Qlisp: Parallel Processing in Lisp

Ron Goldman and Richard P. Gabriel

Lucid, Inc.

Abstract

One of the major problems in writing programs to take advantage of parallel processing
has been the lack of good multiprocessing languages—one which is both powerful and
understandable to programmers. In this paper we describe multiprocessing extensions
to Common Lisp designed to be suitable for studying styles of parallel programming at
the medium-grain level in a shared-memory architecture. The resulting language is called
Qlisp.

A problem with parallel programming is the degree to which the programmer must
explicitly address synchronization problems. Two new approaches to this problem look
promising: the first is the concept of heavyweight futures, and the second is a new type of

function called a partially, multiply invoked function.

1. Introduction

The quest for higher-speed computers continues, and as the physical limitations on
uniprocessor speed inhibit continued improvements, the need for parallel computers be-
comes more pressing. However, a computer that cannot be programmed is worthless, and
so it makes sense to turn our attention to programming languages that can express parallel

computations.

We have decided to focus our attention on medium-grained parallelism within the
confines of artificial intelligence and symbolic computing. Our interest in researching
language design is to study how to write parallel programs. To that end we are not
initially concerned about introducing the minimal number of new constructs or in the fine
details of syntax. Rather, we are trying to create a rich blend of language constructs that
will allow programmers to describe parallel algorithms in a variety of styles—simplification
will follow. In doing so we are hoping to help artificial intelligence programming in the

future.

This research was supported by DARPA under contract N00039-84-C-0211.

1



Therefore, we are investigating parallel extensions to the programming language Com-
mon Lisp [7]. The resulting language is called Qlisp. Other research into extending Lisp
to support parallel programming is described in [4], [6] and [§].

This paper describes the Qlisp language, giving examples of its use. We also discuss
additional extensions based on our experience programming in Qlisp. Performance results

of the initial implementation of Qlisp are reported in [3].

1.1 History

Qlisp was initially designed by John McCarthy and Richard Gabriel [2] while they
were affiliated with the Lawrence Livermore National Laboratory’s S1 Project. The S1
was to have been a 16-processor multiprocessor, with each uniprocessor being a Cray-
class supercomputer. Until 1987 the only implementations of Qlisp were interpreter-based
simulators. Since late 1987 we have been engaged in implementing Qlisp on an Alliant FX /8
parallel computer; this implementation is based on Lucid Common Lisp, a commercial

Common Lisp system.

The Qlisp project supports an exploratory programming component which is research-
ing the effectiveness of Qlisp for symbolic mathematics. The inclusion of an application
component of the Qlisp research has been important for gaining critical experience before
design and implementation decisions are frozen. Experience gained during the implemen-

tation process has resulted in a number of changes to the original design of Qlisp.

1.2 Design Goals

The design of Qlisp was aimed at satisfying the following goals:

e The language will support medium-grained parallelism. Medium-grained parallelism
matches well the intuitions programmers have about how to parallelize programs.
Fine-grained parallelism often requires special hardware support, which is unlikely
to be found in stock hardware except for vector processors. Most vector processors
are designed for numeric computation. A commercial multiprocessor will typically be
designed to support multiple users, and medium-grained parallelism is the best one can
do on such hardware. Coarse-grained parallelism can often be achieved with simple
message-passing techniques.

e The language will support the explicit expression of parallelism. There will be little or

no support for implicit parallelism such as that provided by vectorizing or parallelizing

2



§ 1

Introduction

compilers. Medium-grained parallelism often involves dealing with side-effects, and
reasoning about when it is safe to parallelize in the presence of side-effects usually
requires domain-specific knowledge.

The target computer will support a shared address space. It is not important whether
the shared address space is implemented using shared memory, except for performance
requirements. Symbolic computation typically involves manipulating large shared data
structures, which are best handled in a shared address spaces. We do not wish the
programmer to worry about access to data structures in non-uniform memory.

The language will support a variable number of processors. The number of processors
a parallel computation requires may depend on the data. In this case it would be
important to be able to adapt the number of processes used to solve a problem to the
number of processors available.

The language will provide mechanisms for limiting the number of processes. The cost
of creating and maintaining a process can be high. If a process cannot be immediately
run, that cost may overshadow the potential gains from spawning it. Also, the number
of instructions to spawn the process may be larger than the number of instructions
needed for the computation it performs. Therefore, limiting the parallelism can often

improve performance.

2. The Qlisp Language

The approach used for Qlisp is queue-based multiprocessing. The programmer must

explicitly indicate in the program when parallelism is possible by using the special parallel

constructs described below. When a running program executes a statement specifying

parallelism, it then adds a collection of new tasks to a queue for subsequent evaluation.

When a processor completes a task it goes to this queue for its next task. Basing parallelism

on runtime queues means that a program is not written or compiled for a specific number

of processors. The number available could even change during the course of a computation.

Tasks need not be of similar length, since a processor finishing a short task merely takes

another from the queue.



g2 The Qlisp Language

2.1 Futures

Whenever a new process is created to perform some computation, the process will
have associated with it a special datatype called a future [1]. This future is a promise to
eventually deliver the value that is being computed by the process. Initially the future
has no value and is unrealized. The future is realized when the process associated with it
finishes its computation. If some other process needs to know the value of an unrealized
future in order to perform some operation (such as addition), then it must block and wait
until the future has been realized. However many operations, such as cons, assignment,
or parameter passing, only require a pointer to the future and do not need to wait for it
to be realized.

To explicitly wait for a future to be realized, the construct

(realize-future form)
can be used. When called, realize-future will evaluate form, and then, if its value is a

future, wait for it to be realized; it then returns the future’s value.

2.2 SPAWN

The simplest way to introduce parallelism into a Qlisp program is to use the construct

(spawn prop form)
to create a new process to evaluate form. The form prop is a propositional parameter that
is evaluated first. If its value is nil (i.e. false) then no new process is created; the process
originally executing the spawn will proceed to execute form and spawn will return the
resulting value. If prop is any non-nil value (i.e. true), then a new process is created to
evaluate form and spawn will return a future which will eventually be realized with an
actual value when the new process finishes computing form.

All of the constructs in Qlisp that can be used to create new processes make use of
a similar propositional parameter to give the programmer a way to limit the degree of
parallelism during program execution.

The following computes a list that contains a series of values of the function fun:

4



g2 The Qlisp Language

(defun function-list (fun start next-arg spawn-p &optional (count 10))
(let ((initial-list (list nil))
(arg start)
val)
(let ((point initial-list))
(labels
((next-value (&optional (count 1))
(dotimes (i count)
(let ((tmp arg))
(setf val (spawn spawn-p (funcall fun tmp))))
(setf arg (funcall next-arg arg))
(setf (car point) val)
(setf (cdr point) (list #’next-value))
(setf point (cdr point)))
val))
(next-value count)
initial-1ist))))

Note that labels is a Common Lisp construct used to define locally named, mutually re-
cursive functions, in this case one called next-value. Also notice that the definition of
next-value includes the definition-time environment, in this case the local variables fun,
next-arg, spawn-p, arg, point, and val. This combination of code plus environment is
called a closure. When a closure is invoked, the definition-time environment is reestab-
lished. When a new process is created by spawn or any other Qlisp construct, a closure
is created to evaluate the spawned forms. This ensures that the new task will share the
environment that existed when it was created. Part of this environment is the values of
any special (dynamic) variables that are currently bound.! Note that even if the parent
process goes away, the spawned process can still access and modify the values of variables
captured in the closure

The above example is also interesting because the function will produce a list of length
count, and the list ends with a continuation function which when invoked extends the list.

The list will be of the following form:

(fx1)...(fxp)...C)

where f = fun, x; = start, and z;41 = (next-arg z;). C is the continuation function
and takes an optional argument, which is the number of elements by which to extend the
list.

The following function is useful when traversing a list produced by function-list:

1 Qlisp uses a deep-binding scheme: a stack of variable name/value pairs.

5



g2 The Qlisp Language

(defun force (object)
(realize-future
(if (typep object ’function)
(funcall object)
object)))

2.3 QLET

The primary means of introducing parallelism into a Qlisp program is the qlet con-
struct, which is used to evaluate a number of arguments to a let-form in parallel. Its form
is:

(qlet prop ((x; argy)...Cxz, arg,)) . body)

The form prop is again a propositional parameter that is evaluated first. If its value
is nil, then the qlet behaves like an ordinary let in Common Lisp: The arguments
arg; ...arg, are evaluated, their values bound to z;...z,, and the statements in body
are evaluated.

If prop evaluates to any non-nil value, then the qlet will spawn a number of new
processes, one for each arg;, and add them to the queue of processes waiting to run. If
the value of prop is not the special keyword :eager then the process evaluating the qlet
will wait until all of its newly created child processes have finished. When the values
for arg, ... arg, are available, the parent process will be awakened, the values bound to
x...%T,, and the statements in body evaluated.

The following is an example of one way to write parallel factorial using qlet:
(defun pfact (n depth)

(labels
((prod (m n depth)
(if (=m n)
m

(let ((h (floor (+ m n) 2)))
(qlet (> depth 0)
((x (prod m h (1- depth)))
(y (prod (+ h 1) n (1- depth))))
(x xy))))))
(prod 1 n depth)))

The internal function prod computes the product of integers from m to n inclusive. It
does this by dividing the interval m-n into two approximately equal parts, recursively
computing the products of the integers in those two intervals, and then multiplying the
two results.

The cutoff depth is used to control the number of processes created. Because two are
created for every recursive call in prod, at most 2¢P*"*1 — 2 processes will be spawned.

Notice that the propositional parameter to qlet simply looks at the value of depth.

6



g2 The Qlisp Language

In the case that prop evaluates to the special keyword :eager then the process evalu-
ating the qlet will not wait for the processes it has just spawned to complete the evaluation
of the arguments arg, ... arg,,. Instead, it will bind each qlet variable, z; ... z,, to a future
and then proceed to evaluate the forms in body. If in evaluating body the value of one of
the qlet variables z; is required, the process evaluating the qlet will wait for the spawned
process computing arg; to finish. If the value has already been computed, no waiting is
necessary.

The following is an example of the eager form of qlet. Suppose we need to com-
pute very many values of several computationally expensive functions, but suppose we
store selected values in a table on secondary storage. Suppose that the lookup procedure,
lookup-stored-fun, takes a function and its arguments, and returns a location descriptor
which may contain the value of the function and which can be used to store the value.

Then we might wish to optimize the use of such functions as follows:

(defun function-cache (fun &rest arguments)
(qlet :eager ((value (apply fun arguments)))
(let ((loc-desc (lookup-stored-fun fun arguments)))
(if (value-stored-p loc-desc)
(progn
(kill-process value)
(setf value (loc-desc-value loc-desc)))
(setf (loc-desc-value loc-desc)
(realize-future value))))
value))

The predicate value-stored-p is assumed to indicate whether the desired value of the
function already exists in the cache. The setf method for loc-desc-value is assumed to
cause the supplied value to be stored in secondary storage. The primitive kill-process
kills the process computing the value of the future value if it is not needed.

The function function-cache overlaps the computation of the expensive function fun

with the possibly lengthy search in secondary storage for the pre-computed value of fun.

2.4 Excessive Parallelism

Because Lisp programs (and symbolic computations in general) are highly recursive,
they can very easily generate a large number of parallel tasks—the opportunities leap out.
Because any real multiprocessor will have only a finite number of processors, and because
the cost of creating and maintaining a new process is non-zero, the use of prop during

runtime to limit the degree of multiprocessing is quite important. We need only enough

7



g2 The Qlisp Language

parallelism to keep all the available processors busy. The qlet propositional parameter
prop is a direct consequence of our design goal of limiting the number of processes created.

The following function is a frequent target of parallel benchmarking:?

(defun fibonacci (n)
(if (< n 2)
1
(qlet t ((x (fibonacci (- n 1)))
(y (fibonacci (- n 2))))
+xy))))

Even though there are vastly better ways to write this function, it is illustrative in several
ways. First, it is pointless to use mindless parallelism as is shown above because the cost to
create and maintain a process for small values of n is much greater than the computation

of (fib n). It is better to use a depth cutoff as follows:

(defun fibonacci (n depth)
(if (< n 2)
1
(qlet (> depth 0)
((x (fibomacci (- n 1) (1- depth)))
(y (fibomacci (- n 2) (1- depth))))
+xy))))

Here processes to compute the recursive calls are spawned down to some depth. The
number of processes created is at most 2%Pth+tl _ 2 The use of such depth cutoffs is
typical in Qlisp programming: a recursively defined function spawns processes to compute
recursive calls down to some predefined depth.

One important aspect of the treatment of parallelism is the amount of computation
required per task as compared with the amount of work needed to create a task and com-
bine its results with those of other tasks. If the qlet propositional parameter is true then
the parent fibonacci process will not have much work to do, though for large arguments,
the addition can be a significant amount of work because Common Lisp supports arbi-
trary precision integer arithmetic. The qlet propositional parameter serves to increase the
amount of computation per task.

If the above code was to be run on a system with four processors then one might
expect that the best performance could be achieved by using a depth of two. However

this is not the case as the amount of work required by each process will vary considerably.

2 The discussion here is based on various experiments [3] done to test different ways to limit parallelism.
Running the various Qlisp programs was quite educational as the results often did not correspond to our

intuitions.



g2 The Qlisp Language

Three of the processes will finish well before the last, and those three processors will then
be idle for the rest of the computation. By increasing the depth of the tree of processes
created, the granularity of the computations done by the final nodes becomes smaller, and
when a processor finishes one task, it can get another one. The result of this is to balance
the work load more evenly among all of the processors, keeping them all busy and finishing
the entire computation sooner. As the depth is increased beyond the optimum point, then
the additional time needed to create more processes starts to slow the computation down
as expected.

A better measure of when to spawn processes then is the amount of computation that
each process has to do. After several runs, a programmer may have determined typical
usage patterns and might be able to estimate the amount of computation for each process.
Another approximation to the amount of work for each process can be based on the size of
the data structures on which the processes will operate. When operating on tree structures,
this approximation is essentially the number of nodes below a certain point in the tree.
Note that a depth cutoff can depend only on the size above a certain point.

For a function like fibonacci the amount of computation is directly related to the
argument n. This can be used to spawn additional processes whenever n is greater than
some predetermined cutoff value. Beneath that cutoff no additional parallelism would
occur.

Another predicate to use for the propositional parameter is qemptyp. This returns
true if there are no tasks in the queue. Therefore, if progress is good as measured by this

predicate, it usually is reasonable to spawn an extra task:

(defun fibonacci (n)
(if ( n 2)
1
(qlet (gemptyp)
((x (fibonacci (- n 1)))
(y (fibomacci (- n 2))))
+ xy))))

Using a predicate like gemptyp results in behavior that is quite different than that
of using a cutoff, since it depends very strongly on the interactions of all the running
processes. This can sometimes be quite desirable, but for a function like fibonacci it is
a disaster—since most of the calls to fibonacci are for very small values of n, it will be
these trivial calculations that will first detect when the run queue becomes empty, and so
they will spawn most of the new processes. For fibonacci, combining qemptyp with a

cutoff based on the argument value eliminates this problem.

9



g2 The Qlisp Language

Many recursive programs share the property that each recursive call requires less
computation than its parent. From our point of view this has serious implications when
the amount of computation at a level is comparable to the amount of overhead required to
create and maintain processes. If process creation is eliminated below the point at which
process overhead dominates, the effectiveness of a parallel program depends on how closely
the actual scheduling of processes to processors approximates ideal scheduling. Note that
the actual scheduling can depend on which processors suffer page faults and when. The use
of a fixed depth as a control on process spawning approximates the ideal of not spawning
too-small tasks only for a small range of argument values. The use of a cutoff based
on argument values directly implements the ideal, but the knowledge of the cutoff is not
adaptively obtained, and the exact value to use as a cutoff can vary depending on the
details of scheduling. Therefore, the adaptive policies of checking for idle processors or
an empty run queue coupled with a cutoff is probably a close approximation to the ideal,

assuming that the cost of running the policy is not too large.

2.5 AND/OR-parallelism

The construct qlet is an example of AND-parallelism—where there is a set of tasks
to do and all of them must be completed. We also need a way to specify OR-parallelism—
where there is again a set of tasks, but now when the first task is successfully completed, the
other tasks can be abandoned. The initial design of Qlisp proposed to do OR-parallelism
by combining qlet with the explicit killing of processes. This will work, but the resulting
code often seems unnecessarily awkward and unclear. We now feel that providing Qlisp
constructs to directly express AND/OR-parallelism will result in higher quality Qlisp pro-
grams that will be easier to write and will more clearly communicate the programmer’s
intent.

To do this we generalize the notion of a future to allow several processes to be as-
sociated with it, along with a combining function. As each process finishes, it calls the
combining function with the value of the form it has just finished computing. When all
of the processes have completed, the future will be realized. For example if the combining
function is +, then the sum of all the values computed by the associated processes will be
the value of the future; if it is max, then the maximum value returned by the processes
will be the future’s value. OR-parallelism is accomplished by also associating an end test
predicate with the future: When the value computed by a process satisfies this end test,

then the future will be realized immediately, and any processes associated with the future

10



g2 The Qlisp Language

that have not yet finished will be killed. We distinguish between a simple lightweight future
whose value is computed by one process, and the more complex heavyweight future where
several processes are involved in computing the value of the future.

Heavyweight futures are created by using an extended definition of spawn, which
accepts arguments to specify a combining function, an end test, and multiple forms to
be evaluated. Additional processes can be added to a heavyweight future by passing the
same future to several calls to spawn. The following illustrates this. The problem is to
find the minimum for a function of one real variable within a given interval. The strategy
is to break up the interval into n equal subintervals and to have each process search its
subinterval for a local minimum. The mesh should not be any finer than the value supplied

by the parameter delta.

(defun minimum-function (f lower upper delta n)
(let ((f-min (spawn t :combine
#’ (lambda (reportl report2)
(if (< (min-value reportl)
(min-value report2))
reportl
report2)))))
(let ((dx (/ (- upper lower) n)))
(dotimes (i n)
(let ((subinterval lower))
(spawn t :future f-min
(minf f subinterval (+ subinterval dx) delta)))
(incf lower dx))
(realize-future f-min))))

The function minf does the actual search within a subinterval. It returns a data structure
that includes the minimum value found for f within the interval and the argument for
which that minimum is attained. The form (min-value x) extracts the minimum value
from the data structure.

A new heavyweight future, f-min, is created that will find the data structure which
represents the overall minimum. Initially no processes are associated with the future. Then
n processes are added to the future using spawn. The future is realized to return the data

structure representing the location of the minimum for the function f£.

2.6 QLAMBDA

The parallel constructs described above are primarily intended to create a new process
that will perform a specific task and then go away when the task is completed. We also

need to provide for another class of parallel operations: where a task is repeated many

11



g2 The Qlisp Language

times, usually at the request of other processes. Monitors are an example of this class.
The characteristics are (1) that the process can be shared by many other processes, (2)
that the requests to the process are sent via messages and stored in a queue, and (3) that
the process fully completes the work requested of it by one process before starting on the

next request. The way to do this in Qlisp is with the qlambda construct:
(gqlambda prop (lambda-list) . body)

which is used to create a closure for the code in body similarly to an ordinary lambda.
The form prop is again evaluated first, and if its value is nil then no new process is created;
when the qlambda is subsequently invoked it is treated much like a normal function call.
The difference in this case between qlambda and a regular function defined with lambda
is that if two processes call the same qlambda function, the first call to it will be completed
before the second call is commenced—the second process calling it must wait for the first
call to complete. The body of the qlambda constitutes a critical region. We will use the
term integrity to refer to this property of qlambda. Process closures can thus be used to
restrict access to various system resources and data structures.

If prop evaluates to non-nil, then a new process is created and associated with the
closure. When the closure is later invoked, the calling process will evaluate the arguments
and send them in a message to the process closure. A future will be returned to the calling
process as the value of the call on the qlambda. The process associated with the closure
will then do the appropriate lambda-binding, evaluate body, and then return the result to
the calling process by realizing the future. If the evaluation of the qlambda body makes
any use of special (dynamic) variables, these variables are looked up in the environment of
the calling process, rather than the environment where the qlambda was defined. This is
in keeping with the function calling nature of qlambda. The process closure has a queue
of requests associated with it, and when it is invoked the arguments and calling process are
added to the end of this queue. The body of the process closure is fully evaluated before
the next set of arguments at the head of the queue is processed. Multiple invocations of
the same process closure will not create multiple copies of it.

If prop evaluates to :eager, the new process closure will immediately begin the evalu-
ation of its body. Any arguments are bound to unrealized futures and, if one is needed, the
process will block unless the future has been realized by a call on the qlambda. Similarly,
if the evaluation of body completes before the qlambda has been called, the process again
needs to block.

Note that a call to qlambda returns a closure as its value. This closure can then be

passed to functions as an argument, returned from functions as a value, or stored in a data

12



g2 The Qlisp Language

structure. The closure can then be invoked to execute the body of the qlambda. This
allows us to treat processes as first-class data objects. Also note that because a closure is
created, qlambda captures the local environment in effect when it was defined. This can
be used to create variables that can only be referenced in the body of the qlambda.

Locally named functions can be defined in Common Lisp with flet and labels. Qlisp
extends these constructs to define local process closures with gflet and glabels.

Here is an example of the use of qlambda using qgflet:

(defun print-leaves (trans tree stream)
(gflet t ((print-leaf (string)
(dotimes (i (length string))
(output (funcall trans (elt string i)) stream))))
(labels
((worker (tree)
(cond ((null tree) nil)
((atom tree) (print-leaf (coerce tree ’string)))
(t (spawn t (worker (car tree)))
(worker (cdr tree))))))
(worker tree))))

This function is used to traverse a tree in some order, outputting all of the leaves to
a stream. A transformation function, trans, is passed as an argument and is used to
map characters in the strings associated with each leaf; these transformed characters are
output to the stream stream. The qlambda is created by the form gflet. We have used
a qlambda for two reasons. One is to guarantee that the transformed characters from the
strings aren’t mixed up. The other reason, which is not apparent from the code, is that we
want to get the traversal over with so that the tree can be modified while the process that
is outputting the strings moves ahead at its own pace. The integrity property of glambda
accomplishes the first goal, and the use of a separate process accomplishes the second.
The original design of Qlisp had calls on a process closure explicitly wait for the
body of the qlambda to process the calling arguments. To get the full benefit of process
closures, the additional constructs, wait and no-wait, had to be added. By changing the
design such that when a process closure is called a future is immediately returned, these

additional constructs are no longer necessary.

2.7 Locks

Another way to interlock critical code sections is to explicitly use a lock. Qlisp provides
basic functions to create, acquire, release, and test locks. When created, a lock can be

specified to be either a spin or a sleep lock. When a process waits on a spin lock, it will

13



g2 The Qlisp Language

busy wait, continually checking the lock until it becomes free. A process waiting on a
sleep lock will block and not consume computing resources while it waits. When the lock
becomes available the process will be given ownership of the lock and added to the queue
of runnable processes. Spin locks are intended for use by critical regions that need to be
locked for only a very small amount of time, for example to safely update a counter or
to get the next element of a queue. Sleep locks require more overhead and are intended
for use when the code that is being interlocked will take an arbitrary amount of time to

execute.

2.8 Process Synchronization

A construct to simplify process synchronization is the event. Qlisp provides basic
functions to create, test, wait for, signal, and reset events. When waiting for an event the
default is to wait for the event to be signaled once. If the event is signaled before the call
to wait on it, then no actual waiting takes place. Otherwise the process is put to sleep
until another process signals the event. When the event is signaled all of the processes
waiting on it are awakened. After an event has been signaled, it must be reset before any
process will need to wait on it again. It is also possible to request that a process wait until
the event has been signaled a specified number of times.

With futures and process closures it becomes possible to spawn a large number of

tasks, and not be able to easily determine when they have all completed. The construct
(qwait form)

will cause form to be evaluated and return its value. If the evaluation of form causes
any new processes to be created or makes any calls to process closures, then qwait will
wait for them to finish before it returns the value of form. This can be useful for process
synchronization and for guaranteeing that returned data structures contain only realized
futures.

In the original Qlisp design a variation of this functionality was provided by qcatch.
We now feel that the ability to wait for processes to finish is important enough to warrant
a separate construct, hence the addition of gqwait. This also allows us to reserve qcatch

for a use that is more like the standard Common Lisp construct catch.

14



§ 2 The Qlisp Language
2.9 Killing Processes

So far we have described a number of constructs to create processes, but we have not
yet said much about how to get rid of these processes when they are no longer useful. Each
process we create consumes system resources and for efficiency we would like to eliminate
a process as soon as it is no longer contributing to the overall computation. However
determining when a process is superfluous is non-trivial.

The traditional way that Lisp reclaims resources that are no longer being used is via
garbage collection. When it can be determined that no pointers exist to an object in
memory, then that memory can be reclaimed for later use. Similarly when no pointers
exist to a future, then the value of that future is no longer accessible and there is no point
in continuing to work on computing it, so any processes associated with the future can
be killed. A process closure can likewise be killed when there are no longer any pointers
to it, provided that it has completed all of the previous calls to it. There are several
problems with relying on garbage collection to kill no longer needed processes. First,
garbage collection does not occur frequently (one hopes), so the interval can be quite
long between when a future is no longer pointed to and when the process computing it is
actually killed so that it is no longer using system resources. Second, if a task was spawned
for effect no pointer to the associated future may ever be retained, as the value will never
be used.?

Qlisp provides two explicit ways to kill a process. The simplest way is to call the
Qlisp construct kill-process which takes as its argument a future or a pointer to a process
closure. This future is used as a handle to refer to the process associated with the future.
That process is then killed. If there are several processes associated with the future then
they are all killed. If the future is associated with an invocation of a qlambda process
closure, then that set of arguments is removed from the process closure’s queue, or, if they
were currently being processed by the process closure, then it will abort the computation
and proceed to the next set of arguments. Only the specific invocation of the process
closure that is associated with the future is aborted; the process closure itself is not killed.
Attempting to get the value of a future whose associated process has been killed is an

€error.

3 We are investigating ways of allowing the programmer to specify the dynamic extent of a process so
that it is not necessary to maintain lists of all those processes performing useful work, but that will not

be returning a value.

15



g2 The Qlisp Language

The other way to explicitly kill a process is to do a non-local exit from the process.
In Common Lisp if a computation is surrounded by a catch, then a throw to that catch
will force a return with the specified value, terminating any intermediate computations.
In Qlisp throw can be used to kill other processes. For example, here is a function to

determine if two binary trees are equivalent:

(defun tree-equal (x y)
(labels
((equal-aux (x y)
(cond ((eq x y) ’t)

((or (atom x) (atom y))

(return-from tree-equal ’nil))

(t

(gprogn t
(equal-aux (car x) (car y))
(equal-aux (cdr x) (cdr y)))

)))))
(equal-aux x y)))

Processes are spawned to compare corresponding branches of the two trees. If a process
finds that two leaves are different, then the return-from returns nil and causes all of the
other processes examining the tree to be killed. Note that return-from is equivalent to
throw, except that block names are lexically scoped while catch tags are dynamically
scoped. If the trees are equal then no throw will be done, and tree-equal will return
t after all of the spawned processes have finished. The construct gprogn spawns a new
process for each form in its body, evaluating them in parallel.

Normally when a process is killed, any processes that it spawned will not be affected.
In cases like the example above where the parent process has spawned child processes via
a qprogn or qlet and is waiting for them to finish, if the parent is killed or if a throw
causes control to leave the parallel construct, we can safely kill all of the child processes.

When a process is created it inherits the chain of catch frames being used by its
parent. During the execution of the child process, a throw to a catch frame defined by the
parent will result in the child process being killed and the parent process continuing the
processing of the throw, interrupting whatever it had been doing. If the parent process
exits the scope of a given catch frame, then it is no longer possible for any child process
to throw to that catch frame. Also any catch frames established after a child process has
been spawned are not part of the child process’s chain of catch frames. If the body of a
qlambda process closure does a throw, the catch frames of the process that called the

qlambda are searched rather than those in the process that created the qlambda.

16



g2 The Qlisp Language

The various constructs for AND/OR-parallelism provide additional opportunities to
kill processes because of a throw. If one of the processes associated with a heavyweight
future is killed by a throw, then all of the other processes associated with the future may
also be killed. One of the reasons for adding heavyweight futures to Qlisp is that they
define a set of processes having similar lifetimes.

As an aside, sometimes it is useful to place a process in a suspended state, so that it
does not compete for computing resources, and possibly resume it later. Qlisp does this
with the primitives suspend-process and resume-process which also use a future or a
process closure to point to the processes to suspend or resume. When suspending a process
care must be taken that the process does not currently own some system resource such as
a lock. A deadlock situation can occur if a process tries to acquire a lock that is owned
by a suspended process. A similar problem arises if a process needs the value of a future
that is associated with a suspended process. A simple solution to avoid these two types
of deadlock that we are considering is to automatically resume the suspended process in

such a case.*

3. Need for Higher-Level Constructs

One important aspect of the initial experience with Qlisp has been doing a preliminary
analysis of how well Qlisp constructs model the program structures needed for parallel
programming. In many ways the qlet construct models quite well an important class of
programs.

It was thought that catch/throw and qlambda would be important in modeling two
other important classes of programs: one class involving killing processes and the other
class involving autonomous agents. However, we have seen that there is some inadequacy
here, even though our experience has been limited. One aspect of the inadequacy can be
seen when we look at one particular problem which would seem to be well-suited to the
qlambda approach.

The problem is, given three processes where two are supplying arguments to the third,

how are the arguments to be correctly paired without excessive synchronization code?

4 This also allows us to do demand-driven evaluation in a manner similar to the delay primitive in

Multilisp [4].

17



§3 Need for Higher-Level Constructs

3.1 Partially, Multiply Invoked Functions

We have been exploring a solution to this class of problems. Our solution is termed
partially, multiply invoked functions or PMI functions. The basic idea is to separate the
process of coordinating the arrival of arguments from the actual processing of arguments
by the function. A related approach can be found in [5]. We prefer a functional approach
rather than a stream-based approach in order to minimize the number of large paradigms
a programmer must keep in mind.

In Common Lisp parameters can specify how arguments are to be passed and whether
they are required. Required arguments must be passed by position, and optional arguments
may be passed by position or by name. If an optional argument is not passed, a default
value is supplied. In all cases all supplied arguments must come from the same source.

We are experimenting with a technique in which all arguments to a function are
passed by position to the function by an interface to the function. The interface accepts
only named arguments, provides for all defaulting, and coordinates the arrival of arguments
from multiple sources for the function.

Here is a simple example of the technique:

(pmi-defun add-up (x y) (:summand :summand) (+ x y))

This function adds up a pair of arguments, called x and y. The interface to this
function names both of these arguments : summand, because there is no particular need to
have different names for them.

The expression:
(add-up :summand 1 :summand 2)

simply produces the answer 3. However, one can partially invoke the function as follows:

(add-up :summand 1) — future
In this case the interface remembers the supplied argument and returns a future. A second
call will complete the invocation and supply a value to the future:
(add-up :summand 2) — future = 3

This technique, then, is not unlike currying functions, but because all arguments to
the interface are named, one does not need to curry in any particular order. All calls to
a PMI function that supply arguments to the same invocation receive the same future
as their value. A future is returned whenever some required arguments to the function
have not been supplied to the interface by a function call. If a particular invocation of
a function has returned a future, the value returned when all required arguments have
been supplied is a realized future. This is to preserve eq-ness of all values returned for a

particular invocation.

18



§3 Need for Higher-Level Constructs

When the names of the arguments to a PMI function are different, it is possible to
stream arguments to it from different sources. For example, we can produce a list of the

sums from two streams supplied by two processes as follows:

(let ((answer (make-queue)))
(pmi-qflet
((add-stream (x y) (:summandl :summand?2)
(add-queue (+ x y) answer)))
(gprogn t
(loop ...
(add-stream :summandl computation)...)
(loop ...
(add-stream :summand2 computation)...))
answer))

The pmi-qflet expression creates a local PMI function in a process closure. The details
of queue management are elided.

Sometimes the elements of a stream of arguments will get out of order. In this case
we can exploit a further wrinkle on PMI functions. What we would like to do is associate
a secondary tag with each argument, so that arguments with matching secondary tags are
paired. This would correspond to the tagged token architectures used by dataflow. For
our experiments we have substituted the concept of colored arguments, where the color of

a set of arguments is explicitly passed as follows:

(add-up :color 1 :summand 1) — futurel
(add-up :color 2 :summand 2) — future?
(add-up :color 2 :summand 3) — future2 =

(add-up :color 1 :summand 5) — futurel =

NN -

5
6

All PMI functions accept colored arguments. When a color is not supplied, a default,
private color is used for that invocation.

Another reason for colored arguments is to insulate invocations from separate parts
of the overall computation from each other.

At present we are not sure how well the mechanisms of partially, multiply invoked
functions help programmers to understand and program in parallel effectively. But it seems
clear that constructs that allow a programmer to ignore the details of synchronization are

essential.

4. Summary

Qlisp has been proposed as a language for programming multiprocessors. An initial
implementation of it has been done, and various experiments performed. Results to date

indicate that the performance of Qlisp programs is good. The more interesting set of

19



§ 4 Summary

results concern how well Qlisp captures the intuition programmers have about parallel
programs. Here we have found that our original conception of Qlisp requires modification.
Some constructs, such as qlambda and throw, might be too low level to be easily used.
To address this concern, our current strategy is to examine problems with natural parallel

solutions and to find parallel constructs that express those solutions well.

References

[1] Henry G. Baker, Jr. and Carl Hewitt, The Incremental Garbage Collection of Processes,
Proceedings of the ACM Symposium on Artificial Intelligence and Programming Lan-
guages, August 1977.

[2] Richard P. Gabriel and John McCarthy, Qlisp in Parallel Computation and Com-
puters for Artificial Intelligence edited by Janusz S. Kowalik, Kluwer Academic
Publishers, 1988.

[3] Ron Goldman and Richard P. Gabriel, Preliminary Results with the Initial Implemen-
tation of Qlisp, Proceedings of the 1988 ACM Symposium on Lisp and Functional
Programming, July 1988.

[4] Robert H. Halstead, Jr., Multilisp: A Language for Concurrent Symbolic Computation,
ACM Transactions on Programming Languages and Systems, Vol 7, No. 4, October
1985, pp 501-538.

[5] John Lamping, A Unified System of Parameterization for Programming Languages,
Proceedings of the 1988 ACM Symposium on Lisp and Functional Programming, July
1988.

[6] James S. Miller, MultiScheme: A Parallel Processing System Based on MIT
Scheme, PhD thesis, MIT, August 1987.

[7] Guy L. Steele Jr. et. al. Common Lisp Reference Manual, Digital Press, 1984.

[8] Mark R. Swanson, Robert R. Kessler, and Gary Lindstrom, An Implementation of
Portable Standard Lisp on the BBN Butterfly, Proceedings of the 1988 ACM Symposium
on Lisp and Functional Programming, July 1988.

20



