& A framework
based on a process
model lifts
integration from files

and documents to the
conceptual level,
taking care of

lower level details
with mapping

assistants.

Strategies for
Integrating

CASE

Environments .

MATTHIAS JARKE, Technical University, Aachen

uch of
today’s software market involves data-
intensive information systems, and as
databases are extended to design, process
control, and multmedia applications, this
market share may become even larger. Yet
information systems remain hard to
maintain and reuse. The primary reason is
their lack of integration. Although pro-
grammers have many individual develop-
ment tools at their disposal, there is no
formal integration across development
stages, between the system and its envi-
ronment, or across development tasks.
One way to address this problem is to
view the development environment itself
as a data-intensive information system
centered around a repository. The ques-
tion then becomes how to formalize and
implement such a repository.
An experimental information-system
environment, called DAIDA (Develop-
ment Assistance for Integrated Database

Applications), was developed as part of the
Furopean Community’s ESPRIT pro-
gram to examine this question. The
DAIDA project team, which I managed,
found that by making process-oriented
conceptual models operational through
knowledge representation and database
techniques, we could integrate develop-
ment stages and development tasks.
DAIDA goes beyond traditional
knowledge-based techniques for CASE
(described in the box on p. 56) by address-
ing three important dimensions of integra-
don in a process-oriented model: how to

| handle dependencies among development

stages, how to manage the evolving rela-
donship among systems and their techni-
cal and social environments, and how to in-
tegrate development tasks — from both
development in the small, in which the
focus is the content of actions and results,
and development in the large, which is
concerned with object and process man-

54

0740-7458,/92/0300,/0054 /$03.00 © IEEE

MARCH 1882

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

agement and the collaboration of people

involved in developing and using systems.
Because information-system develop-

ment is a continuous, cooperative process

of analysis and reanalysis, design and rede-

sign, and programming

and program reorganiza-

the relationships between those decisions
and the models.

‘The need for process-centered devel-
opment stems from the need to have pro-
cess details travel with the information sys-

tem as it evolves. Many
information systems live

tion, process information ISR |cyond single genera-
shogid be s;ored 1n are- Concepmul modehng dofr;fy of hard\«zarg, sysltem
pository of experience. . software, and develop-
We developed such a re- ISa Wﬂy TO Overcome ment teams, but their lon-
pository, called Con- gevity is proportional to
ceptBase, and used it to develop(?r.u§er how mu’ch of the
deﬁng our process-ori- communicahon developer’s experience
ented integration model. bl transfers with the system’s

ConceptBase consid- pm ems. history. Given the high

ers integration at two lev-

els. At the specification

level, it uses metamodeling to formally in-
terrelate languages, methods, and tools
through object structures, rules, and con-
straints. At the implementation level, itin-
tegrates external tools using the trigger
concepts from database technology. Trig-
gers, or event-condition-action rules, are
programs activated when a certain event
like a database update happens and some
additional constraint is satisfied. Con-
ceptBase relates the two levels by con-
straint- and rule-compilation techniques
on'gzinatinig from research in deductve
databases.

THREEFOLD INTEGRATION STRATEGY

Integration in DAIDA begins with
concept-based specificadons or cnceprual
models. It then uses process-centered develop-
ment to arrive at quality-assured application
software. The purpose of each phase is to
enhance communication between devel-
opers and users in requirements analysis
and system specification — notoriously
difficult areas.

Conceptual modeling — using object-
oriented representations, hypertext-like
interface technologies, and animated pro-
totypes — appears to be one of the few
ways to overcome developer-user com-
munication problems. Conceptual models
also specify how a system fits into its envi-
ronment. If you implement these models
in an information system, you can base
design decisions on them and document

turnover of software per-

sonnel, it is wise to keep a
detailed record not only of outcomes, but
also of the design decisions and tool appli-
cations involved in development.

Quality assurance is an integral part of
integration because integration is often
driven by organizational requirements
and goals. Any integrated environment
should have a range of formal tools for
producing and evaluating system quality.
These tools also make it easier to reenact
development decisions during mainte-
nance. Total quality assurance using ap-
propriate formal methods and verification
and testing tools may be too expensive for
many applications, but the decision not to
invest in it should be a conscious one.

Conceptual modeling. Conceptual lan-

Usoge world

World model (Telos)

Subject world

guages let you work with adequate con-
cepts when specifying an application’s se-
mantics. In requirements specification or
analysis, you need the freedom to define
application-specific concepts and termi-
nology. In contrast, during the design
phase, you need a predefined but powerful
setof constructs to represent a system per-
spective. To integrate at the implementa-
don level, you need database-program-
ming models.

Figure 1 shows what conceptual mod-
eling in DAIDA consists of. Requirements
modeling is not confined to describing the
system’s requirements but takes into ac-
count the broader context of system use.
"The world model, which encompasses the
subject world, the usage world, and the
development world, captures knowledge
about the role of system components. The
subject world serves as the basis for the
information system’s data model. It de-
scribes how the system model represents
objects. The usage world describes where
and how the system model will be used.
The seeds for specifying system functions
and the user interface are in the usage
world. The development world is the en-
vironment of system versions, configura-
dons, and development teams, in which
the system evolves.

Figure 1 also shows the two other lev-
els of the conceptual model: conceptual
design and database programs. During
conceptual design, you organize the sys-
tem components from the specialized

i Development world ;

Process manager

Deisions
Objects

Conceptual design

Tools

-

Database programs

Figure 1. Conceptualization tasks in DAIDA.

IEEE SOFTWARE

55

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

KNOWLEDGE-BASED CASE

David Barstow gives a good overview
of how formally based tools have been
used in knowledge-based software sup-
port.! While most of these projects have
studied knowledge-based assistants (expert
systems) for individual development tasks,
a few have also looked at integration, often
on a narrower scale than the DAIDA team
has and without actual proof of concept
through the use of operational integrated
prototypes.

‘The Programmer’s Apprentice project
at the Massachusetts Institute of Technol-
ogy sees integration as how to horizontally
compose so-called cliches for a single rep-
resentation level, but it does not deal with
information systems specifically. The
Knowledge-Based Software Assistant of
the US Air Force which pioneered knowl-
edge-based assistants, is just beginning to
consider integration seriously.

Besides these Al-oriented approaches,
our integration approach has similarities

to several ideas developed in the database
community. Rule-based technology for in-
tegrating and controlling external tools is
also used in the Marvel project at Columbia
University. The representation and consis-
tent maintenance of dependency structures
created by applying such integrated toolsis
also supported by the Cactis database devel-
oped in the Arcadia consortium.?

Neither KBSA nor Cactis supports a
specific process model of information-
system development in the context of how
the system’s environment evolves.
REFERENCES

1. D. Barstow, “Artificial Intelligence and Software
Engineering,” Proc. Int’l Conf. Sofiware Eng.,
IEEE CS Press, Los Alamitos, Calif., 1987, pp.
200-211.

2. G. Kaiser et al., “Database Support for Knowl-
edge-Based Engineering Environments,” IEEE
Expert Spring 1988, pp. 18-32.

3.S. Hudson and R. King, “Cactis: A Self-Adaptive,
Concurrent Implementation of an Object-Ori-
ented Database Management System,” ACM
Trans. Database Systems, Sept. 1989, pp. 291-321.

viewpoint of integrated information sys-
tems. At the database-programs level,
software-specific concepts serve as the
basis for integrated program production.

World model The heart of the world
model is the conceptual-modeling lan-
guage Telos.? Telos integrates predicative
assertions and an interval-based time cal-
culus in 2 semantic network with built-in
axioms for aggregation, generalization,
and classification. It thus lets you manage
conceptual models as an evolving knowl-
edge base.

Telos is more flexible than most speci-
fication languages and tools. These lan-
guages often provide graphical tools to ac-
quire and document requirements, but
they do not maintain results as a knowl-
edge base, they cannot transfer require-
ments to system specification and imple-
mentation, and they cannot formally reuse
development experience when require-
ments change. Telos differs from these
languages because it prescribes the infor-
mation system’s dynamic behavior. World
and system models evolve as learning oc-
curs or reality changes because you can
manipulate the requirements model as a
dynamic knowledge base, not just as one-
shot documentation.

Telos also provides a way to represent

dme, an important feature because re-
quirements analysis is a dynamic process
that describes a dynamic world. Historical
dme in Telos indicates how applicatdon
processes happen in time; transaction time
records how your understanding of these
processes evolves.

Applicaton areas for information sys-
tems vary widely, yet as a basis for user
involvement, the language should provide
a means of communication close to the
application. The language must therefore
let you define application-specific con-
cepts and reference models dynamically.
Classification in Telos lets you stratify the
knowledge base in any number of
metalevels. Each level defines the sub-
language for describing objects of the level
immediately below. You can define do-
main-specific concepts atametalevel fairly
easily. These are then instantiated by ac-
tual requirements. Combined with suit-
able compilation techniques, meta model-
ing helps you create interoperability
among independently developed software
components.

Requirements analysis is a major coop-
erative task with contributions from vari-
ous stakeholder and developer groups. A
language should give you enough modu-
larity to model the evolution of individual
opinions as well as their integration in a

common requirements model.

A conceptual language should also let
you visualize requirements through
graphical or text-based interaction. You
should not have to learn a formal syntax.
Even the support team needs a lot of guid-
ance. Telos integrates graphical semantic
network principles with frames and rules.
It thus provides a basis for the hypertext
interface implemented in ConceptBase.
You can use the predicative sublanguage as
a filter to make only relevant parts of the
world model visible in the hypertext net-
work.

Users often need animation to under-
stand formal requirements analyses. A
conceptual modeling language should let
you run examples through the require-
ments description, using derivation rules
or similar approaches to simulate system
behavior. You can use Telos’s deduction
rules to interactively animate the world
model by making deductive queries about
prototypical sample objects.

Conceptual design. Conceptual design con-
sists of formally modeling the system itself. It
still requires a semantically rich set of con-
cepts, but this set is fixed as a uniform struc-
turing mechanism for information systems.
There is a delicate balance to maintain. On
the one hand, the design language should
not be too different from the requirements
language, buton the other hand, as astarting
point for formal refinement methods, the
conceptual design must be fo oonsis-
tent and complete. Thus, a heuristic under-
standing of the spedification with only partial
formalization is insufficient as a basis for in-
tegration.

Many existing semantic data models
consider only database design. DAIDA’s
Taxis Design Language offers generaliza-
tion hierarchies of data and transactions as
well as set-oriented assertions, but no
metalevel extensibility. Instead of a time
concept, TDL adopts a state-based view
of computation as most programming
languages do. Data managementis organ-
ized as entity classes related by attributes;
transactions bring about atomic state tran-
sidons, while scripts describe the long-
term pattern of global coordination and
uming.

56

MARCH 1882

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

We learned from working with Telos
and TDL that a direct transition from the
requirements model to a formal system
specification is problematic with large in-
formation systems. The key is to reorgan-
ize the application knowledge gathered in
the requirements phase from the view-
point of how the information system will
manage information. The perspective is
from an overall view like that of a data
dictionary, beyond the individual database
program’s specification.

Database programs. The development of
correct and efficient database software is
neither a database design task nor a classi-
cal programming effort, in which the em-
phasis is on optimizing individual applica-
dons. Instead, this task requires integrated
concepts based on advanced database- and
systems-programming technology. These
concepts serve as a front end for integrat-
ing target database systems and applica-
don languages.

As part of our work on DAIDA, we
used the DBPL database language® as a
possible candidate for such a front end.
We also constructed mappings from TDL
to DBPL and from DBPL to commercial
relational database systems.

Process-centered development. At least as
important as conceptual models for indi-
vidual tasks is the modeling of their inter-
relationships. Such a model must encom-
pass an abstract conceptual model that
describes individual concept models uni-
formly and a process rmodel that captures the
relatonships among abstract objects. The
second model requires more than just ob-
serving objects in isoladon. It requires
knowledge about how the system was de-
veloped. Neither development stages nor
steps are predetermined, but emerge from
development tasks, available tools, and the
development team.

One of DAIDA’s design goals was to
make this process explicit and support it
over long development periods. The pro-
cess model is integrated with the concep-
tual model through the development
world, as shown in Figure 1. For that rea-
son, we use Telos for both the conceptual
and process models.

DAIDA’s process model is a
metamodel called DOT (decision-object-
tool).? DOT, which generalizes several
earlier decision-oriented process models,’
represents states of a development process
by documenting relevant properties of re-
sults achieved in that state as objects.

We represent state transitions by docu-
menting and justifying the decisions lead-
ing to the results; decisions can address
refinement within a DAIDA level, map-
ping between levels, versioning to change
previous decisions, or reconfiguring to
group existing system components. Be-
cause the development environment may
change over the information system’s life,
we also represent the tools that support
decision execution. The purpose of man-
aging all this information is to transfer de-
velopment experience throughout a
system’s life.

ConceptBase is DAIDA's metadata
management and reasoning facility. It
provides the information required by the
development process and ensures that the
process is formally correct. We use Telos’s
metaclass hierarchy to document
metaclasses, classes, and
instances. The metaclass
level defines the basic
structure for develop-
ment processes, the class
level describes the devel-
opment environment at
hand, and the instances
level consists of concrete
development projects
within the environment.

Fach level may evolve
along version histories under the control
of the model at the level above it. The
graphical view of Telos serves as a basis for
browsing in version histories, along devel-
opment levels and usage relationships.
The formal view focuses your attention by
making predicative queries before letting
you graphically explore the system.

DOT is a methodology-independent
representational framework. DAIDA as-
sistants support a spiral model of top-
down development, but other DOT in-
stantiations, even using the same
languages, might support very different
development paradigms. For example,

|
At least as important

as conceptual models

for individual fasks is

the modeling of their
inferrelafionships.

you can develop new applications by con-
figuring reusable development histories.
This extension is studied in another ES-
PRIT project, ITHACA (Interactive
Toolkit for Highly Advanced Computer
Applications).®

Quality-ussured software. ‘To provide a
controlled degree of quality assurance, you
have to do more than document the evolv-
ing relationships between representation
levels. You need supporting tools to validate
requirements or designs and to map the
three conceptual levels: world model, con-
ceptual design, and database programs.

DAIDA accommodates validaton by
prototyping in Prolog. For mapping, itof-
fers two knowledge-based assistants: Iris,
which maps from the world model to con-
ceptual design, and DBPL-Map, which
maps from conceptual design to database
programs.’ These knowledge-based as-
sistants not only help you satisfy func-
tional requirements but also support
nonfunctional goals like efficiency and
accuracy.

Iris recognizes that conceptual design
is not simply an elabora-
don of the world model by
supporting distinct design
decisions over and above
initial requirements.’
Such decisions might in-
clude satisfying temporal
conditions by transactions
or scripts or defining how
long data should be kept.
Iris also lets you satisfy as-
sertions at the world-
model level by providing integrity con-
straints on data. You can either perform
precondition tests on transactions or spec-
ify structures and operations that satisfy
assertions by design (for example, error-
preventing menu interfaces).

A design decision can even cause a re-
grouping of the system model’s data struc-
tures; for instance, the designer may de-
cide to organize generalization
hierarchies of concepts by their temporal
actuality rather than by content.

Mapping from conceptual design to
database programs requires more formal
and standardized support. DBPL-Map

IEEE SOFTWARE

57

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

derives application modules from the con-
ceptual design using abstract machine
specifications as an intermediate represen-
tation. It translates a coherent subset of
TDL classes — the specification for the
intended program — into an abstract ma-
chine specification and checks it for con-
sistency and formal com-

pleteness. From this ini-

as a set of DOT decision classes, deter-
mines the DOT object types for tool /O,
lets you specify pre- and postconditions
for correct application, and integrates the
actual tool calls at the implementation
level.
DAIDA is implemented in a wide-area
client-server architecture,
with ConceptBase as the

tial abstract machine, the IEENEGEGEGEG—_—E server and all other tools

designer can dcrive re- Euch reﬁnemem Step as the clients.

fined machines in partau- A hypertext-style stan-

tomatically, in part man- genemtes pfOOf dard client lets users

ually. [browse, filter, and edit
Each refinement step 0b|l90h0ns' YOU @n along dimensions like de-

generates many proofob- (J5@ These or condud' (0 velopment hierarchies,

ligadons. You can either
just sign them off as satis-
fied, or carry out a formal,
computer-assisted proof
— thus choosing among various degrees
of quality assurance. The last refinement
result should be so close to a DBPL repre-
sentation that automatic translation is pos-

sible.

ARCHITECTURE

As Figure 2 shows, DAIDA consists of
a set of dedicated tool boxes coordinated
by ConceptBase. Grafic (not shown), an
adaptable graphical editor/browser for
knowledge bases, supports the common
functions of related languages, each of
which has different constructsand use pat-
terns that make up its individual environ-
ment.

Iris and DBPL-Map are organized as
extensible tool kits because the develop-
ment theories they comprise may change.
They include theorem provers for par-
tally automated programming and verify-
ing of critical components. Similar assis-
tants help elaborate, analyze, and
prototype models at each conceptual-
modeling level.

ConceptBase interacts with other tools
by documenting and retrieving their re-
sults and the underlying decisions. It also
models the evolution of the DATDA envi-
ronment itself. You can use an interactive
tool to integrate externally developed
CASE tools into the DOT framework.
The mechanism views tool functionality

formal proof.

version histories, and call
relationships. Other stan-
dard clients include
DOT-based conceptual
front ends to commercial software for
teamwork supportand version and config-
uration management.® You can also add
environment-specific tools. By adding
hypertext editors instead of programming
tools and changing the definition of meth-
odologies, for example, we converted
DAIDA into a coauthoring system for
documentation rather than program
code.

DEVELOPMENT EXAMPLE

Figure 3 shows a detailed example ex-
tracted from an actual information-sys-
tems project. The figure shows the four
system stages defined at (from the top) the
world-model, conceptual-design, and
database-program levels. The world
model contains persons, some of whom
are employees of research companies. The
model assumes initially that each em-
ployee works on atmost one project. Telos
reflects this by making workson an in-
stance of the attribute class Single. Simi-
larly, the attribute class Unique reflects
that each employee name is unique.

Persons may turn into employees by
hireEmp activities, which instantate the
belongsto link to a company. Persons may
also be hired directly for specific projects,
which is designated by hireEfP (hire em-
ployee for project). An integrity constraint
restricts an employee to projects from his

particular company.

Because the developer has decided to
store only information about persons who
are employees, Iris collapses the general-
ization hierarchy Employee-Person to a
single TDL entity class, called EmplPers.
EmplPers inherits the atributes of both its
origin classes, hireEmp and hireEfP. In
contrast, each Telos activity class is sepa-
rately mapped into a TDL transaction.
The same direct mapping applies for proj-
ect and company objects.

DBPL-Map converts this structure to
a relational database with a relation for
each TDL entity class, artificial keys c#
and pré# to ensure object identity, and a
referential constraint that makes sure em-
ployees work in existing companies and on
existing projects. The implementadon of
transaction specificatons like hireEfP
must take into account the inherited pa-
rameters and functionality of the hireEmp
transaction; it must also add a precondi-
ton to the execution of the transaction
code: the integrity constraint of the world
model (mapped to a subset invarjant of
EmplPers in TDL) must be satisfied be-
fore execution.

In evaluating this system concept, the
developer has two major criticisms, which
result in Decisions 1 and 2 (gray barsin the
figure). First, prototyping shows that users
are confused if they have to deal with two
kinds of transactions. To eliminate this
confusion, the developer uses inheritance
to change the world-model-to-design
mapping so that the isa hierarchy of trans-
actions collapses. He does not have to
change the DBPL code as long as an arti-
ficial project, called general hiring, is in-
troduced for employees not hired for pro-
jects. He can then discard the transaction
program hireEmp and use hire EfP.

In Decision 2, the developer deter-
mines that employees may in fact work on
more than one project. He then removes
the instantiation link to Single in the
world model. To map this change to
TDL, he simply makes workson set-val-
ued. However, to retain a normalized re-
lational database schema at the imple-
mentation level, he must add a new
reladon, Workson, which represents the
many-to-many relationship between em-

58

MARCH 1882

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

ployees and projects. Together with a refer-
ential constraint, this addition ensures that
the relationship between existing projects
and employees will be constructed appropri-
ately. On the other hand, the developer must
omit pr# from EmplPers. The new database
structure then implies changes in hireEfP.

World model
Sysinml'd_osl_, | System

model

| Conceptual

design

Specification |ConceptBase

assistant Design
object

. knowledge

Iris
Design .

assistant Design
- process

knowledge

DBPL-Map
Program Design
tool
knowledge

S thisworkson =

this.belongsto.has $

belong

B A R S TR R T s 1

S thisworkson <
this.belongsto.has $

belongsto

P ey P

:‘ sto
| Company = Project

|

TA hireEmp with
in
name: String

TA hireEfP with
in
for: Projedt

end

Figure 3. Multilayered development bistory of a personnel information system in DAIDA.

workson: Project
belongsto: Company

Collapse isa heirarchy

[

| hireEfP with

Company

$ thisworkson <

this.belongsto.has

Project

g

S this.workson <

this.belongsto.has S

belongsto

in
name: String
comp: Company
for: Project
out
emp: EmplPers
end

Pers with
e

he: String
ing
kson: Project
belongsto: Company
invariant
: .. SubsetOf ..
end

Remove single-valuedness of workson

TA hi

reEfP with

name: String

o e EmplPers with
unique

name: String
changing

workson: SET OF Project

belongsto: Company
invariant

: .. SubsetOF ..

out

After five years: workson single-valued again

TA hireEfP with

name: String
comp: Company
for: Projed

emp: EmplPers
end

Pers with
e

he: String
ing
kson: Project
befongsto: Company
invariant
.. SubsetOf ..

IEEE SOFTWARE

59

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

Revised EmpPerPro_Req

EmpPerPro_Req

InitilReqMap

EmpPerPro_Des |

Collapse_isA :

EmpPerPro_Jmp

More projects

A >

 Again only one)
RevisedRegMop

Figure 4. Detailed dependency structure created by mapping the sample constraint.

1 MoreProj_Req

Imp_3

| Rel_3 | | Trans_3 |

AssignEmpToProj

Collapse Collapse
adtivity entity
hierarchy hierarchy

Choose set-
valued attribute
EmpRelType

Decompose
precondition
fest

Figure 5. In-the-large view of the sample development bistory.

Telos level

Speciolize
constraint
role

Introduce
artificial

Emplds DEF. MODULE ResearchCompTypes;

Emplds = ...

EmpRelTyp ProjldRelType
DATABASE IMP. MODULE ResearchCompaniesOps;
TRANSACTION HireEmployee

{name : EmpNames . . .) : Emplds;

BEGIN
IF SOME ¢ IN compRel . . .

DEF. MODULE ResearchCompaniesOps;
TRANSACTION HireEmployee
{name : EmpNames . . .) : Emplds

60

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen

MARCH 1982

. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

After the developer makes these revi-
sions, the information system is filled with
data. Its structure becomes a major factor
to take into account in later requirements
changes. When the company decides that
employees should concentrate on one
project again, the developer cannot simply
return to the state after Decision 1. In-
stead, he creates Decision 3 to preserve the
existing implementation and adds only the
integrity constraint that each employee
can be assigned to at most one project in
the Workson relation. He does not have to
change any transactions because the
database-management system’s integrity
checker will verify the correctness of
transaction results automatically.

Dependencies maintained by Con-
ceptBase support thisreuse of previous de-
velopment experience. Figure 4 shows the
detailed design record associated with the
mapping of the sample Telos constraint in
Decision 2. As the figure shows, however,
the details in the set of dependencies to be
maintained can easily overwhelm the user.

Fortunately, by simply introducing a
class of configuration decisions, we can ex-
tend the DOT decision concept to pro-
gramming in the large. Figure § gives a
more abstract, process-oriented represen-
tation of the history shown in Figure 3.
"The history of design decisions becomes ‘
much more understandable now, even |
compared with the verbal descripdon. ’

lntegraﬁng CASE environments is a |
problem with many facets. DAIDA has
attempted to deal with these facets by let-
ting you conceptually integrate informa-
don systems from the application, system,
and implementation perspectives. The
perspectives themselves are integrated |
through recorded design decisions and re-
sulting dependencies.

The principle underlying our ap-
proach is to lift integration from files or
documents to a conceptual level, taking
care of lower level issues with mapping
assistants. The specific choices of lan-
guages and tools in the DAIDA experi-
ments are offered as examples, although !
they do seem to exhibit some general

propertes needed for integration.

Our approach relies on the availability
of database technology that can handle
conceptual models. Rule/constraint com-
piler technology provides an automatic
mapping from the specification level to the
implementation level, which not only
generates the necessary code but also en-
sures that process traces in the form of
dependencies are maintained for reuse.
Recent results in the database literature
indicate that these technologies are moving
from research labs into industrial practice.

Working with integrated CASE envi-
ronments is a team effort that involves de-
velopers, managers, and outside stake-
holders. A software information system

like ConceptBase can be seenasa commu-
nication and collaboration medium rather
than as just a data store. This was one rea-
son we included subject, usage, and devel-
opment worlds in the conceptual model.
With this approach, negotation about
quality criteria (so-called nonfunctional
requirements), work organization, prog-
ress monitoring, and the adequate distri-
bution of access rights to development
data become important aspects of CASE
integration. We are working on extending
ConceptBase in these directions as well as
on applying our method to different do-
mains like computer-integrated manu-
facturing. L

ACKNOWLEDGMENTS

REFERENCES

pp. 460-477.

tion Systems, Oct. 1989, pp. 327-362.

258-280.

+

wn

IS .

0 ~

L 332-346.

"This work was supported in part by the Commission of the European Communities under ESPRIT con-
tract 892 (DAIDA) and by the Deutsche Forschungsgemeinschaft in its program Object Banks for Experts
(grant Ja445/1-2). The DAIDA team includes the software houses Bim in Everberg, Belgium (Raf Venken);
Groupe Frangaise d’Informatique in Nanterre, France (Alain Rouge); and Scientfic Control Systems in Ham-
burg, Germany (Raines Haidan); as well as the Forth Computer Research Center in Iraklion, Greece (Yannis
Vassiliou); and the Universites of Frankfurt Joachim Smith) and Passau in Germany.

Tam also grateful for the collaboration with the National Science Foundation’s Remap project at New
York University (Vasant Dhar) and with John Mylopoulos of the University of Toronto.

1. M. Jeusteld and M. Jarke, “From Relational to Object-Oriented Integrity Maintenance in Deductive
Databases,” Proc. Int'l Conf. Deductive and Object-Oriented Databases, Springer-Verlag, Heidelberg, 1991,

2. J. Mylopoulos etal., “Telos: Representing Knowledge about Information Systems,” ACM Trans. Informa-

3. A. Borgida etal,, “Support for Data-Intensive Applications: Conceptual Design and Software Develop-
ment,” Proc. Workshop Database Programming Languages, 1989, Morgan Kaufmann, San Mateo, Calif,, pp.

. M. Jarke, M. Jeusfeld, and I Rose, “A Software Process Data Model for Knowledge Engineering in Infor-
mation Systems, Information Systems, Jan. 1990, pp. 85-116.

. C.Potts and G. Bruns, “Recording the Reasons for Design Decisions,” Proc. Int’l Conf- Software Eng.,
IEEE CS Press, Los Alamitos, Calif., 1988, pp. 418-427.

. P. Constantopoulos et al., “Software Information Base — A Server for Reuse,” tech. report, ESPRIT Proj-
ect ITHACA, Forth Computer Science Inst., Iraklion, Greece, 1991.

. L. Chung ctal., “From Information Systems Requirements to Designs: A Dependency-Based Mapping
Framework,” Iuformation Systems, Oct. 1991, pp. 429-462.

. T. Rose et al., “A Decision-Based Configuration Process Environment,” Software Eng. 7., Sept. 1991, pp.

Matthias Jarke is a professor of information systems at the Technical University of
Aachen, Germany. He leads the Knowledge Bases group in ESPRITs Basic Research Ac-
don on Computational Logic as well as several projects in team support. His research in-
terests include extended data and knowledge bases for process-oriented integration of in-
formation systems in design environments and business organizations.

Jarke holds a Dr.rer.pol in information systems from the University of Hamburg,
Germany. He has published widely on databases and their applications and is on the edito-
rial board of IEEE Transactions on Software Engineering.

Address questions about this article to Jarke at Informatik V; RWTH Aachen,
Ahornstr. 55,5100 Aachen, Germany; Internet jarke@informatik.rwth-aachen.de.

IEEE SOFTWARE

61

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

