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ABSTRACT

Gesture-Based Programming is a paradigm for programming robots by human demonstration in which the human demonstrator
directs the self-adaptation ofexutable softare. The goal is to pvide a more natural &imonment for the user as programmer

and to generate more complete and successful programs by focusisg experts rather tharprogramming experts. We call

the paradigm “gesture-based” because we try to enable the system to capture, in realititestj thebehind the demonstra-

tor’s fleeting, contd-dependent hand motions, contact conditions, finger posesyamargptic utterances in order to recon-

figure itself. The system is self-adagtiin the sense that kwtedge of preiously acquired skills (sensorimotoxpeertise) is

retained by the system and this Wwhedge fcilitates the interpretation of the gestures during training and theidesdeed-

back control during run-time.

1. INTRODUCTION

The text-based programming paradigm religslasively on the gpertise of the human programmer and his or her ability to
learn from and remember past lessons on systegiagenent. Bgond on-line help files, the applications themssland the
programming evironments thatdcilitate their creation acquire no kmedge of themsebs and carryager no useful knal-
edge from project to project oven within the deelopment of a single project. Tharden of retaining thexpertise that results

from the creation of e applications or ne configurations ofxasting applicationsdlls entirely on the human programmer



The idea behind self-adapgi software is to empwer the system itself to participate in itsrodevelopment. If a softare
ervironment can retain a kadedge base of itsven capabilities and usefulness, it can assist the humastoger during re-
application or reconfiguration and potentially perform autonomous adaptation. Thabddlagree of “self-determination”
will certainly vary across applications and operatingimmments. Br example, the user intexfe to a consumer application
program may hee wide latitude for self-adaptation on an ongoing basis. A raaturing system, on the other hanaduwd
likely have rigid constraints on the gieee of allevable self-adaptation anden on the periods during which self-adaptation is

enabled.

The focus of this paper is not the grand goal of self-agaptiftware, lut a smaller step teard it we call human-augmented
adaptation. W further limit our dbrts to the task of robot programming. In particulae are interested in the programming
paradigm itself and in finding alternagiapproaches to programming that are more iméuftir human users. Our basic model
is human-to-human training, which isry intuitive to users. In this model, the trainee isv&cith the process, so, when applied
to the programming of robotic systems, it naturally leads to systems that are more padioipieir ovn development. In

this sense, human-augmented adaptation is an importantwteg tand a useful complement to, self-adapsioftware.

This approach is bolstered by successfaheples of robots in the mamaturing sectofTwo of the most common industrial
applications are spray painting and spot welding. Both of these use natural programming methods such as “lead-through teach-
ing” [Todd 1986] (a primitie form of human demonstration) and point-teaching, respedctihat are easily mastered by semi-
skilled workers because of their intuiéness. Lead-through teaching, in particudlons aryone who can perform a alid”
task to program the robot to perform the same task simply by demonstrating it. (The same as in human-to-human training.) As
such, programming changes can be made wehgctbr proactiely by atask expert, not by calling in gorogramming expert.

Spray painting is unigue among the successful robotic applications becauseapplikations such as spot welding, volves
skill transfer from the teacher (i.e., programmer) to the robot. Lead-through teachindgsran intuitre mechanism for a task
expert to accomplish this. Unfortunatglyis limited to simple tasks the skill component of which is purely kinematically en-

coded.

Gesture-Based Programming (GBR)deages this approach to more comytbesks -- in particulatasks that wolve contact
with the enironment. It is a paradigm that igtates object-oriented controller design, sensorimotor pvieréind robotic skill

encapsulation, inconic sub-task specification, and iméUituman/computer interaction. This approachalthe rapid tasking



and re-tasking of comptesystems for meaningfutpntact-intensive applications requiring skill transferhe paradigmtdlds

on prior work in layered, multiprocessaeal-time operating systemwadopment, multi-agent control architectures, graphical
programming tools, human gesture interpretation, and raipsticiction by human demonstration (as opposed to programming
by human demonstration).aWill summarize these foundationabsks and their results as well as describe dortsfto inte-

grate the complete system.

2. GESTURE-BASED PROGRAMMING OVERVIEW
GBP attempts to lerage the benefits of lead-through teaching, mentioned in the spray pauatimgies abwe, to a much

higher level. We want to enable taskkperts in contact-inteng applications, such as assembdyprogram robots by simply
demonstrating the tasks with which theerts are scaimiliar. This is intuitve for the teacher because demonstrationv@tb
by supervised practice is the modeefive method of skill transfer between humans theneselRatrick 1992].

However, teaching by demonstration requires a “shared ontology” -- commavidaige about the arld that is retained by
both teacher and student. Among humans, this equates to a set of siparéehees that result in autonomous skills we use for
interacting with the wrld around us. @ demonstrate the assembly of a aagbor for example, it is not necessary to teach the
mating of planar suaces, the insertion of agéto a hole, or the tightening of a serd hese are basic skills humans acquire
during their day-to-dayxperiences and become part of the shared ontology between teacher and student. These shared skills,
even though we may implement them slightlyf@iéntly from person to person, are important in interpreting the demonstration
and must be retained by both parties. When programming robots by demonstration, it is also necessary to assume a set of pre
viously acquired skills thatxdibit some commonality between system and systemlolger This implies the system must not
only be programmed,ub it must learn from the process of being programmed.

To understand the paradigm, let us assumexisteace of the requisite shared ontology baseamfori skills. A major
portion of this paper is dedicated &pkining hav that expertise database@ves hut, for nav, assume it is gen. The act of
programming bgins with a human performing the task. (lllustrated by the stick figure on the left of Figure 7.)alibeest/
the humars hand and fingertips is actéel through a sensorized géowith special tactile fingertips. The modulangieystem
senses hand pose, finger joint angles, and fingertip contact conditions. Objects virdéimenent are sensed with computer
vision and, though not described in this papetommercial speech recognition system caraet “articulatory gestures” to

provide model-based data. (Gestures will be described)l®iémitive gesture classes ardracted from the r& sensor infor-



mation and passed on to a gesture interpretatioronetwhe agents in this nebrk extract the demonstratar*intentions” --
defined as the underlying skills that produced the motions of the demonstrator as opposed to #iseirggions themseds
-- based upon the kmtedge thg have previously stored in the systemskill library from prior demonstrations. léka self-
aware human trainee, the system is able to generate an abstraction of the demonstrated task, mapped ekiitsiténoother
words, the system is not merely rememberiwerghing the human doesytas trying to understand -- within its scope »f e
pertise -- the subtasks the human is performing (“gesturing”). These peicapabilities in thexpertise database takhe form
of encapsulated expertise agents -- semi-autonomous agents that encode sensorimotor paménd la-level skills for later

execution. (Encapsulatecgertise agents are described in sections 4 and 5.)

The output of the GBP system is theeeutable program for performing the demonstrated task on tied teardvare. This
program consists of a netwk of encapsulatedkpertise agents of wflavors: a primary set for acting and a secondary set for
monitoring. The primary agents implement the priveisi required to perform the task and come from the pool of prawiti
represented in thexpertise database. The secondary set of agents includgfrthe same gesture recognition and interpre-
tation agents used to interpret the demonstration. These agents perform on-lingtiobsefrthe human to allosupervised

practicing of the task for further adaptation. (Stick figure on the right of Figure 7.)

As mentioned abe, the human model for teaching by demonstration most oftetvaés a practice phase. The reason for
this is that pasge obseration of a task rarely pvides accurate parametrization for the traisekfduced task “model” (in this
case, the model is represented by the collection of primary encapsulageise agents) and sometimes the deduced model is
wrong (e.g. missing or incorrect encapsulatqubetise agents). Incorporating gesture recognition and interpretation agents into
the xecutable praides an intuitre way for the demonstrator -- or another user -- to direct the further adaptation of the program
without haring to demonstrate the entire taskepagin. Because all our agents are implemented as autonomouarsafiad-
ules, these obseation agents can easily be disabled without recompiling the program. This might be done as a quality measure

to ensure consistent operation of the robot or it might be done as a security measventaabetaging the robot program.

In the real varld, it will not be possible to represent most useful tasks with oneorietyf encapsulatedkpertise agents.
Therefore, it is necessary tayseent the demonstration into a series of discrete subtasks (e.g. a grasping subtastk liglia
manipulation subtask). Each subtask will be embodied by aorletyg described albie. In this case, thexecutable program

will consist of a sequence of naivks rather than a single, static netiu



3. RELATED WORK: PROGRAMMING PARADIGMS

Numerous attempts have been made to ease the discomfort of robot programming with varying degrees of success. Behavior-
based [Brooks 1986] and multi-agent systems [Wooldridge and Jennings 1995] seek to modul arize software for easier program-
ming by programming experts. Visua programming environments like Chimera/Onika [Stewart, Schmitz and Khosla
1992][Gertz, Stewart and Khosla 1993] and commercia packages such as MatrixX/SystemBuild [Integrated Systems], Con-
trolShell [Real-Time Innovations], and LabView [National Instruments] capitalize on modular, reconfigurable software blocks
by iconifying them within “ software assembly” environments. These visual environments allow programming at amuch higher
level, hiding many details of the particular implementation, and lessening the burden of programming expertise. For conve-

nience, they also provide point-and-click interaction during run-time.

A more recent approach to human/robot interaction is the field of learning by observation [Kang and Ikeuchi, 1996],[ Kuniy-
oshi, Inaba and Inoue 1994], [Kaiser and Dillmann, 1996]. By forcing the robot to observe a human interacting with the world,
rather than forcing the human to interact with a textual representation of the robot interacting with the world, a more natural,
“anthropocentric” environment results. This approach is much like lead-through teaching and, in fact, most of these systemsare

kinematically-based and operate off-line; if the robot misinterprets the desired trgjectory, the whole sequence must be re-taught.

4. SENSORIMOTOR PRIMITIVES

A sensorimotor primitive [Morrow and Khosla 1995] is an encapsulation of sensing and action which can form domain-gen-
eral building blocks for task strategies. A primitive is not an autonomous agent which can intelligently intervene at appropriate
placesinthetask, but rather a powerful and task-relevant command. The goal isto provide alibrary of sensor-driven commands
which effectively integrate sensorsinto a robot system for a particular class of tasks. In a subsequent section, we will discuss

encapsulating the expertise of a primitive within an autonomous agent which we will call an “encapsulated expertise agent”.

In previous sections, we used the term “skill” loosely. We hereby differentiate between skills and primitives. A skill isapa
rameterized, stand-alone, robust solution to a specific task. A sensorimotor primitive is a parameterized, domain-general com-
mand which integrates sensing and action and can be applied to many skills within a task domain. The goa of sensorimotor
primitives isto capture important domain information or capabilities so that robust skills can be quickly devel oped. Therefore,

skills are generally composed of multiple sensorimotor primitives.



Primitives can be encapsulated as port automata. When implemented as independent periodic tasks under our Chimera real
time operating system [15], thacquire specific methods for real-time task managementaiMthese softare modules “port-
based objects” [16]. Skills can then be encapsulated as tightly-coupled groups of port-based objects and lveth gomniti

skills populate the “egpertise database” for GBP

5. ADAPTING THE EXPERTISE DATABASE
From the @ervien description of GBP it should be clear that the nature ofxpertise database is critical to the domain of

application of the programming systenarexample, if the gpertise database only contained prives for kinematic motion
of the manipulatgra system for lead-through teachinguld result. (As in the spray paintingaenple abwe.) This is a good
starting point because it is our goal to emulate the basic ideas andenest behind the success of lead-through teaching.
However, it is also our goal toxtend this success towemore comple domains. ©® accomplish this we must adapt thxeer-
tise database to thewm@&omain and we empjawo distinct approaches for so doingpécit programming and learning.
5.1Adapting the Expertise Database Through Explicit Programming

Adapting the gpertise database can meaw things. It can either mean modifyingsing primitives to accommodate ame
domain or adding entirely meprimitives to the xisting set. V& focus on the latter because regprimarily interested inxe
tending into nes domains and capabilities. Modifyingisting primitives irvolves much subtler issues of deciding which prim-
itive to modify and when it needs modificatioor Example, consider a robot that already has “guardegir(@pproach until
a force threshold is reached) and “straight-line/@igrimitives in its repertoire. Suppose it then obsera demonstration in
which two parts approach each other obliquely and then slide across one ,amaih&ining a constant force threshold (as in
erasing a chalkboard). This has both similarities aridréifices to the guarded wsoand straight-line nve primitves and can

be dealt with in three distinctays:

« first, assume the obsaion is a skill composed of some combination of the lwer-level primi-
tives and attempt to interpret the conitibn of each ra primitive to the highetevel skill

then

» assume the obsetion is a n& primitive and record it as such
or

» assume the obsetion is a n& instance of one of theisting primitives and incrementally re-teach
the corresponding primité to include these meobserations



Thefirst approach is the identification problem and does not involve adapting the expertise database. See [22] for a description
of our approach to the identification problem. The second and third approaches involve adapting the expertise database, but in
approach three, how does one determine which primitive to tune? Presumably, if we can identify the componentsit is not nec-
essary to tune the existing primitives. But if the identification approach fails, the new observation is not sufficiently similar to
either existing primitive. These issues are still open areas of research and their solution will result in true software self-adapta-
tion. For the purposes of this paper on human-augmented adaptation, we will focus on the problem of acquiring new primitives

asidentified by the human.

Explicit programming involves ahuman “oracle” determining arelevant set of primitives required for aparticular application
domain and then coding those primitives by hand. This differs from creating a monolithic application program only in the de-
composition of the task. Primitives are decomposed and instantiated as parametrizable but structurally invariant code blocks
with broad utility within an application domain. To extend the capability of the system to the domain of connector insertion
tasks, several primitives were conceived and coded in addition to the basic cartesian and joint-interpolated move commands.

These new primitives (described in detail in [Morrow and Khosla, 1995]) include:

* rotational and linear dithers
» aguarded move (move until contact is acquired)
» a“sick” move (move until contact islost)

* correlation (active sensing that correlates actuator commands with sensor val ues)

These new primitives have been rapidly assembled to successfully complete arange of tasks within the domain of connector
insertionsincluding BNC connectors and avariety of different size D-connectors. The “ software assembly” [16] was performed

manually through the Skill Programming Interface (SPI).

The SPI isagraphical environment for simplifying the construction of robotic skillsand their encapsul ation into encapsul ated
expertise agents. It assumes a set of sensorimotor primitives is available and provides a graphical method of assembling them
into agents as shown in Figure 10. Figure 10 is a screen dump of the SPI user interface and depicts a graphical representation
of the BNC insertion skill. Each “bubble” represents an agent that consists of several primitives. The configuration of each agent
is shown in Figure 1 along with the commands each produced during an experimental run of the robot system. Many complex

robotic skills have been created using this approach including the connector insertion skills mentioned above using force and/
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FIGURE 1: VELOCITY COMMAND PLOTS FOR BNC INSERTION SKILL ANNOTATED WITH THE AGENTS (COLLECTIONS

OF SENSORIMOTOR PRIMITIVES) THAT PRODUCED THE COMMANDS

or vision feedback. The details of the skill implementations and their performance can be found in [Morrow and Khosla 1995]

and [Morrow, Nelson and Khosla 1995].

The above primitives execute on the robot and become part of the expertise database. We have also explicitly coded a handful
of primitives for gesture recognition tasksin the domain of kinematic motion commands. These primitives do not directly con-
trol the robot and, therefore, are not part of its sensorimotor expertise. Instead, they operate to identify intentions of the human

during demonstrations and may operate in paralléel to fine-tune operation during practice. These primitives include recognition

of the following types of gestures:

* gtraight-line motion gestures (gross movements of the hand)

* turning in place motion gestures (gross re-orientations of the hand)

52 54

 attenuating tactile gestures (“nudges’ sensed through force/torque transducers opposing motion)

* magnifying tactile gestures (“nudges’ sensed through force/torque transducers enhancing motion)

 contact tactile gestures (static contact sensed through force/torque transducers)

The interpretation of intention with respect to these types of gestures is application dependent and outside the scope of this

paper, but is described in [23]. To summarize, sub-networks of primitives for parsing raw sensor streams into “ gestural words’




are grouped with primitives for interpreting those gesturesin context within simplified “gestural sentences.” The interpretation
primitives use internal fuzzy models to support or refute hypotheses on the demonstrator’s intention. These multi-agent inter-
pretation networks are based on the fine-grained tropism system cognitive architecture [23][1] which selects actions based on
stochastic beliefs (in this case, built from the fuzzy models). The result is used to help identify action primitives or to parame-
trize corrective feedback during practice. For example, we have used these primitives to interpret physical nudges on the robot

end effector to fine tune the trgjectory [23].

5.2Adapting the Expertise Database Through Learning
The other approach to adapting the expertise database is through learning. Again, for the purposes of this paper, we are con-

cerned with adaptation through the addition of primitives, not through modification of existing primitives. (Although, thislearn-
ing paradigm can be applied to the latter.) We have devel oped a technique called shape from motion primordial learning, based
on eigenspace analysis, for human augmented adaptation of the system’sinternal expertise database. Closely related to atech-
nigue in computer vision [Tomasi and Kanade, 1992], the technique extracts the intrinsic relationships between sensor inputs
and actuator commands via principal components analysis. By demonstrating several examples of a manipulation primitive
(fewer than ten), the human teaches the robot to execute the primitive on its own, adding a new capability to its repertoire.

Learning isthe result of identifying patterns of sensory input that are correlated to actuator output. The eigenspace captures
the principal component vectors -- or dominant correlations -- of a dataset. We applied this technique to an anthropomorphic
robot arm within the domain of simple force-based manipulations. Sense data includes resolved force/torque components and
the position information of the robot itself. For our experiments there were no redundant groups of very similar and correlated
sense elements such as avisual retina (as in [Hancock and Thorpe, 1995]) or sonar ring (asin [Pierce, 1991]) as has been em-
ployed in other eigenspace approaches. The only structureimposed at al on thelearning processislinearity, so theresult learned
is dependent on what the robot is allowed to observe. We use teleoperation of the robot to demonstrate each primitive which
allows the robot to observe both sensory inputs and the actuator outputs of the expert demonstrator.

Thetraining data consists of amatrix of input/output vectors sampled periodically during tel eoperation. The input/output vec-
tor is composed of the actuator commands concatenated to the sensor data. The mean of this vector over the entire sequence
was subtracted out to normalize the data values. Next, the matrix was batch-processed using singular value decomposition to
extract the eigenvectors and the largest n eigenvectors were selected using the largest ratio of adjacent singular values as the

threshold for n. Underlying this heuristic threshold isthe assumption that thereisagroup of “significant” eigenvectorswith high



correlation (lage singular &lues) and therge’a lunch of uncorrelated noise with small singulalues. Examining the ratios of
adjacent, ordered singulaalues indicates thewdding line between the groups.

After training, the learned eigeectors sere to implement the primite at runtime by reprojection ofwesense &ctors. The
orthogonal eigerectors define a “correlation space” between sensors and actuators. By projectegsa gctors onto this
space, actuator commands can Xteaeted. This projection is described mathematically as:

n
0
VvV = actuator[a+ z ((x—sensor(a)) * sensor (e;))&;]
) 0
i=1

wherev is the actuator commane@ator, x is the nev sensor ector a is the aerage ector determined during training, agd
is the set of learned eiggattors. Summarizing this equation, one sequentiallystéifte dot product of the wesensor ector
and the sensor part of each amdrg eigenector The result of each dot product produces a seaterf that is applied to each
and eery eigerector which are summed across all scatgdrs. The “actuator part” of the resultant sum pligsage ector

is the actuator command.

5.3Guarded Move
As a first demonstration, we attempted to learn a one-dimensional guardedhrttte manipulation domain. Although this

is a firly trivial primitive that can easily be hand-coded, it is not quite &®ob hav to rokustly identify it during human
demonstration. This is the strength of angné¢ed approach likshape from motion primordial learning; it pides primitive
identification and transformation (more on this later) as well as the basic learning of theqrimiti

To learn ‘zguard” -- a guarded mee along the z-axis -- we teleoperated a PUMA robot with a force/torque sensor (calibrated
with the shape from motion paradigm, incidentally), making it come in contact with the table and pressing on it with a specified
force. W& repeated this one-dimensional guardedarten times, logging data only during the guardegieannot during the
retraction phase when the grippeasnmaed avay from the sudce. Eleoperation input as preided by a 6-axis jstick and
operator feedbackas visual inspection of the task as well as a real-time graphical display of the force/torque components.

The input/output g&ctor from which the data matrix for trainingsvgenerated consisted of the useful data -- 6 measured force
components, the total force and torque magnitudes, and 6 commanded caglesitias/-- plus some irralant data -- 3 car-
tesian position elements and 9 cartesian orientation elements. Theamtalata s throvn in to demonstrate that we were

not implicitly supplying additional structure for the learning algorithm by limiting its obhsiens.
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The output of the training was a primitive of one eigenvector that performed very well when embedded by hand into a port-
based object. Figure 2 shows the measured force components as the guarded move primitive autonomously acquires a hard sur-
face. 20 N was the target force threshold applied during training and this can be varied by scaling the output portion of the ex-
tracted eigenvector. The primitive worked equivalently in all trials performed regardless of region of workspace, orientation of
the end effector, compliance of the surface, or external perturbations. Analysis of the meaning of the components of the eigen-
vector support this. The primitive islooking at the z-component of force as well as the total magnitude of the force, much asa

hand-coded damping control law would do to accomplish the same task.

5.4Edge-to-Surface Alignment
The guarded move is a “move until force threshold” operation. Movement is an explicit part of the goal. Alignment opera-

tions, on the other hand, only move in order to accommodate. Since no explicit motion is part of the primitive, it is difficult to
teleoperate. What we'd like to do is use the previously learned guarded move to bring the edge and surface together while we

teleoperate only the alignment primitive. This makes the training task much easier for the human.

Learning the “yroll” alignment task -- alignment of an edge to a surface by accommodating rotationally around the y-axis --
was accomplished in the same manner as the zguar d primitive with the exception that zguar d was running during the training
phase. This complicates the eigenvector extraction because we expect the zguar d elgenvector to appear in the new set of trained

vectors. In order to learn a“clean” version of the yroll primitive, the zguard must first be identified and removed from the set

FIGURE 2: AUTONOMOUS OPERATION OF THE
LEARNED, ONE-DIMENSIONAL GUARDED MOVE.
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of eigevectors. This is possible as a direct result of our g&ggetor representation of primigs. The ectors corresponding to
primitives are unique in the sensor/actuator space so a simple test of parallelism (dot product) beteeenstbéa candidate
demonstration and thesgtors of all possible primités yields a similarity measure and mechanism for identification. (The in-

terested reader isvited to consult [\@yles, Morrav, and Khosla, 1997] for additional detail.)

6. SYSTEM DEMONSTRATIONS
So far, our discussion has focused on the human-augmented adaptation)gdhise database itself. The nvation for

having this database of primits is to enable GBBo nev our attention turns ward the use of this database for such purposes.
GBP is naturally applied in the reabvid, kut there are complementary benefits to applying GBP in the virtudd vas well.

We nawv discuss tw variants of GBP for virtual demonstrations as well agsigal demonstrations.

6.1Virtual Demonstrations
Coupled closely with the SPI, and atiension of it, is the Ntual Skill Constructor (VSC). The VSC is a set of utilities that

integrates €leGrip, a commercial solid modeling application for robotickeells, Coriolis, a dynamic simulation package de-
veloped at CMU [Bar&fl995], and Chimera to pvale a virtual emironment for programming robotic skills by demonstration
(Figure 11). Solid models of prototypical parts used in a particular instantiation of a robotic skill are manipulated in the virtual
world displayed by &leGrip. Coriolis computes the dynamics to generate realistic forces of interaction to simulate a real robot
with real parts for the agents running in the Chimera real-timieomment. The human first demonstrates the skill, taking the
place of the robot in the virtual @ronment. A set of design agents obsarthe motions and suggests a prioritized list of sen-
sorimotor primitves from the xpertise database that may be appropriate for implementing the demonstrated subtasks of the
skill (Figure 12). The demonstrator appes a set of primities at each genent of the complete skill and the result is displayed
graphically using the SPI. When the skill is complete, appropriate encapspégtise agents can be spwed on the real-
time system and the skilkecutes in the virtual @arld with Coriolis supplying the dynamics of both the parts and the simulated
robot. Finally the virtual emironment is replaced with a real robot and sensors and Yieéoged skill is tested without modi-
fication.

The reason we are trying to combine both virtual demonstrations and real demonstrations is bgcaase different
strengths. The real einonment is good fondracting detailed contact information during fine manipulation without putting the

operator in a force-feedback-dejail setting. (Brce reflection and tactile feedback in virtuatienments are still in their in-
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fancy.) Thevirtua environment requires no calibration and can be used quickly for training or re-training with existing parts. It
also requires placement of the viewpoint for proper interaction which provides information for visual servoing primitives that

are difficult to extract from the real demonstrations.

6.2Physical Demonstration
We have implemented two different types of demonstrationsin the physical realm. First is an explicit approach which ismore

closely related to robotic instruction by demonstration as opposed to programming. It is not programming because the execut-
able is explicitly programmed in advance; the demonstrator just provides command instructions. The second system actually

develops programs for simple contact-based tasks by physical demonstration.

6.2.1 Explicit Physical Demonstrations
Using tactile and motion gesture recognition agents and kinematic execution agents, we developed a system for wire harness

routing which was reported in [Voyles and Khosla 1995b]. The range of tactile gestures we were able to interpret for thisim-
plementation was quite limited due to the low resolution sensors we were using. (See [Voyles, Fedder and Khosla 1996] for
novel sensor development.) For wire harness routing, the application involves pulling a wire through a bed of pegs such that
groups of wirestrace different pathsthrough the pegs. Conceptually, the wires run straight through the harness but have different

“pick-off” points to connect to various sensors and actuators along the length of the wiring harness.

To demonstrate the task, the user dons a CyberGlove with specia pressure-sensitive tips (to detect grasping the wire) and
physically demonstrates the path for each wire group by pulling a wire through the jig. A multi-agent network of gesture rec-
ognizers and interpreters deciphers the demonstration. The robot then executes the paths when instructed by symbolic user ges-

tures in menu fashion.

6.2.2 Automatic Physical Demonstrations
Explicit physical demonstration is not GBP because the task is programmed a priori. GBP requires automatic generation of

task programs, which is what we describe here. In the example below, a human demonstrates a low-tol erance peg-in-hole task
in Figure 3. First, the hole is grasped, transported, and placed on the table. Then the peg is grasped, transported, and inserted
into the hole. In both cases of placing the hole and the peg, a guarded move is used. In effect, the hole is pressed onto the table
(as opposed to being dropped) and the peg is pressed into the hole. Contact forceis used as the terminating condition rather than

reaching alocation in space.
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FIGURE 3: DEMONSTRATION OF THE LOW-TOLERANCE PEG-IN-HOLE TASK.

(b) preshape & via (c) grasp

(d) via point (e) guarded move (f) ungrasp

[ o

(9) preshape & via (h) grasp (i) via point

(j) guarded move (k) ungrasp (1) via point

To abstract the task a multi-agent network, based on the fine-grained tropism system cognitive architecture (Voyles et al

1997), interprets the demonstrator’s “intention” during the various task phases.
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Figure 4 illustrates some of the data from the abstraction process during three consecutive demonstrations of this task. The

FIGURE 4: IDENTIFICATION OF GUARDED MOVES IN THREE SEPARATE, CONSECUTIVE TASK
DEMONSTRATIONS
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top plot is thresholded, binarized output of the extrinsic tactile sensor indicating the presence/absence of an object in the hand.
The next plot shows the actual force of the grasp from the intrinsic tactile sensor. These agents aid the volume sweep rate agent
[Kang and Ikeuchi, 1996] in temporally segmenting the gross phases of the task. The next plot shows the vertical component of
the force vector from the intrinsic tactile sensor. This plot, along with the bottom plot which shows the vertical height of the
hand are included only to help visualy pinpoint when the guarded moves are being demonstrated (ground truth). The fourth
plot from the top indicates the output of a gesture interpretation agent that identifies the presence of the zguar d guarded move

primitive described in Section 5.3.
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Note the “blips’ in the data around the time equal to 100 seconds. These resulted from extraneous motion to untwist some
wires around the demonstrator’s wrist and were appropriately rejected by the volume sweep rate agent and tactile agents as not

being recognizable pregrasp and manipulation phases of the task.

The program that resulted from the physical demonstration is displayed in Figure 5 as afinite state machine using the SPI.

Each bubble in the state machine represents a node that consists of several agents executing simultaneously to achieve the de-
FIGURE 5: SPI GRAPHICAL DISPLAY OF PROGRAM RESULTING FROM PEG-IN-HOLE DEMONSTRATION.

initHpnd 1 Move2
destroy Preshap¢&Movel

initHpnd2 Ungriasp2

Preshapg&Move i ve3

GuardedMovel ViaMove2

sired action. The autonomous execution of the above program on a PUMA raobot with a Utah/MIT hand is shown in Figure 6.

7. DISCUSSION
We have presented our concept for a gesture-based programming system for robotic applications as well as portrayals of the

work we have completed on individual components of that system. By employing human-augmented software adaptation,
which employs the complementary strengths of both man and machine, the program development system evolves along with
applicationsto provide amore powerful and more intuitive environment as time goes on. Thisisthe GBP paradigm, whichisa

valuable step toward fully self-adaptive software.
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FIGURE 6: ROBOTIC EXECUTION OF THE LOW-TOLERANCE PEG-IN-HOLE TASK.

(j) guarded move (k) ungrasp (1) via point

Specificaly, the software is adapted by the acquisition of sensorimotor primitives that provide targeted functionality for
achieving task objectives. Once acquired, these primitives reside in a knowledge base and become part of the devel opment en-
vironment, evolving the devel opment environment over time. We have demonstrated primitive acquisition by explicit program-

ming and by learning. In the case of learning, primitive identifiers are automatically generated that can help identify subsequent
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instances of the primitives during human demonstrations of other tasks. We have also demonstrated the recomposition of these
primitives both explicitly and automatically by human demonstration to complete meaningful, though simplified, operations.

In anutshell, gesture-based programming attempts to take advantage of the wealth of human experience we all gain through
our day-to-day physical interactions to specify complex tasks rather than relying on translations to text. In aloose sense, ges-
turing involves “acting out” a scenario so the software and the system can adapt itself to emulate it. But, because gestures are
not necessarily explicit representations of actions, they can also be used on-line to tune the robot’s actions and improve its per-
formance asit executesthetask after initial teaching. Therefore, gestures can augment both the programming and the command-
ing of the system.

However, thereis still much theoretical and practical work to be done to enable the system to be useful for complex tasksin
real-world environments. One of the biggest unsolved problems with skill-based paradigms in general is being able to predict
what tasks are spanned by a given set of primitives. Likewise, the inverse problem of predicting what set of primitivesis neces-
sary to accomplish arange of tasksisunsolved. Furthermore, theidea of demonstration followed by supervised practice requires
the automatic construction of monitoring agents in conjunction with the learning of execution agents. This, too, is an unsolved
problem. Finally, there is much practical work in learning more complicated and non-linear primitives. Fortunately, the adapta-

tion of highly non-linear systemsto linear representations is something with which engineers have a great deal of experience.
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