
N-version design Versus one Good Version
Bev Littlewood, Peter Popov and Lorenzo Strigini

Centre for Software Reliability, City University
Northampton Square, London, EC1V 0HB

(Presented at DSN’2000, 25 - 28 June, 2000, New York, USA.
This version corresponds to Version 1.0, 31 May 2000, of the DISPO Technical Report of the same
title)

Software Diversity as a way of achieving high reliability of software
Software diversity has long been seen as way of achieving higher reliability of software than is attainable by a single software
version subjected to a heroic testing.
The known experiments with software diversity confirm that indeed fault-tolerant software employing diversity is "on
average" more reliable than a single software version. Utilising design diversity when high reliability is required is,
nevertheless, problematic. The cost of diverse system, which may increase substantially, is not the only obstacle. The main
problem is assessing how much gain in reliability has actually been achieved. It was shown empirically and theoretically that
even versions developed by not communicating development teams tend to fail simultaneously more often than they should
under if their failures were independent. Quantifying the dependence between failures is no easier than assessing the
reliability of the system, very difficult, because the failures of such systems are very rare and putting a reasonable confidence
in the assessment results requires a very long observation.
The idea that diversity may be a more cost effective way to deliver high diversity is alive and recently it was spelled out by
Hatton [Hatton 1997]. His main point, which seems to be shared by many, is that despite the dependence between the failures
of the independently developed software versions, for a given target of the system reliability fault-tolerant software, e.g. 2-
out-of-3 system, may be a more cost effective solution than a single software version. The key idea is that despite the
dependence between the failures of the versions, a fault-tolerant system consisting of versions of 'ordinary' quality will deliver
better reliability than if the efforts to develop several channels were used to produce a single 'state-of-the-art' version. Hatton
concludes that taking into account the ratio between the reliability of the 'ordinary' and the 'state-of-the-art' software favours
the decision to develop diverse software. The interested reader is referred to Hatton's paper for detailed justification of this
idea. He goes even further to conclude that if the targeted reliability increases, than the cost benefits of using design diversity
increase, too. The implications of the analysis are that when the developer can afford to produce several versions
independently this is the way to go - the reliability of the fault-tolerant system is likely to be better than if a single version
were developed.
We scrutinise Hatton's analysis, which crucially depends on the assumption that the ratio between the probability of failure of
a single channel and a 2-out-of-3 (or any other fault-tolerant architecture) will increase even though slower that if failures
were independent. We show, using data reported by others, that this assumption may be wrong.

Empirical data available to date
The first source of evidence to support the idea that software diversity may be a cost effective way to deliver high reliability
of software is the data from the well known experiment by Knight and Leveson [Knight et al. 1985]. In this experiment 27
versions were developed to the same specification and then subjected to 1 000 000 tests. Their probabilities of failure ware
estimated, which is summarised in Table 1 and 2.

Removing versions with worse reliability emulates improving the quality of the development process. Removing the best
versions, on the other hand, emulates the worsening of the development process. By inspecting the effect of the
'improving/worsening' of the process on the ratio of the probabilities of failure of a single and a 2-out-of-3 system we can
confirm the thesis developed by Hatton: the better process leads to increase of the ratio.

Table 1
Removed Single 2-out-of-3 Ratio

0 0.00069833 0.00003667 19
1 0.00035381 0.00003169 11
2 0.00027608 0.00002423 11
3 0.00023058 0.00002393 10
4 0.00019065 0.00002575 7
5 0.00015677 0.00001155 14
6 0.00012219 0.00000635 19
7 0.00010060 0.00000539 19
8 0.00008342 0.00000470 18

9 0.00007011 0.00000149 47
10 0.00005841 0.00000100 59
11 0.00004556 0.00000111 41
12 0.00003127 0.00000127 25
13 0.00002657 0.00000074 36
14 0.00002154 0.00000046 47
15 0.00001667 0.00000018 92
16 0.00001173 0.00000022 54
17 0.00000670 0.00000000 -
18 0.00000156 0.00000000 -
19 0.00000075 0.00000000 -

Table 2
Removed Single 2-out-of-3 Ratio

6 0.000902 0.000060 15.0
7 0.000948 0.000066 14.4
8 0.000997 0.000073 13.6
9 0.001050 0.000081 12.9

10 0.001108 0.000090 12.3
11 0.001173 0.000097 12.0
12 0.001246 0.000104 12.0
13 0.001328 0.000119 11.1

14 0.001423 0.000127 11.2
15 0.001532 0.000148 10.4
16 0.001648 0.000173 9.5
17 0.001786 0.000208 8.6
18 0.001955 0.000243 8.0
19 0.002159 0.000240 9.0
20 0.002406 0.000299 8.0
21 0.002715 0.000267 10.1
22 0.003081 0.000199 15.6

Tables 1 and 2. The effect of the growth/decay of population reliability on the effectiveness of software fault-
tolerance: Knight and Leveson data [Knight et al. 1985].

The second source we used are the data reported by Eckhardt et al in [Eckhardt et al. 1991]. In this experiment 20
versions were developed and then subjected to substantial testing: each version was tested on ~900 000 inputs. In
this experiment, however, the software was placed in varying environment - some failures of sensors were simulated
which affected versions reliability. We do not give here detailed account of the conditions under which the tests
were conducted. The interested reader is referred to [Eckhardt et al. 1991] for details. We use the testing results
obtained in the created 6 different states of the environment and calculate the ratio between the reliability of a single
channel and of a 2-out-of-3 system (In both cases as in the previous example we use the averages, calculated on the
populations of all single versions and all possible 3 version systems). The results are summarised in Table 3.

 Table 3
S0,0 S0,1 S1,0 S1,1 S2,0 S2,1

single channel pfd, P1 0.000073 0.000472 0.000038 0.006387 0.000083 0.028928
P2-out-of-3 1.70E-05 1.40E-04 1.80E-05 1.00E-04 1.70E-05 2.40E-03

P1/ P2-out-of-3 4.3 3.38 2.13 63.87 4. 89 12.05

It is obvious that this case reveals a patters which differs from the pattern we observed in Table 1 and 2: despite the
fluctuations, when the reliability increases, the ratio decreases, i.e. the gain from the 2-out-of-3 is lower when the
versions are more reliable.

Clearly, the experiments mentioned above were not about the effect of the reliability on the dependence between
versions' failures. The results presented, therefore, could be criticised for not being based on unsuitable data. We
accept this criticism. The difference between the results, nevertheless, remains and is dramatic: the trends have
different signs. Is this difference no more that a intriguing coincidence or is there something more? In a simulation
study Djambazov et al. [Djambazov & Popov 1995] reported that with reliability growth the dependence between
the failures of the versions increases, which is in line with the second data set.

Discussion
Our preliminary modelling of the effect of the reliability growth on the dependence between the failures of the
channels showed that the dependence can change in both directions: it may decrease, as Hatton suggested, but it can
also increase, as suggested by Table 3. It is very difficult, if possible at all, to tell in advance which of the two
possible trends will be in place in a particular case. Therefore, it appears that Hatton's suggestion that design
diversity is always going to be more cost effective than developing a single version software is not trustworthy. In
order for us to be certain that diversity will bring more than it takes we need to measure the dependence, which is
currently an open question. We need even more - to predict how the dependence will evolve with the reliability
growth, which is even more difficult.

References
[Djambazov & Popov 1995] K. B. Djambazov and P. Popov, “The effects of testing on the reliability of single
version and 1-out-of-2 software”, in 6th Int. Symposium on Software Reliability Engineering, ISSRE'95, Toulouse,
pp.219-228, 1995.
[Eckhardt et al. 1991] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. Vouk and J.
P. J. Kelly, “An Experimental Evaluation of Software Redundancy as a Strategy for Improving Reliability”, IEEE
Transactions on Software Engineering, 17 (7), pp.692-702, 1991.
[Hatton 1997] L. Hatton, “N-Version Design Versus One Good Version”, IEEE Software, 14 (6) 1997.
[Knight et al. 1985] J. C. Knight, N. G. Leveson and L. D. S. Jean, “A Large Scale Experiment in N-Version
Programming”, in 15th Int. Symp. on Fault Tolerant Computing (FTCS-15), Ann Arbor, Michigan, USA, pp.135-
139, IEEE Computer Society Press, 1985.

