
4PAfiamewor.k
based on a process
model l@s
integration from j l e s
and documents to the
conceptual level,
taking care o f
lower level details
with mapping
assistants.

Strategies for
T 4 lntegrating
CASE
Environments
MATTHIAS JARKE , Technical University, Aachen

M uch of
today’s software market involves data-
intensive information systems, and as
databases are extended to design, process
control, and multimedia applications, this
market share may become even larger. Yet
information systems remain hard to
maintain and reuse. The primaryreason is
their lack of integration. Although pro-
g ramers have many individual develop-
ment tools at their disposal, there is no
formal integration across development
stages, between the system and its envi-
ronment, or across development tasks.

One way to address thls problem is to
view the development environment itself
as a data-intensive information system
centered around a repository. The ques-
tion then becomes how to formalize and
implement such a repository.

An experimental information-system
environment, called DAIDA (Develop-
ment Assistance for htegrated Database

54 0740-7459/92/0300/0054/$03 00 0 IEEE

Applications), was developed as part of the
European Community’s ESPRIT pro-
gram to examine this question. The
DAIDA project team, which I managed,
found that by making process-oriented
conceptual models operational through
knowledge representation and database
techques, we could integrate develop-
ment stages and development tasks.

DAIDA goes beyond traditional
knowledge-based techniques for CASE
(described in the box on p. 56) by address-
ingthree important dimensions of integra-
tion in a process-oriented model: how to
handle dependencies among development
stages, how to manage the evolving rela-
tionship among systems and their techni-
cal and social environments, and how to in-
tegrate development tasks - from both
development in the small, in which the
focus is the content of actions and results,
and development in the large, which is
concerned with object and process man-

M A R C H 1 9 9 2

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

agement and the collaboration of people
involved in developing and using systems.

Because information-system develop-
ment is a continuous, cooperative process
of analysis and reanalysis, design and rede-
sign, and programming
and oromam reorrraniza-

1 " U

tion, process information
should be stored in a re-
pository of experience.
We developed such a re-
pository, called Con-
ceptBase, and used it to
define our process-ori-
ented integration model.

ConceptBase consid-

the relationships between those decisions
and the models.

The need for process-centered devel-
opment stems kom the need to have pro-
cess details travelwith the information sys-

tem as it evolves. Many
information systems live - beyond single genera-

software, and develop-

gevity is proportional to
deve'opervser how much of the
communication developer's experience

transfers with the system's
problems. history. Given the high

Conceptual modeling
is a way to overcome

tions of hardware, system

ment teams, but their lon-

ers integration at two lev-
els. At the specification
level, it uses metamodehg to formally in-
terrelate languages, methods, and tools
through object smctures, rules, and con-
straints. At the implementation level, it in-
tegrates extemal tools using the trigger
concepts from database technology. Trig-
gers, or eventKondition-action rules, are
programs activated when a certain event
hke a database update happens and some
additional constraint is satisfied. Con-
ceptBase relates the two levels by con-
straint- and rule-compilation techniques
originatin from research in deductive
databases. P
THREEFOLD INTEGRATION STRATEGY

Integration in DAIDA begins with
concept-based specifications or mcept l la l
mod&. It then uses pcess-centemd h e & -
ment to amve at qdity-crarcred appliicatian
sofiware. The purpose of each phase is to
enhance communication between devel-
opers and users in requirements analysis
and system specification - notoriously
difficult areas.

Conceptual modehg - using object-
oriented representations, hypertext-like
interface technologies, and animated pro-
totypes - appears to be one of the few
ways to overcome developer-user com-
munication problems. Conceptual models
also specify how a system fits into its envi-
ronment. If you implement these models
in an information system, you can base
design decisions on them and document

tumoier of software per-
sonnel, it is wise to keep a

detailed record not only of outcomes, but
also of the design decisions and tool appli-
cations involved in development.

Quality assurance is an integral part of
integration because integration is often
driven by organizational requirements
and goals. Any integrated environment
should have a range of formal tools for
producing and evaluating system quality.
These tools also make it easier to reenact
development decisions during mainte-
nance. Total quality assurance using ap-
propriate formal methods and verification
and testing tools may be too expensive for
many applications, but the decision not to
invest in it should be a conscious one.

Conceptual d g . Conceptual lan-

guages let you work with adequate con-
cepts when specifjmg an application's se-
mantics. In requirements specification or
analysis, you need the freedom to defme
application-specific concepts and termi-
nology. In contrast, during the design
phase, you need a predefmed but powerful
set ofconstructs to represent a system per-
spective. To integrate at the implementa-
tion level, you need database-program-
ming models.

Figure 1 shows what conceptual mod-
eling in DAIDAconsists of. Requirements
modeling is not confined to describing the
system's requiremen6 but takes into ac-
count the broader context of system use.
The world model, which encompasses the
subject world, the usage world, and the
development world, captures knowledge
about the role of system components. The
subject world serves as the basis for the
information system's data model. It de-
scribes how the system model represents
objects. The usage world describes where
and how the system model will be used.
The seeds for specifymg system functions
and the user interface are in the usage
world. The development world is the en-
vironment of system versions, configura-
tions, and development teams, in which
the system evolves.

Figure 1 also shows the two other lev-
els of the conceptual model: conceptual
design and database programs. During
conceptual design, you organize the sys-
tem components from the specialized

Figure 1. Cunreptualiurtiun tasks in DAIDA.

I E E E S O F T W A R E

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

KNOWLEDGE4ASED CASE

of how formally based tools have been
used in knowledge-based software sup
p o ~ ’ While most of these projects have

systems) b r individual development &,
a few have also looked at integration, often
on a narrower scale than the DAIDAteam
has and without a d p m f of concept
thmugh the use of operational integrated
Prototypes-

The Programmer’s Apprentice project
at the Massachusetts Institute of Techno-
ogy sees integration as how to horimntally
compose socalled cliches for a single rep-
resentation level, but it does not deal with
informationsystemsspeu6cally.TRe
Knowledge-Based Sohare Assistant of
the US Air Force which pioneered howl-
edge-based assistants, is just beginning to
consider integration seriously.

Besides these AI-oriented approaches,
our integration approach has similarities

David Barstow gives a good overview

studied howledge-based assistants (~ r t

to several ideas developed in the database
community. Rule-based technology for in-
tegrating and controlling external tools is
also used in t h e M project at Columbia
Umvedy? The representation and consis-
t e n t m a i n ~ o f d e p e n d e n c y s t ” s
createdbyapptymgsuchinteptedtoolsis

oped in the Arcadia consortium3
Neither KBSA nor Cads supports a

specific process model of information-
system development in the context of how
the system’s environment evolves.
REFERENCES

also supported by the cactis d a n k dwd-

1. D. Barstow, ‘Ariifiaal Intelligence and Software

IEEECSPress,LosAlamitos,Catif., 1987,pp.
200-211.

2. G. Kaixr et al., “Database Support for God-
edge-Based Engineering Environments,” IEEE
Erpm Spring 1988, pp. 18-32.

3. S. Hudson and R King, “ C a d s : A Self-Adaptive,
Connurent Implementation of an Object-On-
ented Database Management System,” ACM
Tram. D&e%m, Sept. 1989,pp.291-321.

Engineering,” h. lntl G77g s+m fig.,

viewpoint of integrated information sys-
tems. At the database-programs level,
software-specific concepts serve as the
basis for integrated program production.

W d model. The heart of the world
model is the conceptual-modeling lan-
guage Telos.’ Telos integrates predicative
assertions and an interval-based time cal-
culus in a semantic network with built-in
axioms for aggregation, generalization,
and classification. It thus lets you manage
conceptual models as an evolving knowl-
edge base.

Telos is more flexible than most speci-
fication languages and tools. These lan-
guages often provide graphcal tools to ac-
quire and document requirements, but
they do not maintain results as a knowl-
edge base, they cannot transfer require-
ments to system specification and imple-
mentation, and they cannot formally reuse
development experience when require-
ments change. Telos differs from these
languages because it prescribes the infor-
mation system’s dynamic behavior. World
and system models evolve as learning oc-
c m ‘ o r reality changes because you can
manipulate the requirements model as a
dynamic knowledge base, not just as one-
shot documentation.

Telos also provides a way to represent

time, an important feature because re
quirements analysis is a dynamic proca
that describes a dynamic world. HistoriG
time in Telos indicates how applicatio,
processes happen in time; transaction tim
records how your understanding of thes
processes evolves.

Application areas for information sys
tems vary widely, yet as a basis for use
involvement, the language should provid
a means of communication close to th
application. The language must therefor
let you define application-specific con
cepts and reference models dynamicallj
Classification in Telos lets you strat i fy th
knowledge base in any number c
metalevels. Each level defines the SUE
language for describing objects of the levc
immediately below. You can define dc
main-specific concepts at a metalevel fair1
easily. These are then instantiated by ac
tual requirements. Combined with sui1
able compilation techques, meta model
ing helps you create interoperabilit
among independently developed softwar
components.

Requirements analysis is a major coo€
erative task with contributions &om var
ous stakeholder and developer groups..
language should give you enough modL
larity to model the evolution of individu:
opinions as well as their integration in

common requirements model.
A conceptual language should also let

you visualize requirements through
graphcal or text-based interaction. You
should not have to learn a formal syntax.
Even the support team needs a lot of guid-
ance. Telos integrates graphcal semantic
network principles with frames and rules.
It thus provides a basis for the hypertext
interface implemented in ConceptBase.
You canuse the predicative sublanguage as
a filter to make only relevant parts of the
world model visible in the hypertext net-
work.

Users often need animation to under-
stand formal requirements analyses. A
conceptual modeling language should let
you run examples through the require-
ments description, using derivation rules
or similar approaches to simulate system
behavior. You can use Telos’s deduction
rules to interactively animate the world
model by makmg deductive queries about
prototypical sample objects.

Cmcepfud &. Conceptual design con-
sists of formalty modeling the system itself. It
sti l l requires a semantically rich set of con-
cepts, but &is set k b e d as a uniform struc-
turing mechanism for information systems.
There is a delicate balance to maintain. On
the one hand, the design language should
not be too different from the requirements
language, but on the other hand, as a Starting
point for formal refinement methods, the
conceptual design must be formalty consis-
tent and complete. Thus, a heuristic under-
standingofthe specificationwithonly partial
formalization is insufficient as a basis for in-
tegration.

Many existing semantic data models
consider only database design. DADA’S
TaXs Design Language offers generaliza-
tion hierarchies of data and transactions as
well as set-oriented assertions, but no
metalevel extensibility. Instead of a time
concept, TDL adopts a state-based view
of computation as most programming
languages do. Data management is organ-
ized as entity classes related by attributes;
transactions bring about atomic state tran-
sitions, while scripts describe the long-
term pattem of global coordination and
timing.

56 M A R C H 1992

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

We learned from working with Telos
and T D L that a direct transition from the
requirements model to a formal system
specification is problematic with large in-
formation systems. The key is to reorgan-
ize the application knowledge gathered in
the requirements phase from the view-
point of how the information system will
manage dormation. The perspective is
&om an overall view like that of a data
dictionary, beyond the individual database
program's specification.

D& progromr The development of
correct and efficient database software is
neither a database design task nor a classi-
cal programming effort, in which the em-
phasis is on optimizing individual applica-
tions. Instead, this task requires integrated
concepts based on advanced database- and
systems-programming technology. These
concepts serve as a front end for in tep t -
ing target database systems and applica-
tion languages.

As part of our work on DAIDA, we
used the DBPL database language3 as a
possible candidate for such a fi-ont end.
We also constructed mappings from TDL
to DBPL and from DBPL to commercial
relational database systems.

Rocess-cmtered development. At least as
important as conceptual models for indi-
vidual tasks is the modeling of their inter-
relationshp Such a model must encom-
pass an abstract conceptual model that
describes individual concept models uni-
formly and a p m e s model that captures the
relationships among abstract objects. The
second model requires more than just ob-
serving objects in isolation. It requires
knowledge about how the system was de-
veloped. Neither development stages nor
steps are predetermined, but emerge from
development tasks, available tools, and the
development team.

One of DAIDA's design goals was to
make this process explicit and support it
over long development periods. The pro-
cess model is integrated with the concep-
tual model through the development
world, as shown in Figure 1. For that rea-
son, we use Telos for both the conceptual
and process models.

I E E E S O F T W A R E

DAIDA's process model is a
metamodel called D O T (decision-object-
tool)." DOT, which generalizes several
earlier decisiondented process model^,^
represents states of a development process
by documenting relevant properties of re-
sults achieved in that state as objects.

We represent state transitions by docu-
menting and justifyrng the decisions lead-
ing to the results; decisions can address
refinement w i h a DAIDA level, map-
ping between levels, versioning to change
previous decisions, or reconfiguring to
group existing system components. Be-
cause the development environment may
change over the information system's life,
we also represent the tools that support
decision execution. The purpose of man-
aging all this information is to transfer de-
velopment experience throughout a
system's life.

ConceptBase is DAIDA's metadata
management and reasoning facility. It
provides the information required by the
development process and ensures that the
process is formally correct. We use Telos's
metaclass hierarchy to document
metaclasses, classes, and

you can develop new applications by con-
figuring reusable development histories.
This extension is studied in another ES-
PRIT project, ITHACA (Interactive
Toolkit for Highly Advanced Computer
Applications)."

W ~ Q S S U ~ software. To provide a
controlled degree of quality assurance, you
have to do more than document the wolv-
ing relationships between representation
levels. You need suppohg tools to validate
requirements or designs and to map the
three conceptual levels: world model, con-
ceptual design, and database pmgrams.

DAIDA accommodates validation by
prototyping in Prolog. For mapping, it of-
fers two knowledge-based assistants: Iris,
which maps from the world model to con-
ceptual design, and DBPL-Map, which
maps from conceptual design to database
 program^.^ These knowledge-based as-
sistants not only help you satisfy func-
tional requirements but also support
nonfunctional goals like efficiency and
accuracy.

Iris recognizes that conceptual design
is not simolv an elabora-

1 ,

instances. The metaclass - tion of the world model by
level defines the basic At least as important S ~ p P O ~ g distinct design
structure for develop- decisions over and above
ment processes, the class 0s conceptual models initial requirements.'
level describes the devel- Such decisions might in-
opment environment at for individual tasks is clude satisfying temporal
hand, and the instances the modeling of their conditions by transactions
level consists of concrete . or scripts or d e h g how

Iris also lets you satisfy as-
development projects interrelationships. long data should be kept.
w i h n the environment.

along version histories under the control
of the model at the level above it. The
graphical view of Telos serves as a basis for
browsing in version histories, along devel-
opment levels and usage relationships.
The formal view focuses your attention by
makmg predicative queries before letting
you graphically explore the system.

DOT is a methodology-independent
representational framework. DAIDA as-
sistants support a spiral model of top-
down development, but other DOT in-
stantiations, even using the same
languages, might support very different
development paradigms. For example,

Each level may evolve sertions at- the world-
model level by providing integrity con-
straints on data. You can either perform
precondition tests on transactions or spec-
ify structures and operations that satisfy
assertions by design (for example, error-
preventing menu interfaces).

A design decision can even cause a re-
grouping of the system model's data struc-
tures; for instance, the designer may de-
cide to organize generalization
hierarchies of concepts by their temporal
actuality rather than by content.

Mapping from conceptual design to
database programs requires more formal
and standardized support. DBPL-Map

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

derives application modules from the con-
ceptual design using abstract machine
specifications as an intermediate represen-
tation. It translates a coherent subset of
TDL classes - the specification for the
intended program - into an abstract ma-
chine specification and checks it for con-
sistency and formal com-
pleteness. From h s in-

as a set of DOT decision classes, deter-
mines the DOT object types for tool I/O,
lets you specify pre- and postconditions
for correct application, and integrates the
actual tool calls at the implementation
level.

DAIDA is implemented in a wide-area
client-sewer ardutecture,
with ConceptBase as the

ha1 abstract machine, the - sewer and ill other tools

fined machines in part au- A hypertext-style stan-
tomatically, in part man- generates proof dard client lets users
ually. browse, filter, and edit

Each refinement step obligations. can along dimensions like de-
generates many proofob- use these 01 conduct 0 velopment hierarchies,
ligations. You can either version histories, and call
just sign them off as satis- formal proof. relationships. Other stan-

designer can derive re- Each refinement step astheclients.

fied, or carry out a formal,
computer-assisted proof
- thus choosing among various degrees
of quality assurance. The last refinement
result should be so close to a DBPL repre-
sentation that automatic translation is pos-
sible.

ARCHITECTURE

As Figure 2 shows, DAIDA consists of
a set of dedicated tool boxes coordinated
by ConceptBase. Grafic (not shown), an
adaptable graphical editorhrowser for
knowledge bases, supports the common
functions of related languages, each of
whch has different constructs and use pat-
tems that make up its individual environ-
ment.

Iris and DBPL-Map are organized as
extensible tool kits because the develop-
ment theories they comprise may change.
They include theorem provers for par-
tially automated programming and verify-
ing of critical components. Similar assis-
tants help elaborate, analyze, and
prototype models at each conceptual-
modeling level.

ConceptBase interacts with other tools
by documenting and retrieving their re-
sults and the underlying decisions. It also
models the evolution of the DADA envi-
ronment itself. You can use an interactive
tool to integrate externally developed
CASE tools into the DOT framework.
The mechanism views tool functionality

dard clients include
DOT-based conceptual

front ends to commercial s o h a r e for
teamwork support and version and config-
uration management.8 You can also add
environment-specific tools. By adding
hypertext editors instead ofprogramming
tools and changing the d e h t i o n of meth-
odologies, for example, we converted
DAIDA into a coauthoring system for
documentation rather than program
code.

DEVELOPMENT EXAMPLE

Figure 3 shows a detailed example ex-
tracted from an actual information-sy;-
tems project. The figure shows the four
system stages defined at (from the top) the
world-model, conceptual-design, and
database-program levels. T h e world
model contains persons, some of whom
are employees ofresearch companies. The
model assumes initially that each em-
ployee works on a t most one project. Telos
reflects this by making workson an in-
stance of the attribute class Single. Simi-
larly, the attribute class Unique reflects
that each employee name is unique.

Persons may turn into employees by
hu-eEmp activities, which instantiate the
belongsto link to a company. Persons may
also be hired dvectly for specific projects,
which is designated by hireEfP (hire em-
ployee for project). An integrity constraint
restricts an employee to projects from his

particular company.
Because the developer has decided to

store only information about persons who
are employees, Iris collapses the general-
ization herarchy Employee-Person to a
single TDL entity class, called EmplPers.
EmplPers inherits the attributes ofboth its
origin classes, hireEmp and hireEfP. In
contrast, each Telos activity class is sepa-
rately mapped into a TDL transaction.
The same dn-ect mapping applies for proj-
ect and company objects.

DBPL-Map converts dus structure to
a relational database with a relation for
each TDL entity class, artificial keys c#
and pr# to ensure object identity, and a
referential constraint that makes sure em-
ployees work in existing companies and on
existing projects. The implementation of
transaction specifications like hireEfP
must take into account the inherited pa-
rameters and functionality ofthe hireEmp
"action; it must also add a precondi-
tion to the execution of the transaction
code: the integrity constraint of the world
model (mapped to a subset invariant of
EmplPers in TDL) must be satisfied be-
fore execution.

In evaluating h s system concept, the
developer has two major criticisms, which
result in Decisions 1 and 2 (gray bars in the
figure). First, prototyping shows that users
are confused if they have to deal with two
kinds of transactions. To eliminate this
confusion, the developer uses inheritance
to change the world-model-to-design
mapping so that the isa hierarchy of trans-
actions collapses. He does not have to
change the DBPL code as long as an arti-
ficial project, called general hiring, is in-
troduced for employees not hired for pro-
jects. He can then discard the transaction
program hreEmp and use hireEfp.

In Decision 2, the developer deter-
mines that employees may in fact work on
more than one project. He then removes
the instantiation link to Single in the
world model. To map this change to
TDL, he simply makes workson set-Val-
ued. However, to retain a normalized re-
lational database schema at the imple-
mentation level, he must add a new
relation, Workson, which represents the
many-to-many relationship between em-

5 8 M A R C H 1 9 9 2

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

ployees and projects. Together with a refer-
ential constraint, this addition ensures that
the relationhp between existing projects
and employees will be constructed appropri-
ately. On the other hand, the developer must
omit pr# from EmplPers. The new database
structure then implies changes in hu-eEfl? Figure 2. Funrtimal vim ofthe DAIDA architerture.

Figure 3. Multikyered d e u e l o p e u t history of a personuel i+rmtion system in DAIDA.

.-

I E E E S O F T W A R E 59

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Detailed dependency stnirture created ly mapping the sample constraint.

Telos level

S workson Subset belongsk.engogedln 5 I

Figure Y. Ira-the-large oiem of the sample da~e lop ien t histoiy.

I1

6 0 M A R C H 1 9 9 2

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

After the developer makes these revi-
sions, the information system is filled with
data. Its structure becomes a major factor
to take into account in later requirements
changes. When the company decides that
employees should concentrate on one
project again, the developer cannot simply
return to the state after Decision 1. In-
stead, he creates Decision 3 to preserve the
existingimplementation and adds onlythe
integrity constraint that each employee
can be assigned to at most one project in
the Workson relation. He does not have to
change any transactions because the
database-management system’s integrity
checker will verify the correctness of
transaction results automatically.

Dependencies maintained by Con-
ceptBase support hsreuse of previous de-
velopment experience. Figure 4 shows the
detailed design record associated with the
mapping of the sample Telos constraint in
Decision 2. As the figure shows, however,
the details in the set of dependencies to be
maintained can easily overwhelm the user.

Fortunately, by simply introducing a
class of configuration decisions, we can ex-
tend the D O T decision concept to pro-
gramming in the large.* Figure 5 gives a
more abstract, process-oriented represen-
tation of the history shown in Figure 3 .
The history of design decisions becomes
much more understandable now, even
compared with the verbal description.

ntegrating CASE environments is a I problem with many facets. DAIDA has
attempted to deal with these facets by let-
ting you conceptually integrate informa-
tion systems from the application, system,
and implementation perspectives. The
perspectives themselves are integrated
through recorded design decisions and re-
sulting dependencies.

The principle underlying our ap-
proach is to lift integration 6om files or
documents to a conceptual level, taking
care of lower level issues with mapping
assistants. The specific choices of lan-
guages and tools in the DADA experi-
ments are offered as examples, although
they do seem to exhibit some general

’

, properties needed for integration.

Our approach relies on the availability
of database technology that can handle
conceptual models. Rule/constraint com-
piler technology provides an automatic
mapping from the specification level to the
implementation level, which not only
generates the necessary code but also en-
sures that process traces in the form of
dependencies are maintained for reuse.
Recent results in the database literature
indicate that these technologies are moving
from research labs into industrial practice.

Working with integrated CASE envi-
ronments is a team effort that involves de-
velopers, managers, and outside stake-
holders. A software information system

like ConceptBase can be seen as a commu-
nication and collaboration medium rathei
than as just a data store. This was one rea-
son we included subject, usage, and devel-
opment worlds in the conceptual model
With this approach, negotiation aboul
quality criteria (so-called nonfunctiona
requirements), work organization, prog-
ress monitoring, and the adequate distri-
bution of access rights to developmeni
data become important aspects of CASE
integration. We are working on extending
ConceptBase in these directions as well a:
on applying our method to different do-
mains like computer-integrated manu-
facturing. 4

ACKNOWLEDGMENTS
This work was supported in parr hy the Corilrnission of the European Communities under ESPRIT con-

wact 892 (DAIDA) and by the Deutschc Forschungsgeiiieinschaft in its program Object Banks for Expew
(grant Ja+t5/1-2). T h e DrUDA team includes the software houses Bim in Everberg, Belgium (Raf \’enken);
Groupe Franydise d’lnforniatique in Nanterre, France (Aain Rouge); and Scientific Control Systems in Haiii-
burg, Germany (b i n e s Haidan); as well as the Forth <:ompurer Research Centrr in Irdklion, Greece @armis
XTassiIiou); and the Universities of Frankfurt (loachim Smith) and Passau in Germany.

I ani also LTatefill for the co~laborahon with the National Science Foundation’s Remap project at New
Itirk University (Vaaant Dhdr) and ~ i t h John Mylopoulos of the University ofToronto.

REFERENCES
1. A I . Jeusfeld and M.Jarke, “From Relational to Object-Oriented IntegrityA\llaintenace in Deductivr

Databases,” Pvoc I d C o i $ Dahrrtla~ mid Olyc~i.t-0nnited Dittirlime.~, Springer-Verlag, Heidelberg, 199 I ,

2. J. Alylopoulou et al., “1Slos: Represenhng Knowledge about Infomution Systerns,”,-lC.!f Faits. bfo77iu-

3. A. Borgidd et al., “Support for Data-Intensive Applicatioiis: Conceptual Design and Software Develop-

pp. lhObt77.

timi , ~ y r t f w n , Oct. 1089, pp. 3?;-36?.

ment,” P~oc. U’ovksbop Dt/t&se P7v,q-r“r177g In7ig““grs, 1989, Morgan h u h a n n , San .%tea, Calif., pp.
258-280.
i. Al.Jarke, Al. Jeusfeld, a n d T Roue, ‘‘,A Software Process Data hlodel for Knowledge Engineeringin Infor-

mation Systems. IiZjT”troii SpT.;tlwi.f.Jan. 1990, pp. 8.5-1 16.
5. C. Ports and G. Bnms, “Recording the Reasons for Design Decisions,” Prc~r I d Coi$ Sofiave Eiig.,

IEEE C S Press, Los ;Uaiiiitos, Calif., 1988, pp. 418-427.
6. P. C~instantopoulos et al., “Software Information Base - A Server for Reusc,” tech. report, ESPRIT Proj-

ect I T K C & Fonh C:omputer Science Inst., lrdklion, Greece, 1991.
7 . L. (:hung r t al., “From Infoniidtion Systems Requirements to Deqigns: A Dependency-Based Mapping

Frdinework,” blfb/-niatin/i S)~.rtmi/s, Oct. 1991, pp. 420--16?.
8. 1: Rose et al., “-4 Decision-Based C;onfiLprdtion Process Environment,” S ‘ ~ ~ ~ ~ ~ 1 y Brcq..7., Sept. 1991, pp.

3 32.346.

Matthias Jarke is a professor of infomiauon swtems at thc Ichmcal Universib of
kchen, German\ He leads the Knowledge Bases group in E5PRlI ’s Basic Research Ac
uoii on Coinputanondl Logic a5 well as several projtctu in team support His research in-
terest\ include extended data and hiowledge b a s r s for process<iriented integraaon ot in-
formanon s\ stems in design environments and business organiuoons

Jarke holds a D r rer pol in inhnnanon systemu from the Uni>ersiq of Hamburg,
<;rnnanv H e has puhlished widelvon databdses aid their appli~ahons and is on the edito
ndl board of Ih!.c 7?ol/W/L7/~?l/roii % f t . < / l L E i / g l l l ~ m 7 i i g

Address quesnons about th is arude to JarLe at Informahk R M T H Aachen,
&hornstr 5 5 , i 100 h c h c n , (h m a n r , Internet]arhe@lnformahL ruth-aachen de

,
I E E E S O F T W A R E 6 1

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:00:10 UTC from IEEE Xplore. Restrictions apply.

