
range propagation [40].

IV. SUPERSCALARPROCESSORS

Superscalar processors replicated the pipeline in the exe-
cution engine, allowing the simultaneous execution of sev-
eral independent instructions, exploiting ILP [54]. But the
fetch engine can not be replicated in the same way, which in-
troduced the problem of fetching multiple instructions per
cycle to be able to feed the execution engine. The effec-
tive fetch width of the processor suddenly becomes impor-
tant, which means fetching several instructions per cycle, and
fetching them from the correct execution path.

A full basic block of instructions is usually enough to
provide a four-issue processor with instructions to keep its
functional units busy. Furthermore, with a 20% branch fre-
quency, it is likely that one branch per cycle will be fetched,

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1595

increasing the importance of the branch prediction mecha-
nism. As all instructions in a basic block are stored sequen-
tially in memory, it is enough to fetch a whole cache line, and
then select the required instructions from it.

This solves the fetch width problem for narrow superscalar
processors, however, the branch prediction mechanism has
to provide two pieces of data: the number of instructions to
fetch until the terminating branch is found, and the start ad-
dress of the next executed basic block [4], [64].

This motivated the research for better branch predictors, in
search of high prediction accuracy and low access time. The
classical approaches to branch prediction used were the use
of a branch target buffer (BTB) for target address prediction
[29], and the addition of a saturating two-bit counter to pre-
dict the branch direction [53].

Two-level adaptive branch predictors [62], [63] represent a
novel organization of the branch prediction tables. This new
organization not only stores information about the past be-
havior of a branch (taken or not taken), but also relates the
behavior of a branch to either its own past behavior (pri-
vate history) or the behavior of the previous branches (global
history).

A major factor in the loss of accuracy of two-level branch
predictors is aliasing. When two branches end up sharing the
same 2-bit saturating counter, interference happens. If the
two branches have different behavior, this interference re-
sults in a loss of prediction accuracy. Based on this observa-
tion, a new generation of predictors (called dealiased predic-
tors) use novel organizations that reduce this effect. Among
this predictors we find the agree predictor [56], the bi-mode
predictor [27], and the gskew predictor [33].

Fig. 9 shows the fetch mechanism proposed by Yeh and
Patt in [64] for fetching a full basic block of instructions per
cycle. All blocks are accessed in parallel using the fetch ad-
dress as index: a cache line is fetched from memory, the top
of the return address stack (RAS) is read, and the BTB is
checked. On a BTB hit, it means that the basic block ends
in a branch instruction. On a BTB miss, fetching continues
sequentially.

The BTB contains all the information necessary to gen-
erate the next fetch address: the branch type (conditional,
unconditional, subroutine call, or subroutine return), the
branch direction prediction, and the target and fall-through
addresses. If the branch is unconditional, or the conditional
branch is predicted taken, the target address is used. If the
branch is predicted as not taken, the fall-through address is
used. If the branch is a return, the top of the stack is used as
target address. If it is a subroutine call, the next instruction
is pushed onto the stack. If a branch is discovered later on in
the pipeline, a BTB entry is allocated for it, and its outcome
is predicted using static information.

This fetch mechanism approaches all three fetch perfor-
mance factors relevant at this point: the memory latency
is hidden using an instruction cache; the fetch width is
increased by reading a whole basic block of instructions,
which reside in consecutive memory positions; and the
branch prediction accuracy is increased using a BTB in
conjunction with a two-level adaptive branch predictor [63].

Fig. 9. A fetch mechanism capable of reading one basic block
per cycle.

Fig. 10 shows two performance metrics for the fetch en-
gine described in [64]3 : the branch execution penalty (BEP),
and the instructions per fetch cycle (IPFC). The BEP repre-
sents the average number of cycles wasted for each executed
branch. This assumes a standard number of wasted cycles
each time a branch is mispredicted (shown in theaxis), and
a two-cycle delay for each branch misfetch (taken branches
not found in the BTB), misfetched branches are predicted
using static heuristics. The IPFC shows the average number
of correct path instructions provided by the fetch unit, and
thus the performance of an ideal machine able to execute all
instructions in a single cycle. The benchmarks used for this
study were four integer and five FP codes from the SPEC92
benchmark set (eqntott, espresso, gcc, li, doduc, fpppp, ma-
trix300, spice2gr6, tomcatv).

The different fetch engine configurations tested are as fol-
lows.

Profile: Uses profile data to predict conditional branch
directions. The target address for taken and uncondi-
tional branches is not available until it is calculated from
the decoded instructions.
Bimodal: Uses the saturating 2-bit counter proposed in
[53] to predict conditional branch directions. Both the
2-bit counter and the target address are obtained from
the BTB. The BTB has 512 entries, and is four-way
associative.
Two-level pred.: Uses the private history two-level
branch predictor proposed in [63]. This stores the
target address and the private branch history in the
BTB, and uses the branch history as an index into a
separate pattern history table (PHT) consisting of 2-bit
saturating counters. The BTB has 512 entries and is
four-way associative. The history registers are 12 bits
long, and index into a 4-k-entry PHT.

Previous studies have shown how profile based branch pre-
diction can be as accurate as that obtained with 2-bit satu-
rating counters [12]. The poor fetch performance of thepro-

3eqntott, espresso, gcc, li, doduc, fpppp, matrix300, spice2g6, and tom-
catv from SPEC92 on a Motorola88100 instruction level simulator

1596 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

(a)

(b)

Fig. 10 Performance metrics for the fetch engine proposed by Yeh and Patt.

file setup is mainly due to the two-cycle delay in the calcu-
lation of the branch target address of taken branches. The
bimodalsetup solves this problem by using a BTB to store
the target address of the most recently executed branches.
However, the improvement obtained with thetwo-level pred.
setup shows the importance of accurate branch prediction for
superscalar fetch performance. The BTB is the same as the
one used in thebimodalsetup, but the branch direction pre-
dictor proves much more accurate, and is more effective at
avoiding branch mispredictions.

Given the relevance of the branch prediction mechanism in
the superscalar fetch engine, Calder and Grunwald proposed
two improvements to the baseline mechanism [4].

Decoupled BTB and branch predictor: The original
design does not allow dynamic prediction for branches
that miss in the BTB, relying instead on static prediction
methods. If the branch predictor operates independently
of theBTB, it ispossible toobtaindynamicprediction for
branches discovered in the decode stage. The higher pre-
diction accuracy of the dynamic predictor avoids many
cycles of wasted work fetching from the wrong path.
Only taken allocate: The effectiveness of the BTB
can be increased by only allocating entries for taken
branches. A branch missing in the BTB but resulting
as not taken, will not be allocated an entry. This avoids
displacing information about taken branches, as not

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1597

taken branches do not really benefit from the BTB be-
cause they always fetch the next sequential instruction.

Their results show that two-level adaptive branch predic-
tors can be implemented independently of the BTB, which
allows a separate resource allocation for target address pre-
diction and branch direction prediction. The increased accu-
racy of a larger direction predictor obtains substantial reduc-
tions in the branch misprediction rate, and thus on the branch
execution penalty.

In addition, theonly taken allocatemakes a more effective
use of the BTB space, storing only those branches which
will benefit from its target address prediction capabilities.
By selectively storing branches in the table, more branches
will fit, reducing the number of branch misfetches and further
increasing fetch performance.

Next lineandsetprediction (NLS),byCalderandGrunwald
[6], represents an alternative mechanism for fetching instruc-
tions in a superscalar mechanism. Instead of predicting which
isthenext instructiontofetch,NLSpredictswhich instruction-
cache line contains the next instructions to be fetched.

By providing pointers into the instruction cache, NLS al-
lows the next instruction to be fetched, while the previous
branch is decoded and its target address calculated (not pre-
dicted). NLS is based on the distinction between a branch
misfetch and a branch mispredict. When a branch is detected
as such, and predicted incorrectly, the fetch engine will spend
several cycles fetching from a wrong execution path until the
branch is executed. Meanwhile, if a branch is fetched but
not detected as such, it will be identified at decode time, and
its target address can be calculated at that point, potentially
saving many cycles.

It ispossibletofindexamplesofthismechanismsinrealpro-
cessors. For example, the Intel Pentium uses a BTB for target
address prediction, and complements each BTB entry with a
2-bitsaturatingcounter forbranchdirectionprediction (thebi-
modalsetup inFig.10).ThePowerPC604[55]uses thedecou-
pled BTB and branch predictor setup, with a 64-entry fully as-
sociative BTB, and a 512-entry PHT for direction prediction.
Finally, the Alpha 21 264 [16] uses the NLS mechanism.

To this point, we still have not mentioned the scalability
concerns regarding the fetch engine of superscalar proces-
sors. The current trend in superscalar processors achieves
higher performance by increasing the clock rate, which also
requires increasing the number of pipeline stages.

With faster clocks, the amount of useful work that can
be done in each stage is reduced [38], requiring deeper
pipelines. And deeper pipelines require even more accurate
branch prediction to avoid paying an excessive cost for each
branch instruction.

A faster clock rate also reduces the amount of memory
that can be accessed in a single cycle, leading to smaller
sized caches and branch prediction tables. A smaller cache
will have a higher miss rate, and a smaller branch predictor
will be less accurate, which is the opposite of what a deeply
pipelined processor needs. The deeper the pipeline, the
higher the misprediction penalty, which means that deep
pipelines require more accurate branch predictors.

Fig. 11 shows the mechanism proposed by Reinmanet al.
in [48] to alleviate the negative impact of this trend. The fetch

Fig. 11. Decoupling the fetch stage: an independent branch
prediction mechanism provides fetch blocks to a fetch target queue,
and the pipelined instruction cache reads the blocks from memory.

engine is decomposed in two separate engines. The first en-
gine contains a fully autonomous branch predictor, which fol-
lows speculative execution paths and provides fetch blocks
to a fetch target queue (FTQ). The second engine contains a
pipelined instruction cache that reads the fetch target blocks
from memory and provides instructions to the decode stage.

The branch prediction architecture used in [48] is the fetch
target buffer (FTB). It extends the BTB architecture to in-
clude information about a complete fetch block, which po-
tentially contains several branches. Using theonly taken al-
locateoptimization proposed in [4], the FTB is not aware
of not taken branches, which can enlarge the fetch block by
including two or more basic blocks separated by frequently
not-taken branches. To mitigate the effect of using a smaller
prediction table, a second-level FTB is defined. This L2 FTB
is much larger, and thus should be more accurate. It is ac-
cessed on an L1 FTB miss, and its prediction is used a few
cycles later when it is available.

Their results show that the FTB architecture has a pre-
diction accuracy similar to that of a BTB architecture, and
the additional benefit of reading larger fetch blocks, empha-
sizing the importance of fetch width even on four-issue pro-
cessors. It combines all the optimizations proposed for the
superscalar fetch engine on a more scalable design that also
obtains slightly higher performance.

Further improvements on the superscalar fetch engine in-
clude techniques to perform instruction prefetching using
idle instruction cache ports on the event of a cache miss or a
pipeline stall.

One possibility would be to keep fetching instructions
even after an instruction cache miss [58], placing the in-
structions in their rightful place in the instruction window,
leaving space for those instructions coming from the upper
levels of the memory hierarchy. This would be effectively
fetching instructions out of order, effectively hiding some of
the memory latency paid for the cache miss.

The second options would be to use the decoupling of
the branch prediction stage from the instruction cache read
stage proposed in [48]. This decoupling allows the branch
predictor to continue generating the fetch sequence on the
presence of a cache miss, and to store the future fetch path in
the FTQ. Using this future information stored in the FTQ, it
is possible to prefetch the instructions using idle instruction
cache ports, guided by the branch predictor [49].

1598 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 12. Interaction between code reordering optimizations and the branch prediction mechanism.
Prediction accuracy of optimized an unoptimized binaries.

A. Code Reordering and the Superscalar Engine

Given the relevance of the branch prediction mechanism,
and the instruction cache performance improvements ob-
tained with code reordering techniques, it makes sense to
analyze their interaction. We already examined the relation-
ship between them when the branch alignment optimization
was used to improve fetch performance on pipelined pro-
cessors [5], but the interaction between these optimizations
and the more complex dynamic branch predictors could be
more subtle.

Fig. 12 shows the branch prediction accuracy obtained
with two-level adaptive branch predictors and dealiased
branch predictors (the agree predictor [56]), as explored by
Ramirezet al. [45].4

The results for two-level adaptive predictors show that op-
timized binaries obtain higher prediction accuracy than the
unoptimized ones. This shows a beneficial effect of layout
optimized codes: most branches are biased toward not taken
after reordering, which means that when two branches end
up sharing the same 2-bit counter, they will both push the
counter in the same direction, reducing negative interference.

Meanwhile, the results for the agree predictor exhibit the
opposite behavior: optimized binaries obtain lower predic-
tion accuracy than unoptimized ones. Dealiased predictors
already eliminate the negative interference in the prediction
tables, and do not benefit from the effect described above.
Meanwhile, the accumulation of not taken branches causes a
worse data distribution in the prediction tables, leading to a
slight decrease in prediction accuracy.

This loss in prediction accuracy could represent a perfor-
mance loss, even in the presence of other benefits like im-
proved instruction cache performance. Fig. 13 shows overall

4m88ksim, gcc, li, ijpeg, vortex from SPECint95 plus PostgreSQL run-
ning TPC-D.

processor performance measured in IPC using two code lay-
outs (baseline and optimized), a 64-kB instruction cache, and
two branch predictors: a gshare predictor, which increases its
accuracy with the optimized layout, and an agree predictor,
which loses accuracy with the optimized layout.5

As pointed by Navarroet al. [37], it is more important
to have a good instruction cache performance than a good
branch prediction accuracy. However, the paper also shows
that this statement is less true as pipeline depth increases and
misprediction penalties become higher.

For a short pipeline processor, such as the one simulated
by the Simplescalar tool set [3], Fig. 13 shows that the op-
timized code layout always obtains better performance than
the baseline layout, although the agree predictor proves more
accurate for the baseline layout. It is important to note that
the gshare predictor obtains slightly better performance than
the agree predictor when using an optimized code layout.

V. WIDE SUPERSCALARPROCESSORS

In an effort to exploit larger amounts of ILP, researchers
have explored the possibility of wider issue processors:
8-wide, or even 16-wide. Fetching one basic block per cycle
is not enough to keep a 16-wide execution engine busy: it
is necessary to fetch instructions from multiple basic blocks
per cycle. Without reducing the importance of the instruction
cache performance, or the relevance of the branch prediction
mechanism, the effective fetch width becomes a major
performance issue for this kind of processors.

Fig. 14 shows an extension of the superscalar fetch
engine to read multiple consecutive basic blocks per cycle
(this is the fetch engine described in [50] and called SEQ.3).
The instruction cache is interleaved to allow reading two

5four-issue processor similar to the Alpha 21 264.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1599

Fig. 13. Overall processor performance for two code layouts (base and optimized) and two
branch predictors (gshare and agree).

Fig. 14. Extension of the superscalar fetch engine with a multiple
branch predictor to read multiple consecutive basic blocks per cycle.

consecutive cache lines. This allows fetching code sequences
crossing the cache line boundary, guaranteeing a full width of
instructions. The BTB is also interleaved, and all banks are
accessed in parallel. The BTB must be N-way interleaved,
where N is the number of instructions to provide per cycle.
This allows all instructions in a cache line to be checked for
branches in parallel. The branch predictor must also provide
several branch predictions at once. The next address logic
combines the N fields provided by the BTB, the M branch
predictions, and the top of the return address stack to provide
both the next fetch address, and the instruction mask.

But, unlike the instructions in a single basic block, in-
structions belonging to different basic blocks may not be
stored in sequential memory positions, not even in the same
cache line. There have been several solutions to the problem
of fetching nonconsecutive instructions, like the branch ad-
dress cache [61], the collapsing buffer [8], and the trace
cache [41], [50], [13].

The branch address cache mechanism proposed by Yehet
al. in [61] is composed of four components: a branch ad-
dress cache (BAC), a multiple branch predictor, an inter-

leaved instruction cache, and an interchange and alignment
network. The BAC extends the BTB by keeping a tree of
target addresses following a basic block. The width of the
tree depends on the number of branch predictions obtained
per cycle (two addresses for one branch, seven addresses for
two branches, 15 addresses for three branches). The multiple
branch predictor is used to select the tree branch that follows
the current fetch address, and generate the basic block ad-
dresses that will be obtained from the interleaved instruction
cache, and the next fetch address. Finally, the interchange and
alignment network will arrange the data obtained from the
instruction cache to build the dynamic instruction sequence
predicted, and present it to the decode stage. Such a mecha-
nism can be delayed by branch mispredictions, target address
mispredictions, and instruction cache bank conflicts.

Fig. 15 shows fetch performance measured in instruction
per fetch (IPF), which measures the raw width of instruc-
tions provided (max 16); and in instructions per fetch cycle
(IPFC), which accounts for the delay introduced by instruc-
tion cache misses and branch mispredictions. The results are
shown in [61].6

These results show the importance of fetching instructions
from multiple basic blocks in the context of wide issue super-
scalar processors. Fetching instructions from a single basic
blocks effectively limits the performance to 3–4 instructions
per cycle for integer codes, while fetching three basic blocks
per cycle obtains a fetch performance increase of around
100%.

ThecollapsingbufferproposedbyConteetal.in [8] iscom-
posed ofan interleaved instruction cache, an interleavedBTB,
a multiple branch predictor, and an interchange and alignment
network featuring acollapsing buffer. The mechanism works
in a similar way to the sequential extension of the fetch en-
gine proposed in [64], but the BTB is able to detectintrablock

6eqntott, espresso, gcc, li from SPECint89, doduc, fpppp, matrix300,
spice2g6, tomcatv from SPECfp89. Instruction cache is a two-way set
associative (eight-way interleaved), 32 kB, with 16-byte lines.

1600 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 15. Fetch width provided by the branch address cache (IPF), and fetch engine performance
measured in instructions per fetch cycle (IPFC).

Fig. 16. Processor performance using different sequential fetch policies and using the Collapsing
Buffer.

branches (branches with the target in the same cache line).
The collapsing buffer uses this information to merge the dis-
continuous instructions from the cache lines fetched. In ad-
dition, a single fetch cycle goes through two BTB accesses,
which allows fetching instruction blocks from two separate
cache lines, as long as they belong to different cache blocks.

Fig. 16 shows the processor performance obtained in [8]
using several fetch policies on an 8-issue superscalar pro-
cessor.7

The fetch policies shown are as follows.

7compress, eqntott, espresso, gcc, li, sc from SPECint92, doduc, mdljdp2,
nasa7, ora, tomcatv, wave5 from SPECfp92, plus bison, flex, and mpeg_play
(shown as SPECint). 12-issue processor, 128 kB direct mapped instruction
cache with 64-byte lines, 1024-entry BTB with 2-bit counters for branch
prediction.

Sequential: A single cache line is fetched, and a full
block of sequential instructions is obtained from it.
Interleaved sequential: Two consecutive cache lines
are fetched. This allows the sequential instruction block
to cross the cache line boundary.
Banked sequential:Allows fetching instruction from
two nonsequential basic blocks as long as the two basic
blocks reside in different banks.
Collapsing buffer: Full implementation of the col-
lapsing buffer in the alignment network. Useless
instructions between an intrablock branch and its target
are removed.
Perfect: Ideal fetch engine, able to fetch instructions
from nonsequential basic blocks.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1601

Fig. 17. Fetch performance using the collapsing buffer and code layout optimized binaries.

Again, the results show the importance of fetching
multiple basic blocks per cycle on a wide issue superscalar
processor. The performance of the single-line all-sequential
fetch engine can be easily improved by allowing a limited
degree of freedom to allow wider instruction fetch. First
allowing the instruction sequence to cross the cache line
boundary, then fetching two basic blocks from two different
cache lines, and finally using the collapsing buffer to allow
fetching past intraline branches.

A. Code Reordering and the Collapsing Buffer

The collapsing buffer and related techniques are limited
by their ability to fetch across taken branches, while fetching
across not taken branches or intraline branches poses no
problem. A reduction of the number of taken branches
such as the one provided by code reordering optimizations
effectively mitigates this limitation.

Fig. 17 shows the overall processor performance of the
different sequential fetch engines and the collapsing buffer
in combination with code reordering techniques, as shown
by Conteet al. in [8].

The use of code layout optimizations greatly improves the
performance of the collapsing buffer and related engines. The
reduction in the number of taken branches makes the sequen-
tial fetch engine reach a similar performance to the perfect
engine using the unoptimized code layout. The banked se-
quential achieves higher performance than the perfect (un-
ordered) engine, and the collapsing buffer largely surpasses
that performance, coming close to that of the perfect (re-
ordered) engine.

Clearly, the use of code reordering techniques proves more
beneficial for wide issue superscalars, both due to its effect

on the instruction cache performance, and to the effective
fetch width increase obtained.

However, both the BAC and the collapsing buffer use a
complex interchange and alignment network to organize the
data fetched from the instruction cache banks into a sequen-
tial block of instructions before it is presented to the decode
stage. The implementation complexity of this network poten-
tially makes the fetch stage the critical stage for determining
the clock rate, and could require an extra pipeline stage to
work.

Next, we present the trace cache, the most widely adopted
mechanism for fetching instructions from multiple basic
blocks per cycle, which resolves this complexity issue by
moving the alignment network out of the critical path.

B. The Trace Cache

The trace cache is a fetch mechanism patented by Peleg
and Weiser [41] that captures the dynamic stream of instruc-
tions, divides it intraces, and stores these traces in a special
purpose cache (thetrace cache), expecting that the same dy-
namic sequence of instructions will be executed again in the
future.

The dynamic instruction stream is captured from the retire-
ment pipeline stage, so this process is out of the critical exe-
cution path. A fill buffer reads the graduated instructions and
organizes them intotraces, storing them in a special purpose
cache. The trace cache does not require any additional work
to align the instructions before passing them to the decode
stage. The complexity of aligning the instructions has moved
from the fetch stage (branch address cache and collapsing
buffer) to a separate pipeline after the retirement stage.

A trace is composed of at most N instructions and M
branches, where N is the width of the data path, and M

1602 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 18. Extension of the wide superscalar fetch engine with a trace cache to allow fetching of
nonconsecutive basic blocks in a single cycle.

Fig. 19. Comparison of the processor performance using different fetch engines, including
the trace cache.

is the multiple branch predictor throughput. The trace is
identified by the starting address, and the outcome of up to
M-1 branches to describe the path followed.

Fig. 18 shows the wide superscalar fetch engine (which we
will call core fetch unit) extended with a fill buffer, which
captures the dynamic instruction stream and breaks it into
traces, and a trace cache where the traces are stored. The core
fetch unit and the trace cache are accessed in parallel. On a
trace cache hit, the instruction trace stored in the trace cache
is passed to the decoder. On a trace cache miss, fetching pro-
ceeds from the core fetch unit.

In addition to storing the instructions in a trace, the trace
cache also stores the fall-through and taken target addresses
that could be followed after the trace. This allows the trace
cache to provide the next fetch address on a trace cache hit.

Fig. 19 shows the average processor performance ob-
tained with different fetch engines for the SPECint95 and
IBS benchmark sets, as shown by Rotenberget al. [50].8

The figure shows IPC results for a single-block fetch engine
(SEQ.1), a three-block sequential fetch engine (SEQ.3,
shown in Fig. 14), the branch address cache (BAC), the
collapsing buffer (CB), and the trace cache (TC).

Again, these results show the relevance of fetching
multiple basic blocks per cycle on a wide-issue superscalar
processor. All three methods described to fetch multiple
basic blocks per cycle (BAC, CB, and TC) obtain significant
performance improvements over the three-block sequential

816-wide fetch/dispatch rate, three branches per cycle, 2048-entry instruc-
tion buffer, 4096-entry global history predictor, 1-k-entry BTB, 128-kB in-
struction cache, 64-entry trace cache, 1-k-entry BAC.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1603

Fig. 20. Effect of code layout optimizations on the trace cache performance.

fetch engine (SEQ.3). The trace cache obtains a slightly
higher performance, and adds less complexity to the fetch
stage, reducing its impact on cycle time or the number of
pipeline stages.

Friendlyet al.proposed several improvements on the base
trace cache mechanism [13]:

Partial matching: It is possible that while a trace is not
found in the trace cache, a partially matching trace is
found. If a trace matches only the first basic blocks from
the requested trace, it is possible to obtain those from
the trace cache instead of resorting to instruction cache
fetching.
Inactive issue:In addition to fetching instruction from
a partially matching trace, it is possible to issue the re-
maining instructions in the traceinactively. In case of a
branch mispredictions, those inactive instructions will
have already been fetched, decoded, and possibly exe-
cuted reducing the misprediction cost.

The research around the trace cache mechanism has con-
tinued, adding techniques to increase the length of the traces
provided [39], and increasing its importance to the point of
making the trace a new unit of execution: based on the exe-
cution of traces rather than the execution of instructions, we
find a new branch prediction mechanism, the path-based next
trace predictor [21], and a new processor design, the trace
processor [51].

Plus, the fill buffer adds a new communication channel be-
tween the execution engine and the fetch engine (see Fig. 2),
in addition to the feedback about branch mispredictions, now
the fetch engine has information about which groups of in-
structions tend to execute together, which opens the door to
further code optimizations at the fetch stage [14], [22].

C. Code Reordering and the Trace Cache

The trace cache stores in consecutive storage those basic
blocks which are executed sequentially, and it does this task

Fig. 21. The trace cache is storing redundant information, because
a basic block may be present in more than one trace cache line.

dynamically. Code reordering techniques can use profile data
to do the same mapping effort at compile time as shown by
Ramirezet al. in [44] and [43]. Layout optimizations effec-
tively store basic blocks in execution order, doing the job of
the trace cache, and increasing the effective fetch width of the
core fetch unit. This performance increase of the core fetch
unit has a significant impact on the overall trace cache per-
formance.

Fig. 20 shows the fetch width obtained with a three-block
sequential fetch unit (no trace cache), and the same core fetch
unit augmented with trace caches of 16 and 32 kB. Results
from [44] are shown for the baseline and optimized versions
of the SPECint95 binaries.9

The results show that the basic block chaining opti-
mization was successful at increasing the sequentiality of
the code, mapping basic blocks in execution order. This
reduction in the number of taken branches increases the
effective fetch width that the core fetch unit can obtain,
almost reaching the effective width of a 16-kB trace cache
for unoptimized code.

The same improved core fetch unit performance increases
the trace cache performance by providing a better fail safe
mechanism: On a trace cache miss, the core fetch unit is ca-
pable of providing a larger instruction sequence with the opti-
mized code. This ensures that a larger amount of instructions

9For a limit of 16 instructions and three conditional branches.

1604 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 22. The block based trace cache stores basic blocks in a special purpose block cache, and
stores block pointers in the trace table, eliminating the basic block redundancy.

will be provided each cycle, regardless of where the instruc-
tions are being fetched from.

The increased core fetch unit performance obtained using
code layout optimizations has motivated the research on
purely sequential fetch engines based on fetching long
sequential runs of instructions, such as the Stream processor
[46], which relies on the compiler to create the sequential
paths, and the rePLay microarchitecture [9], which creates
the sequential regions dynamically.

D. Trace Cache Redundancy

As described in Section V, the trace cache is a redundant
storage mechanism. In this paper, we examine two levels of
trace cache redundancy: redundancy within the trace cache
itself at the basic block level, and redundancy between the
trace cache and the instruction cache at the trace level.

Because it captures the dynamic instruction stream, it is
possible for a basic block to be present at many different
points in that instruction stream. Fig. 21 shows two examples
of this basic block redundancy: anIF–THEN–ELSE construct,
and a loop. The figure shows some examples of instruction
traces that contain several copies of the same basic blocks.
As a trace is identified by the starting address and the branch
outcomes contained, these traces will be regarded as different
from each other, although they contain mostly the same in-
structions.

The block-based trace cache (BBTC) [2] is an alternative
organization for the trace cache mechanism that avoids this
redundant storage of basic blocks.

Fig. 22 shows the BBTC organization proposed by Black
et al. in [2]. Basic blocks are stored in a special purpose
block cache. The trace table stores the trace identifier (the
start address, and the required branch outcomes), but instead
of storing the instructions in the trace, it stores pointers to the
block cache. This way, if a basic block is present in several
traces, only the block pointer is replicated.

The results in [2] show that using an improved storage or-
ganization, an address translation to use block indexes in-
stead of full addresses, and an improved next trace predictor
that takes advantage of this address translation, the block
based trace cache obtains significant performance improve-
ments over the baseline trace cache mechanism.

In addition to basic block-level redundancy, the trace
cache also presents trace-level redundancy. Some traces
stored in the trace cache are redundant with what is stored
in the instruction cache.

As shown in Fig. 23, those traces which do not contain
taken branches can be fetched in a single cycle from the core
fetch unit. But the trace cache is storing these traces as well,
which means that traces containing only consecutive instruc-
tions are present in both the trace cache and the instruction
cache. Furthermore, the use of code layout optimizations in-
creases the trace level redundancy, as the increased code se-
quentiality also increases the number traces that do not con-
tain any taken branch.

Selective Trace Storage, proposed by Ramirezet al. in
[47], divides traces among those containing taken branches
or some other form of control break (red traces), and traces
containing only sequential instructions (blue traces). This
trace division is implemented in the trace cache fill unit.
When a trace is classified as red, it is stored in the trace cache.
If a trace is classified as blue, it is discarded, and the next
trace is initiated.

This selective storage of traces makes a more efficient use
of the trace cache storage space, although it is reducing the
trace cache hit rate. Blue traces will always miss in the trace
cache, but they can still be fetched from the instruction cache.
Meanwhile, the red trace hit rate increases, allowing fetch of
a taken branch and its target in the same cycle.

Fig. 24 shows the fetch width (IPF) and fetch per-
formance (IPFC) of the baseline trace cache, and a trace
cache using selective trace storage to eliminate the trace
level redundancy.10

The results show that the number of blue (redundant)
traces increases sig-10Max 16 instructions or three condi-
tional branches, 64 kB direct mapped instruction cache (six
cycles miss penalty), perfect branch prediction. The results
show how eliminating the trace level redundancy results in a
much better trace cache utilization, which leads to a higher
fetch performance through a wider fetch. Traces that do not
contain taken branches are provided from the core fetch
unit, while the trace cache extends its capabilities to fetch
past taken branches.

10Max 16 instructions or three conditional branches, 64 kB direct mapped
instruction cache (six cycles miss penalty), perfect branch prediction.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1605

Fig. 23. The trace cache is storing redundant traces, because consecutive basic blocks can be
obtained from the instruction cache.

Fig. 24. Fetch performance obtained with the baseline trace cache, and a trace cache using
selective trace storage.

E. Code Reordering and Trace-Level Redundancy

The use of code reordering techniques proved very effec-
tive at reducing the number of taken branches in a program by
mapping basic blocks in execution order. By doing the work
of the trace cache at compile time, the number of redundant
traces may have increased significantly.

Fig. 25 shows a classification of the traces executed by
the SPECint95 programs by the number of sequence breaks
they contain, as shown in [47]. Traces containing zero breaks
are considered blue (redundant) traces, because they can be
fetched by the core fetch unit in a single cycle, without need
of the trace cache. Traces containing one or more breaks are

considered red traces and can not be provided by the core
fetch unit in a single cycle, but they can be provided by the
trace cache.

The results show that the number of blue (redundant)
traces increases significantly (from 39% to 62%) when we
use an optimized code layout. This adds another advantage
to the use of code reordering techniques: aside from reducing
the instruction cache miss rate, and increasing the effective
fetch width, they also increase the effectivity of the selective
trace storage. As more traces can be obtained from the core
fetch unit, there are fewer traces remaining to be stored in
the trace cache, and the same program will then fit all its red
traces in a smaller trace cache.

1606 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Fig. 25. Classification of traces by the number of sequence breaks contained. Traces with
zero are considered blue traces.

VI. CONCLUDING REMARKS

We have shown how instruction fetch has evolved with
each new processor design to provide the required number
of instructions to the execution engine of the processor.

Following the ILP trend and the widening of the processor
pipeline, we have seen how instruction fetch started reading
one instruction every few cycles, then one instruction per
cycle, then one basic block per cycle, and then several basic
blocks per cycle. However, the fetch engine can not be
replicated as other pipeline stages by adding more functional
units: new engines had to be designed, solving the problem
of fetching instructions past unresolved branches, and
fetching nonsequential instructions past several branches in
a single cycle.

But pipeline widening is not the only way to higher pro-
cessor performance; longer pipelines and faster clock rates
are also being exploited. We have also shown how deeper
pipelines and shorter cycle times impose new challenges
to the instruction fetch stage: smaller prediction tables
and smaller caches will be required. Also, the complexity
implied by some high performance fetch engines will also
require changes to fit in a single pipeline stage.

Overall, we have shown how fetch performance mainly
depends on three factors: the perceived memory latency, the
quality of the instructions provided, and the width of instruc-
tions provided.

The memory latency issue will require better memory
prefetching schemes and new memory hierarchies, specially
in the context of high clock rate processors, which will be
unable to access large memories in a single cycle.

The use of deeper pipelines and faster clock rates will also
increase the importance of the instruction quality. The longer
it takes to realize that a branch has been mispredicted, the
more harmful it is to performance and power consumption.
As pipelines become deeper, the need for better branch pre-
dictors will increase.

Finally, the increasing pipeline widths will require fetch
engines capable of producing a high enough width of instruc-
tions without requiring large amounts of complex hardware,
which could make the fetch stage the critical stage for deter-
mining the clock rate.

And for all the described mechanisms, we have shown how
the use of compiler optimizations such as trace scheduling
and code layout optimizations can be used to boost the per-
formance of the chosen fetch architecture.

ACKNOWLEDGMENT

The authors also want to thank the reviewers for their in-
sightful comments.

REFERENCES

[1] T. Ball and J. R. Larus, “Efficient path profiling,” inProc. 29th Annu.
ACM/IEEE Intl. Symp. Microarchitecture, Dec. 1996.

[2] B. Black, B. Rychlik, and J.P. Shen, “The block-based trace cache,”
in Proc. 26th Annu. Int. Symp. Computer Architecture, May 1999.

[3] D. Burger, T. Austin, and S. Bennett, “Evaluating future micropro-
cessors: The Simplescalar tool set,” Univ. Wisconsin, Tech. Rep.
TR-1308, July 1996.

[4] B. Calder and D. Grunwald, “Fast & accurate instruction fetch and
branch prediction,” inProc. 21st Annu. Int. Symp. Computer Archi-
tecture, 1994, pp. 2–11.

[5] , “Reducing branch costs via branch alignment,” inProc. 6th
Int. Conf. Architectural Support for Programming Languages and
Operating Systems, Oct. 1994, pp. 242–251.

[6] , “Next cache line and set prediction,” inProc. 22th Annu. Int.
Symp. Computer Architecture, June 1995.

[7] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Spike: An op-
timizer for Alpha/NT executables,”USENIX, pp. 17–23, Aug. 1997.

[8] T. Conte, K. Menezes, P. Mills, and B. Patell, “Optimization of in-
struction fetch mechanism for high issue rates,” inProc. 22th Annu.
Int. Symp. Computer Architecture, June 1995, pp. 333–344.

[9] S. Patelet al., Proc. 33rd Annu. ACM/IEEE Int. Symp. Microarchi-
tecture, 2000.

[10] K. I. Farkas, N. P. Jouppi, and P. Chow, “How useful are nonblocking
loads, stream buffers and speculative execution in multiple issue pro-
cessors?,” inProc. 1st Int. Conf. High Performance Computer Archi-
tecture, Jan. 1995, pp. 78–89.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1607

[11] J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,”IEEE Trans. Comput., vol. 30, no. 7, pp. 478–490, July
1981.

[12] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program,” inProc. 5th Int. Conf.
Architectural Support for Programming Languages and Operating
Systems, 1992, pp. 85–95.

[13] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Alternative fetch and issue
techniques from the trace cache mechanism,” inProc. 30th Annu.
ACM/IEEE Int. Symp. Microarchitecture, Dec. 1997.

[14] , “Putting the fill unit to work: Dynamic optimization for trace
cache microprocessors,” inProc. 31st Annu. ACM/IEEE Int. Symp.
Microarchitecture, Nov. 1998, pp. 173–181.

[15] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder, “Procedure
placement using temporal ordering information,” inProc. 30th
Annu. ACM/IEEE Int. Symp. Microarchitecture, Dec. 1997, pp.
303–313.

[16] L. Gwennap, “Digital 21 264 sets new standard,”Microprocessor
Rep., vol. 10, no. 14, 1996.

[17] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient procedure
mapping using cache line coloring,” inProc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, June 1997, pp.
171–182.

[18] M. D. Hill and A. J. Smith, “Experimental evaluation of on-chip mi-
croprocessor cache memories,” inProc. 11th Annu. Int. Symp. Com-
puter Architecture, June 1984, pp. 158–166.

[19] W.-M. Hwu and P. P. Chang, “Achieving high instruction cache per-
formance with an optimizing compiler,” inProc. 16th Annu. Int.
Symp. Computer Architecture, June 1989, pp. 242–251.

[20] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Water,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. K. Haab, J. G.
Hold, and D. M. Lavery, “The superblock: An effective technique
for VLIW and superscalar compilation,”J. Supercomput., no. 7, pp.
9–50, 1993.

[21] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based next trace
prediction,” inProc. 30th Annu. ACM/IEEE Int. Symp. Microarchi-
tecture, Dec. 1997.

[22] Q. Jacobson and J. E. Smith, “Instruction pre-processing in trace pro-
cessors,” inProc. 5th Int. Conf. High Performance Computer Archi-
tecture, Jan. 1999, pp. 125–129.

[23] D. Joseph and D. Grunwald, “Prefetching using Markov predictors,”
in Proc. 24th Annu. Int. Symp. Computer Architecture, June 1997,
pp. 252–263.

[24] N. J. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proc. 17th Annu. Int. Symp. Computer Architecture, May 1990, pp.
364–373.

[25] J. Kalamatianos and D. R. Kaeli, “Temporal-based procedure re-
ordering for improved instruction cache performance,” inProc. 4th
Int. Conf. High Performance Computer Architecture, Feb. 1998.

[26] A. Krall, “Improving semi-static branch prediction by code replica-
tion,” in Proc. ACM SIGPLAN Conf. Programming Language De-
sign and Implementation, 1994, pp. 97–106.

[27] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch
predictor,” inProc. 30th Annu. ACM/IEEE Int. Symp. Microarchi-
tecture, Dec. 1997, pp. 4–13.

[28] D. Lee, J.-L. Baer, B. Calder, and D. Grunwald, “Instruction cache
fetch policies for speculative execution,” inProc. 22nd Annu. Int.
Symp. Computer Architecture, June 1995, pp. 357–367.

[29] J. Lee and A. Smith, “Branch prediction strategies and branch target
buffer design,”IEEE Comput., vol. 17, pp. 6–22, Jan. 1984.

[30] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated execution
using the hyperblock,” inProc. 25th Int. Symp. Microarchitecture,
Dec. 1992.

[31] S. McFarling and J. Hennessy, “Reducing the cost of branches,”
in Proc. 13th Annu. Int. Symp. Computer Architecture, 1986, pp.
396–403.

[32] W.-M. Hwu, T. M. Conte, and P. P. Chang, “Comparing software and
hardware schemes for reducing the cost of branches,” inProc. 16th
Annu. Int. Symp. Computer Architecture, June 1989, pp. 224–233.

[33] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity
aliasing in conditional branch predictors,” inProc. 24th Annu. Int.
Symp. Computer Architecture, 1997, pp. 292–303.

[34] F. Mueller and D. A. Whalley, “Avoiding conditional branches by
code replication,” inProc. ACM SIGPLAN Conf. Programming Lan-
guage Design and Implementation, 1995, pp. 56–66.

[35] F. Mueller and D. B. Whalley, “Avoiding unconditional jumps by
code replication,” inProc. ACM SIGPLAN Conf. Programming Lan-
guage Design and Implementation, 1992, pp. 322–330.

[36] R. Muth, “Alto: A platform for object code modification,” Ph.D.
dissertation, Univ. Arizona, 1999.

[37] C. Navarro, A. Ramirez, J. L. Larriba-Pey, and M. Valero, “On the
performance of fetch engines running DSS workloads,” inProc. Int.
Euro-Par Conf., Aug. 2000.

[38] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” inProc. 24th Annu. Int. Symp. Computer
Architecture, June 1997.

[39] S. J. Patel, M. Evers, and Y. N. Patt, “Improving trace cache effec-
tiveness with branch promotion and trace packing,” inProc. 25th
Annu. Int. Symp. Computer Architecture, June 1998, pp. 262–271.

[40] J. R. C. Patterson, “Accurate static branch prediction by value range
propagation,” inProc. ACM SIGPLAN Conf. Programming Lan-
guage Design and Implementation, 1995, pp. 67–78.

[41] A. Peleg and U. Weiser, “Dynamic flow instruction cache memory
organized around trace segments independent of virtual address
line,” U.S. Patent 5.381.533, Jan. 1995.

[42] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in
Proc. ACM SIGPLAN Conf. Programming Language Design and Im-
plementation, June 1990, pp. 16–27.

[43] A. Ramirez, J. L. Larriba-Pey, C. Navarro, X. Serrano, J. Torrellas,
and M. Valero, “Optimization of instruction fetch for decision sup-
port workloads,” inProc. Int. Conf. Parallel Processing, Sept. 1999,
pp. 238–245.

[44] A. Ramirez, J. L. Larriba-Pey, C. Navarro, J. Torrellas, and M.
Valero, “Software trace cache,” inProc. 13th Int. Conf. Supercom-
puting, June 1999.

[45] A. Ramirez, J. L. Larriba-Pey, and M. Valero, “The effect of code
reordering on branch prediction,” inProc. Int. Conf. Parallel Archi-
tectures and Compilation Techniques, Oct. 2000, pp. 189–198.

[46] , “A stream processor front-end,”IEEE TCCA Newsletter, pp.
10–13, 2000.

[47] , “Trace cache redundancy: Red & blue traces,” inProc. 6th Int.
Conf. High Performance Computer Architecture, Jan. 2000.

[48] G. Reinman, T. Austin, and B. Calder, “A scalable front-end archi-
tecture for fast instruction delivery,” inProc. 26th Annu. Int. Symp.
Computer Architecture, May 1999, pp. 234–245.

[49] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” inProc. 32nd Annu. ACM/IEEE Int. Symp. Microar-
chitecture, 1999, pp. 16–24.

[50] E. Rotenberg, S. Benett, and J. E. Smith, “Trace cache: a low la-
tency approach to high bandwidth instruction fetching,” inProc.
29th Annu. ACM/IEEE Int. Symp. Microarchitecture, Dec. 1996, pp.
24–34.

[51] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith, “Trace pro-
cessors,” inProc. 30th Annu. ACM/IEEE Int. Symp. Microarchitec-
ture, Dec. 1997, pp. 138–148.

[52] A. Seznec, “A case for two-way skewed-associative caches,” in
Proc. 20th Annu. Int. Symp. Computer Architecture, May 1993, pp.
169–178.

[53] J. E. Smith, “A study of branch prediction strategies,” inProc. 8th
Annu. Int. Symp. Computer Architecture, 1981, pp. 135–148.

[54] J. E. Smith and G. S. Sohi, “The microarchitecture of superscalar
processors,”Proc. IEEE, vol. 83, Dec. 1995.

[55] S. P. Song, M. Denman, and J. Chang, “The PowerPC 604 RISC
microprocessor,”IEEE Micro, vol. 14, pp. 8–17, Oct. 1994.

[56] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt, “The agree
predictor: A mechanism for reducing negative branch history in-
terference,” inProc. 24th Annu. Int. Symp. Computer Architecture,
1997, pp. 284–291.

[57] A. Srivastava and D. W. Wall, “A practical system for intermodule
code optimization at link-time,”J. Program. Lang., vol. 1, pp. 1–18,
Dec. 1992.

[58] J. Stark, P. B. Racunas, and Y. N. Patt, “Reducing the impact of
icache misses by writing instructions into the reservation stations
out of order,” inProc. 30th Annu. ACM/IEEE Int. Symp. Microar-
chitecture, Dec. 1997, pp. 34–43.

[59] J. Torrellas, C. Xia, and R. Daigle, “Optimizing instruction cache
performance for operating system intensive workloads,” inProc. 1st
Int. Conf. High Performance Computer Architecture, Jan. 1995, pp.
360–369.

[60] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer, “Instruction
fetching: Coping with code bloat,” inProc. 22th Annu. Int. Symp.
Computer Architecture, June 1995, pp. 345–356.

1608 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

[61] T.-Y. Yeh, D. T. Marr, and Y. N. Patt, “Increasing the instruction fetch
rate via multiple branch prediction and a branch address cache,” in
Proc. 7th Int. Conf. Supercomputing, July 1993, pp. 67–76.

[62] T. Y. Yeh and Y. N. Patt, “Two-level adaptive branch prediction,” in
Proc. 24th Annu. ACM/IEEE Int. Symp. Microarchitecture, 1991, pp.
51–61.

[63] , “Alternative implementations of two-level adaptive branch
prediction,” inProc. 19th Annu. Int. Symp. Computer Architecture,
1992, pp. 124–134.

[64] , “A comprehensive instruction fetch mechanism for a pro-
cessor supporting speculative execution,” inProc. 25th Annu.
ACM/IEEE Int. Symp. Microarchitecture, Dec. 1992, pp. 129–139.

[65] C. Young and M. D. Smith, “Improving the accuracy of static branch
prediction using branch correlation,” inProc. 6th Int. Conf. Architec-
tural Support for Programming Languages and Operating Systems,
Oct. 1994, pp. 232–241.

Alex Ramirez received the computer science de-
gree from the Polytechnic University of Catalonia
(UPC), Spain, in 1997.

In 1998, he joined the Computer Architecture
Department at UPC where he is a Ph.D. student.
His research areas of special interest are pro-
file-guided compiler optimizations, code layout
optimizations, performance studies of user and
system code like database applications, and the
design and implementation of the fetch stage of
superscalar processors. He has been a student

intern at Compaq’s Western Research Lab., Palo Alto, CA, and Intel’s
Microprocessor Research Lab., Santa Clara, CA. Since 2000, he has been
lecturing on operating systems as an Assistant Professor.

Josep L. Larriba-Pey received the computer
science degree in 1989 and the Ph.D. degree in
1996, both from the Polytechnic University of
Catalonia (UPC), Spain.

He is an Associate Professor in the Computer
Architecture Department at UPC. His current
research interests are in the relation between the
architecture of the computer, the compiler and
the high level applications with special interest
in databases; the tuning of the basic sequential
and parallel DBMS operations and, the design,

analysis and tuning of sequential and parallel nonnumeric algorithms. At
present, he is also involved in research and development projects with IBM
and Intel.

Mateo Valero (Fellow, IEEE) received the
telecommunication engineering degree from
the Polytechnic University of Madrid, Spain, in
1974 and the Ph.D. degree from the Polytechnic
University of Catalonia (UPC), Spain, in 1980.

He is a Professor in the Computer Architecture
Department at UPC. His current research inter-
ests are in the field of high performance architec-
tures, with special interest in the following topics:
processor organization, memory hierarchy, inter-
connection networks, compilation techniques and

computer benchmarking. He has published approximately 200 papers on
these topics. He served as the general chair for several conferences, in-
cluding ISCA-98 and ICS-95. He is a member of the subcommittee for the
Ecker-Mauchly Award and director of the C4 (Catalan Center for Compu-
tation and Communications).

Dr. Valero has been honored with several awards, including the Narcis
Monturiol, presented by the Catalan Government, the Salvà i Campillo pre-
sented by the Telecommunications Engineer Association and ACM, and the
King Jaime I by the Generalitat Valenciana. He has been an Associate Ed-
itor for IEEE TRANSACTIONS ONPARALLEL AND DISTRIBUTEDSYSTEMSfor
three years. Since 1994, he has been a Member of the Spanish Engineering
Academy.

RAMIREZ et al.: INSTRUCTION FETCH ARCHITECTURES AND CODE LAYOUT OPTIMIZATIONS 1609

