
Rapid Prototyping: Lessons Learned

V. Scott Gordon James M. Bieman

Department of Computer Science

Colorado State University

gordons@cs.colostate.edu, bieman@cs.colostate.edu

Preprint of article published with further revisions in IEEE Software, 12(1):85{95, January 1995.
Reprinted in Software Project Management: Readings and Cases, First Edition. by C. Kemerer,

Irwin Publishing, 1997. Translated into the Dutch and republishsed as Rapid prototyping: lessen uit
de praktijk. IT Management [Select] 2(1): 42{59, June 1996.

Abstract

Rapid prototyping is a development method that may or may not be e�ective in improving

software products and process. Assessing the e�ectiveness of rapid prototyping requires empirical

data. We analyze 39 published and unpublished \real world" case studies of the use of rapid

prototyping for developing software products. By identifying e�ects mentioned in multiple sources,

we are able to extract information about software products and processes resulting from the use of

prototyping, as well as potential di�culties. We �nd that, with careful planning and management,

software developers can e�ectively use rapid prototyping.

1 Introduction

The selection of an appropriate lifecycle paradigm is crucial to the successful development of software
systems. Although the \waterfall" model remains the most commonly emphasized paradigm, there is
a continuing interest in evolutionary methods such as rapid prototyping. The notion of a prototyping
approach to software development has been widely known for over 15 years, since shortly after the
publication of Brooks' The Mythical Man-Month [Bro75]. It is now time to assess the e�ectiveness
of the use of rapid prototyping. This report describes an ongoing study, now in its third year, which
examines the use of rapid prototyping.

Rather than conduct a controlled study of our own, we accumulate and compare the results reported
in as many rapid prototyping case studies as we can �nd. Although many books and research papers on
rapid prototyping have been published (including [Boa85, BKM84, Bud92, CS89]), few report on actual
real-world experience. We have found 23 published case studies that include information regarding the
e�ectiveness of the technique. In order to broaden our perspective and increase the sample size, we
solicited �rst-hand accounts. We used the internet news service, and sent questionnaires to individuals
who claimed to have been involved in software development projects which utilized rapid prototyping.
Many of the respondents required anonymity, but a few did not. In total, we found 39 sources of case
study information to analyze.

The case studies report on the actual use of rapid prototyping in a variety of settings such as
military, commercial, and system applications. We examine the case studies for common experiences
and opinions, and then tally the commonalities to identify those experiences which appear as recurring
themes. We have previously used this method to report some of the e�ects of rapid prototyping on
software quality [GB91, GB92]. Here we o�er more comprehensive �ndings to include not only e�ects
on software products, but also e�ects on the software process, such as e�ort, costing, etc. We also
o�er guidelines to help software developers avoid problems which the authors of the case studies
experienced, or which they recognized and were able to avoid.

1

2 Rapid Prototyping

Prototyping is the process of developing a trial version of a system (a prototype) or its components in
order to clarify the requirements of the system or to reveal critical design considerations. Prototyping
can give both the engineer and the user a chance to \test drive" software to ensure that it is, in fact,
what the user needs. Alternatively, engineers may utilize prototyping to improve their understanding
of the technical demands upon, and the consequent feasibility of, a proposed system. The use of
prototyping has been recommended as a way of correcting weaknesses of the traditional \waterfall"
software development life cycle, by clarifying important system requirements to software developers
and end users, before a full system is implemented.

Although case studies utilize various terminology, we try to adhere to the de�nitions suggested by
Patton [Pat83] and Ratcli� [Rat88]. Rapid prototyping is prototyping activity which occurs early in
the software development life cycle. Since we are only considering early prototyping, we use the terms
\prototyping" and \rapid prototyping" interchangeably. There are two prototyping methodologies:
throw-away and evolutionary. Throw-away prototyping requires that the prototype be discarded and
not used in the delivered product. Conversely, with keep-it or evolutionary prototyping, all or part
of the prototype is retained in the �nal product. The traditional \waterfall" method is also called
the speci�cation approach. Often prototyping is an iterative process, involving a cyclic multi-stage
design/modify/review procedure. This procedure terminates either when su�cient experience has
been gained from developing the prototype (in the case of throw-away prototyping), or when the �nal
system is complete (in the case of evolutionary prototyping). Although there is some overlap between
rapid prototyping and executable speci�cations, we concentrate here solely on rapid prototyping.

3 Case Study Analysis

The case studies included in our analysis describe particular software projects implemented via rapid
prototyping, and also discuss how the use of prototyping helped and/or hindered development. We
identi�ed the attributes (e�ects) described in three or more of the sources, and use these attributes in
our analysis. In general, we use the attributes as de�ned by the case studies. The attributes were then
tallied, along with relevant opinions, observations, and suggestions. We are particularly interested in
�nding observed di�erences between throw-away and evolutionary prototyping. De�nitions do vary
between sources, and this is a limitation of the study.

We had no control over the data collected or manner of reporting in the published case studies,
which was often incomplete. We had better control over the completeness of the information in the
�rsthand accounts, since the respondents were asked to answer certain questions. Case studies vary
in degree of rigor. Four of the sources observe multiple projects and present conclusions based on
careful quantitative measurements of the results. More often, the cases o�er subjective conclusions
and suggestions in a less speci�c, more qualitative manner, acquired from personal experience in one
project. Some of the studies include a minimal amount of quantitative measurement interspersed
with subjective judgement. The case studies have varied objectives and intended audiences. Still,
by comparing the results reported by the di�erent studies, we found that we could extract important
information. For example, one study may report di�culty with a particular rapid prototyping activity,
while another study may suggest a remedy for the same problem. We emphasize conclusions that were

reached by multiple sources independently .
We divide the common attributes into three categories: product attributes, process attributes, and

problems. For example, \ease of use" is a product attribute. When an e�ect on one of the attributes
is noted in a case study, we tally it along with any relevant explanation o�ered by the author. Some of
our terminology must necessarily remain general because the authors concentrate on di�erent details,
and because the software systems described in the case studies themselves are so diverse. \Design

2

quality," for example, can mean many di�erent things depending on the nature of the system, or the
point of view of the designer. One source may illustrate improvement in design quality by speci�cally
listing improvements in code structure, reducing patches, and increasing
exibility, while other sources
list di�erent items or none at all.

Although the intersection of very speci�c attributes between case studies is small, many of the
case studies discuss certain general attributes (i.e., design quality, performance, etc.). We report those
attributes which are included in many of the case studies. Although we could include additional
attributes, or subdivide the attributes into more speci�c sub-attributes, the results would be less clear
because there would be fewer common instances in the case studies. We do not include attributes that
are not discussed in the case studies, even those that we think might be useful. The existence of other
attributes not discussed in this study indicates that there was insu�cient data on those attributes,
and is an unfortunate limitation of the case study data.

The product attributes most commonly listed in the case studies are: ease of use, match with user

needs, performance, design quality, maintainability, and number of features. Although design quality
and maintainability are closely related, many of the cases reported design quality and maintainability
separately, either because they had an opportunity to observe maintenance on the system, or because
of other considerations such as the existence of maintenance tools.

The process attributes most commonly listed in the case studies are: e�ort, degree of end-user

participation, cost estimation, and expertise requirements,. Commonality in listing process attributes
is less than for product attributes, perhaps because prototyping itself is a process, and therefore it
may not occur to authors to report other process e�ects.

The problems most commonly discussed in the case studies are those associated with: large systems,

maintenance, performance, delivering a throw-away prototype, end-user misunderstandings, budgeting,

prototype completion, and conversion time. While it is rare that case study authors actually describe
occurrences of the problems, many authors describe steps that they took to avoid them. When a
source does describe one of the problems, often they did not employ one of the suggestions mentioned
in another source. We collect the relevant suggestions and include them with the descriptions of the
individual issues. We provide information on the conditions under which a particular problem may or
may not need to be purposefully avoided. Our overall objective is to use the case studies to develop
guidelines for e�ective use of rapid prototyping.

4 Sources of Case Study Data

Industry use of rapid prototyping appears to be a recent phenomenon. We located 23 published reports
containing 25 case studies. The earliest is from 1979, while most are from the mid-to-late 1980's. We
also found three papers which analyze other rapid prototyping cases. To supplement the published
reports, we collected questionnaires and personal accounts from fourteen individuals. Thus, we have
a total of 36 sources describing 39 cases. The case study sources are listed in Figure 1. The sources
represent a variety of organizations: AT&T, GE, RAND, MITRE, Martin Marietta, Los Alamos,
Tektronix, ROME, Hughes, government divisions, and others. The fourteen personal accounts are
listed as \anonymous sources" due to requests for anonymity. Some cases involve separate prototyping
and development teams. Figure 2(a) shows, in graphical form, the distribution of case study sources.
Ten of the sources are projects conducted at Universities, but only three of these are student projects.
Twelve of the sources describe military projects. The remaining 17 describe other professional software
development.

3

Figure 1: Published Case Studies

1. Alavi. An assessment of the prototyping approach to information systems development. Comm ACM, June 1984.

2. Arnold and Brown. Object oriented software technologies applied to switching system architectures and software develop-

ment processes. Proc. 13th Annual Switching Symposium, 1990.

3. Barry. Prototyping a Real-Time Embedded System in Smalltalk. OOPSLA '89.

4. Boehm et.al., Prototyping versus specifying: A multiproject experiment. IEEE Trans. on Software Engr, May 1984.

5. Connell and Brice. The impact of implementing a rapid prototype on system maintenance. AFIPS, 1985. (2 cases)

6. Ford and Marlin. Implementation prototypes in the development of prog. lang. features. ACM SE Notes, Dec 1982.

7. Gomaa. The impact of rapid prototyping on specifying user requirements. ACM SE Notes, April 1983.

8. Goyden. The Software Lifecycle with Ada: A Command and Control Application. Tri-Ada '89 , 1989.

9. Groner et.al., Requirements analysis in clinical research info. processing { a case study. IEEE Computer, Sept 1979.

10. Guimaraes. Prototyping: Orchestrating for success. Datamation, Dec 1987.

11. Gupta et.al., An obj-oriented VLSI CAD framework { A case study in rapid prototyping. IEEE Computer, May 1989.

12. Heitmeyer et.al., The use of quick prototypes in the secure military msg. systems project. ACM SE Notes, Dec 1982.

13. Hekmatpour. Experience with evolutionary prototyping in a large software project. ACM SE Notes, Jan 1987.

14. Jordan et.al., Software Storming - Combining rapid prototyping and knowledge eng. IEEE Computer, May 1989.

15. Junk et.al., Comparing the E�ectiveness of Software Dev. Paradigms: Spiral-Prototyping vs. Spec. PNSQ, 1991.

16. Kieback et.al., Prototyping in Industrial Software Projects. GMD-Studie Nr. 184 (in German, a translated version will

appear in Information Technology and People). (describes 5 cases, 3 of which are used in this study)

17. Luqi. Software Evolution through Rapid Prototyping. IEEE Computer, May 1989.

18. Martin et.al., Team-Based Incremental Acquisition of Large-Scale Unprecedented Sys. To appear in Policy Sciences.

19. Rzepka. A requirements eng. testbed: Concept, status and �rst results. 22nd Hawaii Conf. on Sys. Sci., 1989.

20. Strand and Jones. Prototyping and small software projects. ACM SE Notes, Dec 1982.

21. Tamanaha. An integrated rapid prototyping methodology for command and control sys. ACM SE Notes, Dec 1982.

22. Zelkowitz. A case study in rapid prototyping. Software { Practice and Experience, Dec 1980.

Anonymous Sources

a. Employee at major university. Development of a University online registration system.

b. Researcher at major university. Development of a campus support system using the SCHEME prototyping language.

c. Engineer at large telecommunications �rm. Language development.

d. Engineer at large military contracting �rm. Medium-large system.

e. Engineer at large data processing �rm. Industrial application.

f. Engineer at large Government/Military division. Development of small aerospace systems.

g. Engineer at small software company. Development of low-level system software.

h. Engineer at small Government/Military contractor . Uses special-purpose prototyping tools.

i. Engineer at large manufacturer . Workstation development.

j. Engineer at large communications and control �rm. Contract software development.

k. Consultant for a defense contractor . Internal support software.

l. Engineer at large electronics �rm. Operating system development using the RAPID prototyping language.

m. Engineer at small software company. Internal support software.

n. Engineer at large communications �rm.

4

military

professional

(12)

(17)
(3)

student

(7)
academic

not stated

(3)
failure

success
(3)

(33)

(a) sources of case study data (b) reported success/failure

Figure 2: Information concerning case studies

Rapid prototyping is deemed a success in 33 of the 39 cases (see Figure 2(b)). Of the remaining
six, three were described as failures and three did not claim success or failure. Although 85% of the
case studies report success, we expect that there is some bias in the data since failures are seldom
reported. Some of the (successful) sources, however, address intermediate di�culties encountered and
perceived disadvantages of rapid prototyping. Six of the sources describe projects which involve no
customer; the goal of these projects is the development of a system to be used by the developers. We
avoid drawing strong conclusions regarding clarity of requirements or successful analysis of user needs
when a project does not involve a separate user.

5 E�ects on Software Product Attributes

Figure 3 shows six commonly-mentioned areas in which prototyping a�ected product attributes ob-
served in the �nal system. For each e�ect, the �gure indicates which case studies observe either a
positive or negative impact. The case studies are referenced either by a number (for published studies)
or a letter (for anonymous sources). The case studies are listed by number/letter in Figure 1. We
also indicate the relative number of studies in which the particular e�ect was not observed or was
not discussed. For each e�ect, two comments from the case studies are included to illustrate some of
the �rsthand experiences. The relatively high number of unreported e�ects re
ects the diversity of
reporting methods among the case studies.

5.1 Usability factors

Users have an opportunity to interact with the prototype, and give direct feedback to designers.
Sometimes users are not sure that they want certain functions implemented until they actually can
try them. Further, the need for certain features may not be apparent until actual use exposes an
omission or inconvenience. Users may also �nd certain features or terminology confusing. Thus it
is logical that prototyping tends to help ensure that the �rst implementation (after the prototype)
will meet users needs, especially when the prototype includes the user interface. These �ndings are
consistent with Brooks' famous maxim, \plan to throw one away; you will, anyhow" [Bro75]. That
is, the �rst attempt at developing a system will likely fail to meet user needs, and be discarded. It is
better that the �rst e�ort be a prototype rather than a �nal deliverable.

5

Figure 3: Software Product E�ects (with selected comments) reported in 39 case studies.

better worse

better matched (22)

improved (17)

better

harder

worse

easier

increase decrease

1,4,7,11,12,15,16,20,22,a,c,d,f,i,j,m,n

1,5*,7,8,9,11,14,15,16*,18,20,21,22,d,f,h,i,j,l,m,n 5*

16,17

5*,11,15,i,j,l

15,h,j,l 4,5*

5,11,15,i,j,l

3,5*,6,8,13,15,16,h 4,5*,21,j,l

3,4,5*,13,18,d,h,n

of Features

‘‘[the author] soon tired of retyping in definitions for each ... run’’ [22]

‘‘Misunderstandings between the software developers and users were revealed.’’ [7]

‘‘Omissions of function are ... difficult ... to recognize in formal specifications.’’ [20]

‘‘Prototyping helps ensure that the nucleus of a system is right ... ’’ [1]

‘‘We have had some performance problems that may be related to ‘design baggage’ ... ’’ [i]

‘‘Missing from the documentation was a ... design of system procedures and control flows.’’ [5]

‘‘[if] no work was done ... for a prolonged time, maintenance may be a real problem.’’ [i]

‘‘... fostered a higher threshold for incorporating marginally useful features.’’ [4]

‘‘The customer ... goes crazy adding features and making changes.’’ [h]

‘‘ ... consider performance as early as possible if [it] is to evolve into the final system.’’ [11]

‘‘... can reduce the ‘maintenance’ associated with changing requirements.’’ [n]

* -- these sources describe multiple case studies.

Ease of Use

Performance

Design Quality

Maintainability

User Needs

not stated

worse not stated

not stated

not stated

not stated

not stated

‘‘... allows early assessment of ... techniques required to implement specific features.’’ [6]

6

The e�ect of prototyping on the number of features in a �nal system is less clear. The intuitive no-
tion that the prototyping paradigm gives the end user a license to demand more and more functionality
is not entirely borne out by the case studies. Several sources report that prototyping caused critical
components to be stressed, and non-critical features to be suppressed, thus reducing the total number
of features. It was slightly more common, however, that the number of features increased. This was
observed for three di�erent reasons: (1) special-purpose prototyping languages make it easy to add
new features, (2) internal software development sometimes requires less time to determine baseline
requirements, allowing more time to consider additional features, and (3) users demanding more and
more functionality. Contractors could consider using cost add-ons for additional functionality as a
counter-incentive if excessive user demands are anticipated.

5.2 Structural factors

Structural factors include those related to design quality, maintainability, and performance. Here the
e�ect of prototyping has a greater chance of being negative. We shall discuss each in turn.

The e�ect of rapid prototyping on system performance depends partly on the scope of the pro-
totype. When the prototype focuses solely on the user interface, system performance is likely to be
una�ected (although there are a few cases, described in Section 7, where performance can be a�ected).
When the purpose of the prototype is to examine various design alternatives, performance can be af-
fected in a variety of ways. Sometimes prototyping can lead to better system performance, since it
is easier to test several design approaches. However, evolutionary prototyping can lead to problems
when performance is not adequately measured and either: (1) ine�cient code is retained in the �nal
product, or (2) the prototype demonstrates functionality that is unrealizable under normal usage loads.
The case studies contain more evidence of performance problems for evolutionary prototypes than for
throw-aways. Section 7 describes the possible problems and suggests ways to improve performance.

Design quality e�ects are also mixed. More sources indicate an improvement in design quality,
both for evolutionary and throw-away prototyping. However, design problems are more commonly
observed among evolutionary prototyping cases. Some sources report that evolutionary prototyping
can result in a system with a less coherent design and more di�cult integration. Other sources state
that the multi-stage design/modify/review process can result in a better overall design. Several sources
indicated that the code produced was longer (although a few state the reverse), but these same sources
also noted that this was not necessarily good or bad.

Quality also su�ers when, during evolutionary prototyping, design standards are not enforced in
the prototype system. Even when using good tools, design can su�er when remnants of discarded
design alternatives are not physically removed. To avoid these problems, it is useful to employ a
design checklist that each section of incorporated code must satisfy. Quality can also be improved by
limiting the scope of the prototype to a particular subset (often the user interface), and by including
a design phase with each iteration of the prototype. Another option is to completely discard the
prototype, subject to the limitations discussed previously. A problem associated with throw-away
prototyping is that a prototype which was intended to be thrown-away might actually be kept. This
is discussed in greater detail in Section 7.

Maintainability e�ects are similar to those observed for design quality, but maintainability problems
can be quite troublesome. Again, more sources cite improvement in overall maintainability. But for
evolutionary prototyping, slightly more sources observe reduction in maintainability. Possible solutions
to maintainability problems are described in Section 7.

Some of the reports describe successful maintenance of prototyped systems, even for very substan-
tial size projects. The high degree of modularity required for successful evolutionary prototyping can
generate easily maintainable code, because such a system is more likely to be built out of reusable and
replaceable functional modules. There are also indirect reductions in maintenance costs owing to the
greater likelihood that user needs will be met the �rst time. \Maintenance" often involves correcting

7

invalid requirements, or responding to changing requirements. Rapid prototyping can help reduce this
sort of maintenance since it is likely that user needs will have been more completely met.

5.3 Throw-Away vs. Evolutionary prototyping

Overall, we �nd that software product e�ects are generally positive, with certain problems related
primarily to evolutionary prototyping. While many engineers are adamantly opposed to evolutionary
prototyping (often citing Boar's books which generally recommend against evolutionary prototyp-
ing [Boa85]), examination of the case studies paints evolutionary prototyping in a more positive light,
even for substantial software projects. Further, some sources suggest that, for small projects, throw-
away prototyping (compared to evolutionary) is economically infeasible. However, we cannot ignore
that quality attributes such as performance, design quality, and maintainability can su�er during
evolutionary prototyping if steps are not taken to avoid the relevant problems (see Section 7). Fig-
ure 4 shows the relative number of case studies using throw-away and evolutionary prototyping, and
Figure 5 gives a breakdown of the e�ects of paradigm choice on performance, design quality, and
maintainability.

not stated

throw-away

evolutionary
(22)

(10)

(8)

Figure 4: Distribution of case studies by paradigm

6 E�ects on Software Process Attributes

Figure 6 lists four commonly mentioned areas in which prototyping a�ected process attributes. For
each e�ect, the �gure indicates which case studies observe either a positive or negative impact, and
additional information as in Figure 3. Again, the relatively high number of unreported e�ects re
ects
the diversity of reporting methods among the case studies.

Although the case studies discuss many other process e�ects, there is less commonality than for
product e�ects. Therefore only four attributes are included in Figure 6. We have included some
discussion of other e�ects, especially those concerning language selection. But the lack of commonality
makes inclusion inappropriate.

8

Performance
Th

Ev

Design

Th

Ev

Ev

Th 1 imp.

1 imp.

Maintainability

(7 not stated)

(7 not stated)

5 improved

5 improved

5 worsened1 imp.

(6 not stated)

(16 not stated)

(14 not stated)

(13 not stated)

3 worsened

4 worsened

2 improved

Figure 5: Throw-away vs. evolutionary e�ects on reported projects

6.1 E�ort and estimating e�ort

One of the most commonly cited bene�ts of rapid prototyping is that it can lead to a decrease in e�ort.
Most of the case studies support this notion. In some cases, the decrease in e�ort is dramatic. One
source reports e�ort reduction by a factor of 3.5, another a reduction of 45%. One military project
observed a productivity of 34 lines of code per day per programmer, more than six times the estimate
for typical military software systems. There are various reasons for the decrease in total e�ort. Faster
design is possible when requirements are clearer or more streamlined. Also, in the case of evolutionary
prototyping, portions (or all) of the prototype can be leveraged, causing overlap in the requirements
e�ort and the development e�ort.

There are a few cases where development e�ort increased. The lack of an organized methodology
has been suggested as a possible cause of wasted e�ort, although it is not clear whether this e�ect
was actually observed. Sometimes a prototype can reveal that needs are greater than �rst thought,
resulting in greater development e�ort. But it is unfair to call this a case of increased e�ort, because
actually the use of prototyping here has prevented signi�cant wasted e�ort .

There is greater skepticism surrounding contract bidding (i.e., estimating e�ort beforehand) in a
rapid prototyping environment. Most of the case studies do not address this issue in much detail.
In a few cases, the early availability of visible outputs can cause users and managers to be easily
seduced into believing that the subsequent phases will be easy to complete. As a result, projects
can be underbid. This underbidding could possibly be avoided with proper training of managers in
prototyping methodology. Underbidding is discussed in greater detail in Section 7.

Some cases utilized rapid prototyping as a separately costed \proof-of-concept" item. In this
scenario, a project may prove to be infeasible or not cost-e�ective. Such feasibility and cost information
provides a mechanism for a customer to abandon a project at reasonable expense. Developers using
proof-of-concept prototyping may have to bid actual development of a complete system separately.
Prototyping does give the developer a chance to abandon a project that might have been under-bid
in a speci�cation environment. Boar [Boa85] gives a number of suggestions for keeping cost estimates

9

better

decreased (16)

increased (20)

worse

less

2,3,4,8,15,17,18,19,20,21,22,a,g,h,j,m 1

1,5*,7,8,9,14,16*,17,18,20,a,c,d,f,h,i,j,m,n

5*,k16*

h,m 2,5,6,14,16,19,j

more

5*,16*

‘‘... can significantly reduce the time from requirements ... to an operational system.’’ [20]

‘‘A buck buys more software now than before.’’ [h]

‘‘... users often find a written specification dull to read.’’ [7]

‘‘Documentation is open to interpretation ... sample display output is more definitive.’’ [8]

‘‘Managers are easily seduced into believing that [subsequent phases] can be skimped on.’’ [5]

‘‘... a 2-year project was sold to management as a six-week development project.’’ [k]

‘‘Prerequisites to successful prototyping include ... knowledgeable users and designers.’’ [1]

‘‘The best way to clear up misconceptions ... is with an in-house training program.’’ [5]

* -- these sources describe multiple case studies.

Effort

End-User Partic.

Cost Estimation

Expertise Req.

increased not stated

not stated

decreased not stated

not stated

Figure 6: Software Process E�ects (with selected comments)

under control. However, we �nd insu�cient case study data to draw conclusions concerning the use
of prototyping as it relates to cost estimation.

6.2 Human factors and sta�ng considerations

Increase in user participation (in the requirements de�nition phase) is commonly observed among the
case studies. Users are more comfortable reacting to a prototype than reading a \boring" written
speci�cation. Increased user participation, as described above, has a positive e�ect on the software
product by increasing the likelihood that the user's needs will be met. In fact, lack of su�cient user
participation can negate some of the bene�ts of rapid prototyping. One source describes a case where
the customer's management purposely excluded end users from interacting with the prototype, so that
inappropriate allocation of personnel (i.e., in a particular division's favor) would not be revealed for
as long as possible. Another source observed the same phenomenon, and referred to this as \sta�
rationalization". This dangerous political maneuver can be avoided simply by making sure that end
users remain actively involved, and thus become fully aware of the nature of the problem at hand. Since
one of the main advantages of rapid prototyping is in revealing the actual requirements, developers
should insist on prototype interaction by end users, not just middle management.

Several sources recommend an experienced, well-trained team as essential for successful prototyp-
ing, because prototyping often requires overlap of design decisions with programming tasks. Problems
can result when inexperienced team members are put in the position of having to make high-level

10

design decisions. Examination of the case studies lends support to this concern. One case speci�cally
describes a project that failed in part because temporary student programmers were thrown into a
rapid prototyping environment. Other case studies indicate that successful use of prototyping would
not have been possible without highly experienced engineers. Two cases utilized entry-level program-
mers successfully in a rapid prototyping environment, and attributed this success to the availability
of good prototyping tools. Overall, the evidence suggests that it may be dangerous to throw inexperi-
enced programmers into a rapid prototyping environment, especially when the prototyping activities
require high-level design decisions.

6.3 Other e�ects

One common use of rapid prototyping is to develop a user interface. Various tools exist exclusively
for quick development of user-friendly environments (e.g., Interface Builder, RAPID, etc.), and these
tools naturally �t into a rapid prototyping methodology. When special-purpose prototyping tools are
used, product maintainability may depend on these tools remaining available. Early emphasis on the
user interface a�ects the software process at many levels. These e�ects can be positive or negative
depending on other factors, such as the nature of the system being developed.

Although most sources stress the importance of carefully selecting a language suitable for proto-
typing, 38 cases employed 26 di�erent languages. The most popular single language choice was Lisp,
although it was used in only four cases. Object-oriented methods are receiving increased attention for
rapid prototyping uses [AGS89], and several of the cases attribute success to the use of object-oriented
approach (three use Smalltalk). Six sources identify object-oriented methods as being particularly
well-suited for prototyping and for avoiding certain problems.

7 E�ective Use of Prototyping

Most of the case studies describe successful projects, so there is less direct data on prototyping prob-
lems. However, many authors explain their development approach in terms of anticipating and avoiding
particular situations. In a few cases, a reported problem could have been avoided by employing one
of the suggestions in another source. Thus we are able to locate common instances of problems and
possible solutions described in several sources. We only describe problems related directly to the use
of prototyping. That is, we concentrate on situations which are less likely to occur when using the
speci�cation approach.

7.1 Performance issues

It is often useful to prototype critical aspects other than the user interface. Designing the entire system
starting from the user interface can be dangerous, since the user interface may not characterize the best
overall system structure. Thus a user interface prototype should be considered a piece of a requirement
speci�cation and not a basis for system design. Again, discarding the prototype is also an option, but
can only be done when the performance of the discarded prototype is not important (an invalid
assumption if the purpose of the prototype is to evaluate the performance of a particular design).
Thus, when prototyping is used to evaluate design alternatives, early measurement of performance
is important, and delays in addressing problems can result in design problems that may be costly
to repair later. A prototype can also demonstrate functionality that is not possible under real-time
constraints, and this problem may not be discovered until long after the prototype phase is complete.
One way of avoiding this problem is to use an open system development environment to make it easier
to integrate faster routines when necessary.

11

Some sources cite inferior performance due to the use of special-purpose prototyping languages,
especially when the language is interpreted rather than compiled. Here, the potential for evolutionary
prototyping to result in performance problems is more clear.

7.2 Avoiding end-user misunderstandings

Given too much access to the prototype, end-users may equate the incompleteness and imperfections in
a prototype with shoddy design. In two cases, this e�ect contributed to the ultimate failure of a project.
In another case, rapid prototyping was abandoned as a suitable development method because it gave
users the unrealistic expectation that there would be a complete and working system in a short period
of time. Lack of knowledge of rapid prototyping techniques is not limited to engineers or managers.
Sales sta� may pass along inappropriate expectations to customers after seeing \working" prototypes.
Users then understandably became skeptical or upset when told that development would take longer
than they were led to believe. High user expectations were typically fueled by over-enthusiastic or
under-controlled access to the prototype.

By limiting user interaction to a more controlled setting, user expectations can be kept at rea-
sonable levels. Users should be clearly told that they are interacting with a mockup for purposes of
requirements clari�cation, and not with a working system. In some cases, it might be desirable for
interaction to be limited to speci�c sequences as administered by the developers. Further, developers
should not \oversell" the prototype in an e�ort to impress the customer. Sales and managerial sta�
should be trained to properly understand (and convey) the nature and purpose of the prototyping
phase and the prototype itself.

7.3 Improving code maintainability

Certainly, a prototype which is developed quickly, massaged into the �nal product, and then hurriedly
documented can be very di�cult to maintain or enhance. Further, failing to re-evaluate a prototype
design before starting to implement the �nal system can result in a product which inherits patches
acquired during the prototype phase. Documentation criteria should be included in the design checklist
to ensure complete system documentation of the prototype. Other suggestions include frequent reviews
and the use of object-oriented technology. Discarding the prototype is also an option if the thrown-
away prototype code will not be needed.

Rapid prototyping can also have a negative e�ect on system maintainability when the use of a
special-purpose prototyping language results in maintenance engineers having to deal with the pro-
totyping language, the target language, and the interface between the two languages. An increase in
complexity can result, even when system design is good. A prototyped system can become impossible
to maintain if it was developed using prototyping tools that are not available to the maintenance
engineers.

7.4 Avoid delivering a \throw-away"

Very poor design quality can result when a prototype is meant to be thrown away, but is kept instead
in order to save costs. This is a surprisingly common problem which typically occurs when managers
are initially sold on the idea of throw-away prototyping. But, when they see the prototype, managers
decide to save money by massaging the prototype into the product. The resulting system often lacks
robustness, is poorly designed, and is un-maintainable. One of the perils of throw-away prototyping
is that the prototype may not get thrown away . Managers can avoid this problem by maintaining a
�rm commitment to the prototyping paradigm, and by careful de�nition of the scope and purpose of
the prototype.

12

7.5 Budgeting and the prototype

Three cases describe scenarios in which projects were underbid. Because visible outputs are quickly
available, managers and salespersons may be easily seduced into believing that the subsequent phases
can be skimped on. Overcon�dence can result in underbidding, and prototyping can provide an
environment which promotes overcon�dence. In one case, a project originally estimated as requiring
two years was modi�ed to six weeks on the basis that prototyping would achieve fast, working results.
Sales and managerial sta� should be trained to properly understand the nature and purpose of the
prototyping phase and the prototype itself, and the distinction between a prototype and a complete
system.

Many questions surrounding bidding in a prototyping environment remain unanswered. Many
companies bid the prototyping phase separately, sometimes as a \proof-of-concept" item. This may
not be an appropriate solution for many situations. More data is needed on costing issues.

7.6 Completion and conversion of the prototype

Prototype development can be time consuming, especially when the purpose and scope of the prototype
is not initially well-de�ned. Boar [Boa85] describes how inadequate narrowing of the scope of the
prototype can lead to thrashing or aimless wandering. Six of the sources give evidence in support of
Boar's claim. Suggestions for avoiding this problem include using a disciplined approach to scheduling
prototyping activities, careful de�nition of the scope of the prototype, and avoiding throwing entry-
level programmers into a rapid prototyping environment.

Prototyping languages are often utilized to ease implementation of a particular aspect of the system.
For example, if the prototype is developed to test user interface options, a language which provides
convenient I/O is selected. However, converting the prototype into the �nal system may require
signi�cant e�ort and time, and this problem is exacerbated when a separate prototyping language is
used. Conversion may be non-trivial if the ultimate target language does not have such simple I/O
handling. Another example is when an object-oriented language such as Smalltalk is used, and the
target language does not have inheritance. Cost or time overruns were observed in a few cases. Careful
de�nition of the scope of the prototype, and a systematic comparison of the features of both languages
can help to avoid this problem. Of course, this problem does not occur if the same language is used
for both the prototype and the �nal system.

7.7 Problems associated with large systems

There are widely di�ering opinions on what constitutes a \large" software system. In one case study,
a 200-line system is described as large, whereas other authors might consider any program of that
size to be very small. For this reason, we try to avoid de�ning \large", and instead refer to systems
that are at least 100,000 lines of code to be substantial . Although some researchers might claim that
100,000 line systems are not large but medium-sized, few would argue that programs of that size are
small. To distinguish between medium and small projects, we used whatever description was used in
the case study reports (that is, we did not select an exact boundary). Figure 7 shows a breakdown of
the projects by size.

We �nd no support for the common notion that evolutionary prototyping is speci�cally dangerous
for large projects. In fact, every case involving substantial projects used evolutionary prototyping.
However, the problems involved with evolutionary prototyping grow somewhat in proportion to the
size of the system being prototyped.

Evolutionary prototyping on large projects can result in a system �lled with patches as hastily-
designed modules become the root of later problems. The problems described earlier for performance
and maintenance issues perhaps become more pronounced as system size grows. The methods of

13

>100K loc
(7)

(11)

small medium
(21)

Figure 7: Distribution of case studies by project size

avoiding those particular problems are equally applicable here, such as using an object oriented ap-
proach, or limiting prototyping to user interface modules which are less likely to involve important
data structure design decisions.

8 Conclusions

In a study of real world case studies of the use of rapid prototyping, we identify common observations
and analyze the e�ects of the prototyping life cycle both on software products and on the software pro-
cess. Our study was based on the reports of 39 published and unpublished relatively recent case studies,
and represented a wide range of software development organizations including military/government,
commercial, and academic developers.

Most of the case studies report that prototyping was successful; only three studies report failures
(possibly because reports of failures are seldom made public). The product improvements most clearly
identi�ed by the case studies are an improved match with users needs and improved \ease of use" (see
Figure 3). The most commonly cited positive e�ect on software products, mentioned by 22 of the case
studies, is that prototyping was helpful in improving the capability of the product to satisfy the needs
of users; only one study reports a negative e�ect. Prototyping improved product `ease of use' in 17 of
the studies; no studies report negative e�ects. The case studies report mixed results concerning the
e�ects of prototyping on design quality and product maintainability. The only product attribute that,
when mentioned, generally shows a negative e�ect is performance. Six cases note negative performance
e�ects, while only two cases note performance improvements. Overall, the noted e�ects on product
quality are positive.

No support is found for the common notion that rapid prototyping is not appropriate for large
systems. We �nd no bias towards either keep-it or throw-away prototyping. Because of the variety of
languages used in the case studies, we cannot draw any conclusions concerning the relative merits of
prototyping languages.

The case studies report generally positive e�ects of prototyping on the software process (see Fig-
ure 6). Sixteen of the studies note decreased development e�ort; only one study reports an increase
in e�ort. Twenty case studies report increased participation of end users; two cases report a decrease
in such participation. However, seven of the cases report that greater expertise is required of devel-
opers, while only two cases report that prototyping requires less expertise. Reported e�ects on cost
estimation are inconclusive.

A number of potential problems can result from the use of rapid prototyping. The most serious
problems are poor design quality and maintainability (especially when using evolutionary prototyp-
ing), underbidding, and misunderstandings between developers and users. Potential problems can

14

be avoided by carefully de�ning the purpose and scope of the prototype, and by not violating this
de�ned purpose and scope. For example, a throw-away prototype should not be kept. Design and
maintainability problems can be prevented through the use of design checklists, and by avoiding the
use of entry-level programmers for making design decisions. Underbidding and misunderstandings can
be prevented by limiting end-user interaction to a controlled setting, training sales and managerial
sta� to not oversell the prototype, and by not underestimating the time required to develop a product
from a prototype.

We �nd that rapid prototyping can be successfully employed by the software industry in a variety of
situations. The case studies dispel some often-held beliefs concerning prototyping. Rapid prototyping
seems to have a number of realized bene�ts, and, when used properly, can improve the software
development process and products.

References

[AGS89] K. Auer, T. Goldstein, S. Sridhar, T. Love, and D. Thomas. Panel: From Prototype to
Product!? OOPSLA '89 Proceedings, 482{484, Oct 1989.

[Boa85] B. Boar. Application Prototyping - A Project Management Perspective. AMA Membership
Publications Division, 1985.

[Bro75] F. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

[BKM84] R. Budde, K. Kautz, L. Mathiassen, and L. Z�ullighoven. Approaches to Prototyping.
Springer-Verlag, 1984.

[Bud92] R. Budde. Prototyping: an Approach to Evolutionary System Development. Springer-Verlag,
1992.

[CS89] J. Connel and L. Shafer. Structured Rapid Prototyping: an Evolutionary Approach to Soft-

ware Development . Yourdon Press, 1989.

[GB91] V. Gordon and J. Bieman. Rapid Prototyping and Software Quality - Lessons from Industry.
Paci�c Northwest Software Quality Conference, 1991, pp 19-29.

[GB92] V. Gordon and J. Bieman. Reported E�ects of Rapid Prototyping on Industrial Software
Quality. Software Quality Journal , 2(2):93-110, June 1993.

[Pat83] B. Patton. Prototyping { a nomenclature problem. ACM SIGSOFT Software Engineering

Notes, 8(2):14{16, April 1983.

[Rat88] B. Ratcli�. Early and not-so-early prototyping { rationale and tool support. Proc. COMP-

SAC 88, pp 127{134, Nov 1988.

15

