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Abstract

Good engineering practice solves problems not only by applying scientific techniques
but also by making design choices that reconcile conflicting requirements. We are
interested here in design of the overall organizations and system-level properties of
software systems—that is, their architectures. Early decisions about design strategies can
have far-reaching consequences, because they shape the analysis of the problem and the
expression of the design. This paper explores the consequences of one of the earliest
decisions, the choice of architectural style and its associated notations. The paper shows
how different architectural styles lead not simply to different designs, but to designs with
distinctly—and significantly—different properties. I examine eleven different published
designs for “the same” problem (automobile cruise control), classify and compare the
approaches, and discuss major differences among the resulting solutions. Although all
the designers nominally designed automobile cruise controls, they actually produced a
wide range of solutions to somewhat different problems. The issues addressed in the
designs depend on the choice of architectural style, and most styles use multiple models
in the design. The comparison illustrates some of the relative advantages and
shortcomings of the styles and provides some guidance for selection.
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L Design Idioms for Software Architectures

Engineering is the creation of cost-effective solutions to practical problems, usually by applying well-
organized scientific knowledge. Since most engineering problems require a designer to resolve conflict-
ing constraints, engineers often explore a space of possible designs for the system organization. Explicit
patterns, or idioms, increasingly guide the organization of modules and subsystems into complete sys-
tems. This stage of the design is usually called the architecture, and a number of common patterns are
commonly, though quite informally, used [Garlan&Shaw 93]. The choice of an architecture, or organi-
zational principle, for a software system is made early in the life of the system. Although strong advo-
cates of some architectural idioms tout each as the best choice for all problems, designers should select
an architecture to match the needs of each problem. The choice affects not only the system description
and the decomposition into components, but also functionality, performance, and other important
properties.

Designers often fail to explain their architectural decisions, and the architectures are often not perma-
nently retained with the code. Although many design idioms are available, they are not clearly de-
scribed or distinguished; further, the consequences of a decision are not well understood. Just as Wing
found in a dozen specifications of the library problem [Wing 88], the most interesting aspects of the
comparison have to do with what the architectural styles elicit about the systemd being designed , This
paper contributes to our understanding of the relative advantages of different architectural idioms by
examining eleven designs developed by nine design groups for a single example, automobile cruise
control.

1.1.  The Example: Automobile Cruise Control

Disciplines often work out the details of their methods through type problems, common examples used
by many different people to compare their models and methods [Shaw et al 94]. The cruise control
problem serves this purpose for software architecture and related issues. One commonly-used version
[Booch 86, Birchenough&Cameron 89] is:

A cruise-control system exists to maintain the speed of a  System onoft

car, even over varying terrain, when tummed on by the driver.  Enging onvott

When the l?rake is applied, the system must relir}quish speed  pices from whee!

control until told to resume. The system must increase and A > )

. . . . ccelerator Cruise )
decrease speed as directed by the driver. Figure 1 gives the - Control Ttirottle -
block diagram of the hardware for such a system. B System

. Increase/decrease speed >
There are several inputs: Resume speed
« System on/off If on, denotes that the cruise- Clock
control system should r—
maintain the car speed. Figure 1: Booch block diagram for cruise control

+ Engine on/off If on, denotes that the car
engine is turned on; the cruise-control system is only active if the engine is on.

« Pulses from wheel A pulse is sent for every revolution of the wheel.
+ Accelerator Indication of how far the accelerator has been pressed.

+ Brake On when the brake is pressed; the cruise-control system temporarily reverts to manual control
if the brake is pressed.

» Incr/Decr Speed Increase or decrease the maintained speed; only applicable if the cruise-control system is on.
* Resume Resume the last maintained speed; only applicable if the cruise-control system is on.
* Clock Timing pulse every millisecond.

There is one output from the system:
» Throttle Digital value for the engine throttle setting.

Another, slightly more complex, version includes monitoring functions as well [Brackett 87, Kirby 87].

1.2.  Design Considerations

Designs can be evaluated in any number of ways. The precise criteria should depend on the require-
ments of each application. However, certain considerations apply generally:
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« Locality and separation of concerns: Does the design separate independent parts of the system,
group closely related parts, and avoid redundant representation of information? How easy will it
be to make modifications?

« Perspicuity of design: Does the expression of the design correspond clearly to the problem being
solved? Is the design’s response to the most significant requirements easy to identify and check?

« Analyzability and checkability: Is the design easy to analyze or check for correctness, perfor-
mance, and other properties of interest? If more than one model or notation is used, how easy is
it to understand their interaction?

» Abstraction power: Does the design highlight and hide the appropriate details? Does it help the
designer avoid premature implementation decisions?

A cruise control system provides autonomous (but casually supervised) control of the speed of a motor
vehicle moving at highway speeds. For such a system, important design issues include

« Safety: Can the system fully control the vehicle, and can it ensure that the vehicle will not enter
an unsafe state as a consequence of the control?

o Integration with vehicle: How well do inputs and outputs match the actual controls. How do the
manual and automatic modes interact? What are the characteristics of real-time response? How
rapidly and smoothly does the vehicle respond to control inputs? How accurately does the system
maintain speed?

1.3. Solutions

At least a dozen groups have used cruise control as an example, presenting over twenty designs. Some
of these are presented as requirements but are sufficiently concrete to serve as architectures. Eleven of
these examples are summarized in Section 2 through 5. Most use either Booch’s [Booch 86] or
Brackett’s [Brackett 87] formulation.

Section 2: Booch uses the example to motivate object-oriented programming [Booch 86, adapted from
Ward 84] and includes a functional definition as a strawman. Yin and Tanik present an object-oriented
solution to demonstrate reusability in Ada [Yin&Tanik 91]. Birchenough and Cameron show how the
Jackson System Development Method (JSD) complements object-oriented design [Birchenough&-
Cameron 89]. Kirby applies the NRL information-hiding technique [Kirby 87].

Section 3: Smith and Gerhart illustrate the use of Statemate; their design is, of cours€, based on states
and activities [Smith&Gerhart 88]. Atlee and Gannon use a state-based formulation to illustrate model-
checking for requirements [Atlee&Gannon 93].

Section 4: Higgins emphasizes feedback control models in showing how Data Structured Systems
Development can be extended for real-time process control systems [Higgins 87]; his architecture . Shaw
also bases a solution on feedback control, using other architectures for subsystems {Shaw 94].

Section 5: Ward and Keskar use cruise control as an example for comparing the Ward/Mellor and
Boeing/Hatley Structured Methods techniques for modeling real-time systems. Both add time and
control information to DeMarco Structured Analysis [Ward&Keskar 87].

Additional designs: Wasserman and others present an object-oriented design to illustrate a proposed new
methodology [Wasserman 89]. Gomaa uses this example illustrate a new design method for real-time
systems [Gomaa 89]. Gomaa’s text includes designs in several styles [Gomaa 93]. Wang and Tanik de-
velop a dataflow solution to illustrate Process Port Analysis and XYZ/E [Wang&Tanik 89). Jones con-
siders the testing problem for an Ada program but is not explicit about the character of the software
{Jones 90].

2. Object-Oriented Architectures and Information Hiding

Object-oriented architectures decompose systems into discrete objects that encapsulate state and defini-
tions of operations. These objects interact by invoking each others’ operations. Booch defines an ob-
ject as “an entity that has state; is characterized by the actions that it suffers and that it requires of other
objects; is an instance of some class; is denoted by a name; has restricted visibility of and by other ob-
jects: may be viewed either by its specification or by its implementation” [Booch 86] The first two
terms of this definition are structural; the others affect the way objects are defined.
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A number of methods for object-oriented design have been proposed. They differ in their strategies for
defining objects; for defining timing, sequencing and other dynamic properties; and for establishing that
the design satisfies the requirements. As these examples show, other models may complement the
object-oriented part of the design.

2.1. Booch: Object-Oriented Programming

Booch begins by modeling the problem space in a data flow diagram (Figure 2). This shows how in-
formation passes from its various sources through computations and internal states to the output value.
From this model of the requirements, he presents a functional decomposition of the design in which
modules correspond to major functions in the overall process (Figure 3). This serves primarily as a foil
for the object-oriented design.
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Figure 2: Booch’'s data flow diagram Figure 3: Booch's functional design

From the same data flow model of the requirements, Booch then structures an object-oriented decom-
position around objects that exist in the task description (Figure 4). This yields an architecture whose
elements correspond to important quantities and physical entities in the system. The blobs of Figure 4
correspond approximately to the inputs and internal states of Figure 2. The arrows of Figure 4 are de-
rived from the data paths of Figure 2. Note that the object-oriented designs of Sections 2.2 and 2.3
show slightly different dependencies.

Note that the design emphasizes the objects in the problem domain and the dependencies they have with
major elements of internal state. The design makes no distinction between objects of the problem
domain and intenal objects, nor does it show the nature of the dependencies.

2.2. Yin & Tanik: Reusability

Yin and Tanik use cruise control to demonstrate software reusability [Yin&Tanik 84]. They chose the
example because it requires parallel processing, real-time control, exception handling, and unique
input/output control. They begin from Booch’s problem specification, using essentially the same data
flow diagram to model the requirements. Following Booch’s development technique, they derive an
object-oriented design (Figure 5). This differs from Booch’s (Figure 4) in that they create objects for
all the external elements and one single object for the entire cruise control system; thus Figure 5 shows
just the dependencies of the core solution on the external elements and any interactions between external
elements. The system architecture of Figure 6 elaborates Figure 5 by showing the operations for the
major objects. It also rearranges the design substantially: all other objects are (evidently) internal to the
engine, and the relation of throttle to everything else is much different. Although the problem was
chosen because of its real-time characteristics, the design does not address timing questions. Yin and
Tanik comment on the need for additional facilities for dealing with timing constraints.

2.3. Birchenough & Cameron: Compiementarity of JSD and OOD

Jackson System Development (JSD) and Object-Oriented Design (OOD) both support the principle that
the structure of the software system should match the structure of the problem it solves; both rely on
identifying discrete entities (which correspond to objects) and the operations they commit on each other.
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Birchenough and Cameron use cruise control, with essentially the same formulation as Booch, to show
how the object view can complement JSD [Birchenough&Cameron 89].

YIRS

Figure 4: Booch’s object-oriented diagram Figure 5 Yin & Tanik’s object-oriented design

IH

T ock

Rrake ot H
CIuis® conirol o
/ ncrease .

/ eI

‘OSUMe

Trrotile ———y

r#s5re0 soeed

Figure 6: Yin & Tanik's system architecture Figure 7: JSD entity structures

JSD has three stages: modeling, network, and implementation; this discussion deals with the modeling
stage (JSD separates model from function). JSD encourages analysis of actions, or events, before identi-
fying entities whereas OOD is the opposite. In JSD, the modeling stage only considers time-ordered or
state-changing operations when identifying objects. As a result it is more conservative in object identifi-
cation than OOD. For cruise control, Booch finds eight objects (Figure 3) whereas JSD finds three: the
wheels entity, the accelerator entity, and the driver entity; the driver. These three, with their substructure,
are shown in Figure 7. The substructure shows time-ordering among the operations through notations
in the comers of the boxes. JSD’s functional components are not chosen to adhere to an object
discipline but for a variety of problem-specific reasons. Birchenough and Cameron conclude that a
more object-oriented approach would add to the comprehensibility of later stages.

2.4,  Kirby: Information Hiding

The Naval Research Laboratory/Software Cost Reduction (NRL/SCR) approach is based on information
hiding, precision. and completeness. It provides separate definitions of inputs and outputs, the modes of
operation, functionality, timing, accuracy, and undesired events. Each of these comprises a set of
discrete definitions in uniform format; tables are used heavily but architectural diagrams are not.

Kirby uses Brackett’s formulation {Brackett 87]. Because this version includes monitoring, the defini-
tion includes 20 input and output items; Figure 8 shows the Cruise Control Request. The modes of op-
eration and the state transition table are essentially the same as provided by Atlee and Gannon (Section

Mary Shaw Making Choices: A Comparison of Styles for Software Architecture 4



3.2). Definitions of function rely on decision tables; Figure 9 gives the definition of the throttle setting
function. Timing, accuracy, and undesired events are enumerated and tabulated in a similar manner.

Cruise Control Request Determine Throttle Setting Function
Input Data Item: Cruise control request Modes in which function is required: *Cruise*
Acronym: [Lever/ Output data item: /[Throttle//
Hardware: Cruise control lever Initiation Event: @T(enter mode)
Description: The value of /lever/ is determined Termination Event: @T(exit mode)
by the cruise control lever. The lever has five i .
.. ti Table sh
positions. Four of the five positions are labeled Output description 0? /7'_};0(,{::/;”“““ value
CONST, OFF (iwo instances), and RESUME. The
lever may be pushed and held in one of these posi-
tions at a time. When released, the lever will al- Throttle Setting
ways return to the unlabeled RELEASE position. .
The value of /lever/ is described by table. ode Condition
Characteristics of Values: f“cruise* too slow! | !speed ok! Itoo fast! !driver accel!
Values: Sinactivate$, Sactivate$, Sstart incr$, OR ANDNOT | ANDNOT | ANDNOT
$stop incr$, $resume$ !start incr! | !start incr! Istart incr! too slow!

ANDNOT | ANDNOT | ANDNOT

Inputs from Cruise Control Lever tdriver accel!] !driver accel!| 'start incr!

Event /Lever/

@T(enter *on*) Sinactivate$ [Throttle//| !throttle ![hrottlev tthrottle throttle
@T(!const pos!) Sactivate$ accell mainain! docell offt
@T(Iconst pos! for > 500 msec) Sstart incr$
@T(!release pos!) when !const pos! Sstop incr$
for > 500 msec

@T(loff pos!) Sinactivate$
@T(Iresume pos!) $resume$

Figure 8: Kirby's Input Data Item Figure 9: Kirby's Throttle Function

3. State-Based Architectures

State-based architectures focus primarily on the major modes, or states, of the system and the events that
cause transitions between states. As with object-oriented designs, other models may complement the
state analysis, for example to identify the major modes. State machines also appear as secondary views
in designs by Kirby (Section 2.4), Shaw (Section 4.2) and Ward & Keskar (Section 5.1).

3.1. Smith & Gerhart: STATEMATE

Statemate uses a state transition formalism supported by two graphical notations: activity charts (a form
of functional decomposition) and statecharts (a representation of finite-state machines). It is particularly
well-suited to reactive systems. It can be used with many methodologies: functional methods focus on
activity charts, whereas behavioral methods focus on statecharts. Smith and Gerhart {Smith&Gerhart 88]
use Brackett’s formulation of cruise control [Brackett 87] to compare Statemate to Brackett’s use of the
Hatley method, which uses a graphical notation for a functional view. They abstract from physical
devices such as “brake pedal” to the actions selected by the driver such as “inactivate system”.

In order to compare their result to Brackett’s, Smith and Gerhart choose the functional decomposition
design method. The top-level functions emerge directly from the system requirements; they are the
boxes visible at the boundary of the system as shown in the activity chart of Figure 10. Since all the
functions at this level operate concurrently, no statechart is required. The granularity of the activities is
larger than Booch’s functional elements, which are simple constructors and selectors.

The second level decomposes the internal activities of the first level. Smith and Gerhart illustrate this
step with the function for speed control. The requirements again lead to the functions in the decompo-
sitions shown in Figure 11. Now, however, ordering dependencies affect execution, so a controlling
statechart is required. This appears as a shaded box in Figure 11 and is elaborated in Figure 12.

Smith and Gerhart observe that the advantages of Statecharts include good notations for showing con-
currency and restrictions on concurrency, mechanisms for showing state changes, notations for certain
timing constraints, and the simulation and analysis capabilities of the tool. However, this formulation re-
quired more notation than others for the same level of detail and large (or variable) numbers of similar
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activities are hard to represent. They also note that behavioral and functional approaches will lead to
different designs.

1
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Figure 10: Smith & Gerhart's
top-level activity chart

Figure 11: Smith & Gerhart's
speed control activity chart

3.2. Atlee & Gannon: State-Based Model Checking

Atlee and Gannon are primarily interested in using a model checker on requirements for large systems.
Their state-based formulation of cruise control is therefore presented as a requirement, but it is close
enough to a design for consideration here. They use Brackett’s formulation as presented by Kirby
(Kirby 87]. The basic formulation says that a cruise control system can be in one of four modes (which
correspond to intuitive states): off, inactive, cruise, and override (on but not in control). The require-
ments are given as a table (Figure 13) that shows how events (flagged “@") and conditions cause mode
transitions. Their analysis considers interactions among conditions (“what if the brake is on when the
system is activated?”) and identifies important invariants among conditions and events. Their definition
is essentially the same as Kirby’s for this aspect of the problem.

MODE TRANSITIONS FOR AUTOMOBILE CRUISE CONTROL

kAL
N
[

Figure 12: Smith & Gerhart's
speed control state chart

4. Feedback Control Architectures

Current |
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Igni-
red

Run-
ning

Too
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@F

OFF
i CRUISE

CRUISE

aF

OFF
INACTIVE

OVERRIDE

OVERRIDE

OFF
INACTIVE
CRUISE

Inital moae: OFF.

Figure 13: Atlee & Gannon's
mode transition table

Feedback control architectures are a special form of dataflow architecture adapted for embedded sys-
tems where the process must be regularly tuned to compensate for external perturbations. These archi-
and they model the current values of the
outputs and the value that controls the process as continuously available signals.

tectures are modeled on analog process control systems,

Mary Shaw

Making Choices: A Comparison of Styles for Software Architecture

6



4.1. Higgins: Extending DSSD for Real-Time Software

Higgins extends the Data Structured System Development (DSSD) method for real-time embedded sys-
tems by adding a standard template for analyzing feedback/control models [Higgins 87]. The conver-
sion from a standard feedback control block diagram to a DSD entity diagram is straightforward; it in-
cludes a summing point for feedback and explicit recognition of the external disturbance and the source
of the target value of the process variable as well as the more obvious processing elements (Figure 14).
This entity diagram is static, so it is complemented by a functional flow diagram to establish the com-
munication dynamics (Figure 15). This diagram shows how the input signals produce the output sig-
nals: the inputs to each “level of flow” are on the right and the output is on the left; the lowest element
on the input list is the name of the transformation. When the system flow is defined, the final step is to
convert the functional flow diagram to a data structure diagram showing the hierarchy of system data .

Higgins uses cruise control to illustrate the method. A simple form of the example is shown here; addi-
tional levels of control such as whether the engine is on, the system is activated, etc are handled as sec-
ondary control loops that embed this example as the controlled system in a surrounding control loop.
Speed Gain/Loss
+

Perceived Throtde Pressure (i-1)
Speed Power § +

New Power Car Process

Speed +
Desired Sense Perceived Speed Process -
Speed +

Change Speed Process

+

Throttle Pressure (1-1)

Speed ¢ Power +
Measu; Power Car Process

s Soess S Set Throme Provme Power Throttle Update Desired Speed Process
Sommng - Sort Soy 7o Pressure() § +
Speed Gain/Loss
- - P
S “ssees | sovea .
Speed +
Coordination Process
; +
river —_— Measuring Process

+
tl'hro(de Process -

| Speed
| Gevaes
Speed 1

Figure 14: Higgins’ Figure 15: Higgins’
feedback entity diagram functional flow diagram

4.2. Shaw: Process-Control Paradigm

Shaw explores a software idiom based on process control loops {Shaw 94] using Booch’s formulation of
the problem [Booch 86]. Unlike object-oriented or functional designs which are characterized by the
kinds of components that appear, control loop designs are characterized both by the kinds of compo-
nents and the special relations that must hold among the components. The elements of this pattern in-
corporate the essential parts of a process control loop, and the methodology requires explicit identifica-
tion of these parts. The parts include two computational elements, the process definition and the controt
algorithm; three data elements, the process variables, the set point or reference value, and sensors; and
the control loop paradigm that establishes how the control algorithm drives the process. She character-
izes the result as a specialized form of data flow architecture.

The essential control problem establishes a control relation over the engine (Figure 16). This does not,
however, solve the whole of the problem, as most of Booch’s inputs are actually used to determine
whether the system is active or inactive and to set the desired speed. The former is a state transition
problem, and the solution (Figure 17) is much like that the state-based designs. The latter problem lends
itself to a decision table as in Figure 18.

Figure 19 shows how to compose the control architecture, the state machine for activation, and the event
table for determining the set point into an entire system.
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Figure 16: Control Architecture for Cruise Control Figure 17: State Machine for Activation
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for Toggle
vent Effect on desired speed Active/lInactive
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Decrease s, Decrement desired s b sunt £\
peed ent des peed by con: N
Figure 18: Event Table for Figure 19: Complete Cruise Control Design

Determining Set Point

Shaw concludes that it is appropriate to consider a control loop design when the task involves continuing
action, behavior, or state, the software is embedded, that is, it controls a physical system, and when
uncontrolled, or open loop, computation does not suffice, usually because of external perturbations or
imprecise knowledge of the external state.

5. Real-time System Analysis -

Real-time systems must meet stringent response-time requirements. Extensions to several methods add
various features for the special demands of real-time processing. Interestingly, these systems deal with
event ordering but not absolute time. Higgins’ process control model is motivated by real-time prob-
lems but is discussed above.

5.1. Ward & Keskar: Ward/Mellor and Boeing/Hatley Real-Time Methods

Ward and Keskar compare two extensions of DeMarco Structured Analysis (DMSA) that support real-
time system models: Ward/Mellor (WM) and Boeing/Hatley (BH) [Ward&Keskar 87]. DMSA was devel-
oped for commercial business applications, and these extensions were developed because pure structured
analysis couldn’t effectively capture the sorts of time-dependent actions that appear in process control,
avionics, medical instrumentation, communications, and similar domains. The basic requirements are
stated informally and resemble Booch’s.

The WM approach extends the basic structured analysis data flow diagram (solid lines, Figure 20) by
adding event flows (dotted lines, Figure 20) to show time-dependent behavior. The control transforma-
tion “Control Speed” receives events from the external interface and enables, disables, or triggers the
basic functions. The logic of the control transformations are described by the state transition diagram of
Figure 21. In a given state, only certain events are recognized; when they occur, they change state )
and enable (>>), disable (<<), or trigger ([ ) the indicated transformations. This design is meaningful
only when the engine and cruise control system are both on. Ward and Keskar show a hierarchical ex-
tension with an additional control state to handle this. Some of the interactions examined by Atlee and
Gannon can arise here; this can be prevented by adding explicit detail to handle them.

Mary Shaw Making Choices: A Comparison of Styles for Software Architecture 8
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Figure 20: Ward & Keskar’'s Figure 21: Ward & Keskar's
WM control transformation diagram WM state transition diagram

The BH extension begins with two context diagrams that show data and control flow between physical
components of the system. The highest level of the design consists of a data flow diagram (DFD)
(Figure 22) and a variant on the DFD to show control flow (Figure 23). These are based on the same
entities, Next, control specifications show hot to activate or deactivate processes on the Data Flow
Diagram. They may be combinatorial (no state) or sequential (internal state). The cruise control is se-
quential, so its control is described in a decision table (Figure 24) that converts combinations of input
signals to output signals, a state-transition diagram (essentially similar to Figure 20), and an activation
table (Figure 25) that relates the transition actions of the state machine to the processes of the DFD.
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Figure 22: Ward & Keskar's
BH data flow diagram

Figure 23: Ward & Keskar's
BH control flow diagram
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Figure 24: Ward & Keskar's
BH decision table

Figure 25: Ward & Keskar's
BH activation table
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6. Discussion

All these designs started from a single task; indeed, most started from one of two problem statements.
Nevertheless, the solutions differ substantially, even within a single architectural style. Some of the
differences can be attributed to variations among individual designers, but others arise from the way
each architecture leads the designer to view the world.

Designs based on different architectures attend to different aspects of the problem. Some focus on in-
terpreting the driver controls; some focus on internal state; some focus on the actual control of auto-
mobile speed. The ability to focus on issues of interest is important, but the designer should consciously
match the technology to the needs of the client.

Even when the design is declared to be of a particular style, the designer usually appeals to two or three
different design representations or models. These models are used in many combinations and provide
different views of the design—the only real point of consistency is the model that matches the declared
style. Within a single design, different models may decompose the task into different entities. Needless
to say, not all of these can persist to runtime. Table 1 identifies the models used in these examples.

The design criteria of Section 1.2 provide a basis for comparing the design approaches, and the
remainder of this section is organized correspondingly.

Design strategy Sect |Problem|Functional| Data Flow | Object- State Event- | Process|Decision{ Data
[reference] Version| Decomp Oriented | Machine | Oriented |Control| Table |Structure
Functional [Booch 86}| 2.1 | Booch J for rqts

Object-oriented 2.1 Booch for rqts )

[Booch 86]

Object-oriented 2.2 | Booch for rqts )

[Yin&Tanik 91]

JSD and 0-O 2.3{ Booch | JSD v

[Birchenoughé&- activity

Cameron 89} chart

NRL/SCR [Kirby 87} | 2.4 |Brackeu info hiding ) v
Statemate 3.1 {Brackett| activity state chart

[Smith&Gerhart 88) chart ~

State machines 3.2 |Brackett v

[Atlee-Gannon 93]

Process-control 4.1 |Higgins v v )
[Higgins 87)

Process-control 4.2 | Booch ¥ Yy V

[Shaw 94]

Ward/Mellor 5.1 Ward- mixed with v mixed with

[Ward&Keskar 87] Keskar event flow data flow

Boeing/Hatley 5.1 Ward- ) V control )
[Ward&Keskar 87] Keskar flows

Table 1: Design models used in examples

6.1. Separation of concerns and locality

All the models used in these designs provide a way to decompose the system into separate parts that
localize decisions that are significant with respect to that model. Generally speaking,

+ Object-oriented designs focus on real-world entities and data/computational dependencies from
input entities to output. They are little concerned with internal relations or operation sequencing.

» State-oriented designs focus on the modes in which the system operates and the conditions that
cause transitions from one state to another.

« Process-control designs focus on the feedback relation between actual and desired speed.
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- Real-time designs focus on events and the orders in which they appear; the real-time designs
presented here don’t say much about actual timing.

It is the choice of what information to localize and what concerns to separate that leads to the large dif-
ferences in which aspects of the problem each design addresses.

Locality is motivated not only by design simplification but also by the ability to interchange parts be-
tween designs. When multiple architectural styles are used, they often lead to parts with different pack-
aging—different ways of interacting with other parts. This can substantially interfere with exchange or
interoperability; failure to recognize these discrepancies may be a major contributor to problems with
software reuse.

Locality is also motivated by the prospect of future modifications. Booch, for example, argues that ob-
ject decompositions are superior to functional decompositions because functional decompositions have
global data and future changes may require representation changes. This is sometimes, but not always
the case. As Parnas argued two decades ago, locality should hide the decisions most likely to be
changed. Which decisions these are will vary from one application to another. .

Separation of concemns becomes more complex when multiple models are used—as happens in most of
these designs. Whenever multiple views are defined, they constrain the design in different ways. It is es-
sential to show how those views are related (see Section 6.3).

6.2.  Perspicuity of design

Perspicuity is in the mind of the beholder. Most methodologies exhort designers to make the design
match the real world. As these examples show, the real world has many faces. Each of these designs can
be defended as matching some view of reality, though some (objects, process control) do so more con-
sciously than others (functional). As the discussion of safety (Section 6.5) shows, the designer needs to
understand what aspects of the real world are most important to the client. Many methodologies begin
with a domain analysis. This should lead to an initial choice of architecture.

If the client is most concermned with the devices the drive manipulates to indicate desired speed and
changes of speed, object-oriented designs are a good match. If the client is most concerned with the
possible modes of the system and assurance that obscure interactions will not make the system unsafe, a
state-based design will bring out the information of interest. If the client is most concerned with the em-
bedded feedback problem of actually controlling the speed, a process control design.will show the nec-
essary relations without extraneous detail.

Note that the problem statements do not quite capture real cruise control systems. For example, some do
not fully specify how to determine the desired speed—only how to increase and decrease it, and real
cruise control systems command changes to current throttle settings, not absolute settings. It is hard to
determine to what extent these discrepancies are accidents of specification and to what extent they crept
in to make the problem more tractable for the definition technique at hand.

6.3. Analyzability and checkability

Most of the models used here have associated analysis techniques for the aspects of the design they are
intended to bring out. As noted in Section 6.2, the important aspects of the design depend on the client
and the problem. The significant problem of analysis and checkability arises when multiple views or
models are used in the design.

Multiple views used in many different combinations exacerbate consistency problems—especially when
the views use different decompositions at the same level. The first-order problem is, of course, consis-
tency—but the ability to make changes later is also at stake. It’s particularly problematic when the dif-
ferent styles decompose the problem into different elements.

Some uses of different models are easy to handle. For example, when one model is used to refine a
component that appears in another view, the interaction can be restricted to the interface of the compo-
nent being expanded. This is the case in Shaw’s design, where Figure 19 shows how the models of
Figures 17 and 18 provide inputs needed in the feedback process (Figure 16). Another tractable inter-
action between models occurs when one model is derived from another, as Higgins derives first func-
tional flow (Figure 15) and then data structure from the feedback entity diagram (Figure 14). A more
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difficult case arises when multiple kinds of structure are imposed on a single set of base entities; this
arises in Figure 20, where Ward and Keskar add event flows 1o a data flow diagram. Still more difficult
is the situation where the problem is decomposed in essentially different ways and the semantics of the
models interact. This arises, for example, when state models are added to other designs in Statemate
(Figure 12) and the Ward/Mellor analysis (Figure 21). Each of these combinations can, of course, be
handled as a special case of the methodology. But as Table 1 shows, the models are used in many
combinations, and the task of devising special analyses for each combination is daunting.

6.4.  Abstraction power

The essence of abstraction is identifying, organizing, and presenting appropriate details while suppress-
ing details that are not currently relevant. Abstraction is often supported by design discipline, notation
or analysis tools; these guide the designer in selecting details to emphasize and suppress. Disciplines do
this explicitly, whereas notations and tools do it implicitly, by providing the ability to express some
things, by requiring certain details, or by having no means of expressing other things.

The need to decide what’s currently relevant is illustrated by the differences between the object and pro-
cess-oriented designs. The object designs are concerned with the external devices that will be manipu-
lated by the driver. They begin by enumerating objects of the real world and relations among these ob-
jects; these designs relegate control of the system to internal entities. The feedback designs, on the other
hand, are concerned with the speed of the vehicle and how to control it. They begin by setting up the
feedback loop and establishing the relation among the reference speed, the model of the current speed,
and the engine (as controlled by the throttle); these designs deal lightly with the conversion of driver ac-
tions to the signals of interest.

Abstraction should also serve to suppress implementation decisions. Several of these designs unneces-
sarily reveal implementation decisions: Booch and Yin & Tanik include a global system clock and the
fact that it resolve milliseconds; Kirby includes extensive information about range, resolution, and accu-
racy of values; Ward & Keskar include details of the definition of events at the beginning of the design.
Ward & Keskar, on the other hand, do not include timing information even though they explicitly claim
to be real-time.

6.5. Safety

Cruise control systems exercise largely-autonomous control over moving machines. _Designers of such
systems should consider explicitly whether the machines will be safe in operation. Two particular
questions arise here: Can the system fully control the speed of the vehicle, and can the system’s model
of the world (i.e., the current speed) be sufficiently wrong to be dangerous?

Most automobile cruise controls (and all the designs here) can control the throttle but not the brake. As
a result, if the car picks up excess speed (coasting down a hill, for example) the system cannot slow it
down. The only designs that recognize this problem are Kirby’s NRL design, Atlee & Gannon’s state
analysis, and Shaw’s feedback loop.

Some aspect of the design process should also lead the designer t0 consider an even more serious prob-
lem: the possibility that the cruise control’s model of current speed is radically different from the actual
speed. This can happen, for example, if the drive wheels start spinning or a sensor goes bad. Brackett’s
problem formulation calls for a calibration capability; this addresses the problem of gradual drift but not
of sudden inaccuracy. The only designs that explicitly call the designer’s attention to the way current
speed is modeled are Higgins’ and Shaw’s feedback-loop models.

6.6. Integration with vehicle

Ultimately, the designed system must not only satisfy the problem statement but also integrate with the
whole automobile. Brackett’s problem statement recognizes this by requiring calibration capability to
deal with different tire sizes. However, this problem would not arise in a system that used relative rather
than absolute speeds; such a system deals with “faster” and “slower’” rather than calculated speeds. In
such a system, cruise control can be independent of speedometer display.

The solution differ in the extent to which they address the relation between the user-manipulated con-
trols and the data of the software design. The object-oriented architectures focus on this aspect. The
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state-based architectures define this as outside the scope of their problem. The feedback architectures
focus on the control question first but include interpretation of user inputs as separate stages of the
design. The real-time architectures show the relation as system context.

Most of these designs simply compute a throttle value. Only Shaw and Ward & Keskar consider the rate
at which speed should be increased or the response characteristics of the system. Higgins’ design has an
explicit entity (Set Throttle Pressure Summing Point) whose elaboration might reasonably address this
question.

7. Conclusions

Engineering involves making choices, especially design choices. Although we’re not very articulate
about it, we have a variety of architectural styles for organizing systems. Examining a variety of solu-
tions for a single problems shows some of the comparative advantages of the architectures and some of
the remaining problems in making systematic architectural design practical.

Architectural style strongly influences the resulting design but does not fully determine result. It is not
surprising that different designers using the same approach get different results, as all design methods
allow considerable room for individual judgment. We do, however, see systematic differences in the
kinds of questions designers are led to ask by different architectures.

Notwithstanding the label associated with an architectural style, the designer usually develops several
models. Sometimes, but not always, the relation among views is well-defined. These examples call at-
tention to the need for systematic means of establishing the relations between multiple views of a system.
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