
62 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t A g e n t s

ExperNet:
An Intelligent
Multiagent System for
WAN Management
Ioannis Vlahavas, Nick Bassiliades, and Ilias Sakellariou, Aristotle University of Thessaloniki
Martin Molina, Technical University of Madrid
Sascha Ossowski, Universidad Rey Juan Carlos
Iván Futó, Zoltán Pásztor, and János Szeredi, ML Consulting and Computing
Igor Velbitskiyi, Sergey Yershov, and Igor Netesin, Technosoft International Software
Technology Research Center

Managing a large data network, such as a national WAN, is a complex and cum-

bersome task. Existing network management software cannot meet the require-

ments of the increasing size and complexity of today’s TCP/IP-based networks, because,

in most cases, it provides only simple monitoring tools. We can’t fully exploit a WAN

without user-friendly, intelligent, network manage-
ment software enhanced with diagnostic and deci-
sion support services.

Expert systems provide a feasible and elegant
solution in this direction. Currently, the development
of expert systems for WAN management is only at
the research and experimental stages. Formalizing
such a task is difficult because network state infor-
mation is usually inadequate and incomplete, the
scale of behavior characteristics is large, and the net-
work environment continually evolves. Moreover,
an efficient network-monitoring schema must exist.1

The implementation of such functionality must be
in accordance with existing network monitoring
technology—namely, the Management Information
Base (MIB) and the Simple Network Management
Protocol (SNMP)—to control existing real-world
network devices.

Network management also requires coordination
among operators of autonomous network nodes. To
closely resemble network management’s distributed
nature, multiagent problem-solving techniques can
help model the functionality of individual agents as
well as the interactions taking place between them.2

Multiagent technology is preferable to other distrib-

uted problem-solving techniques because it offers
enhanced modularity, reactions to environmental
changes, and reusability. This article presents the
architecture, implementation, operation, and evalu-
ation of the ExperNet system, a multiagent expert
system that we developed for Ukraine’s national
TCP/IP WAN under the framework of a joint EU-
funded project. ExperNet helps network operators
manage a WAN with its

• monitoring tools for capturing network state;
• platform for logic-based applications;
• efficient and extensible expert system shell;
• fast heuristic detection, diagnosis, and repair of

network failures;
• cooperative problem-solving strategies; and
• user-friendly Web-based interface.

The system architecture
ExperNet consists of a hierarchically structured

architecture, with each level consisting of one or
more management nodes (see Figure 1). Each node
encapsulates one or more lower-level management
subnodes and manages a network area, assisted by a

The authors describe

ExperNet, an

intelligent multiagent

system developed to

assist in managing

large-scale data

networks. The system

assists network

operators at various

nodes of a WAN to

detect and diagnose

hardware failures and

network traffic

problems, suggesting

the most feasible

solution through a

Web-based interface.

local intelligent agent. In our example, the
system’s hierarchical structure is in accor-
dance with the structure of the Ukrainian
national network’s preexisting organization,
which is divided into regional, district, and
metropolitan area subnetworks.

ExperNet assists network operators at var-
ious nodes of Ukraine’s national network by
detecting and diagnosing network failures
and traffic problems. Furthermore, it sug-
gests the most feasible solution, given
resource and temporal constraints. To
achieve this goal, each agent communicates
with other agents on the network to collabo-
rate on problem diagnosis and repair, using
social knowledge for coordination. Agents
acquire network data that concern device
installation, removal, reachability, and oper-
ational parameters from conventional net-
work management software.

We put many different pieces of software
together by extending the distributed Prolog
system CS-Prolog II (see the related sidebar)
and building sophisticated information
exchange interfaces between each agent and
its local network software components. We
developed the HNMS+ system by extending
the HNMS network management software
and integrating the BigBrother monitoring
tool for local computer resources (see the
related sidebar), so that HNMS+ can dis-
patch information to local intelligent agents.
Finally, we reimplemented the Device
knowledge base system on top of CS-Prolog
II to provide a flexible, high-level, expert sys-
tem shell on which to implement the intelli-
gent agents.3 The agents’ knowledge base
consists of local problem-solving compe-
tence and social interaction for coordinating
actions among them.

As Figure 1 shows, each ExperNet agent
is attached to an HNMS+ server, which pro-
vides information about network state. Big-
Brother provides additional local computer
resource information. The agents themselves
are developed in Device, and CS-Prolog II
provides communication facilities.

Knowledge model for ExperNet
agents

Each ExperNet agent has two types of
knowledge:4 local, for individual problem
solving (local network management), and
social, for coordination (harmonization of
local network management with acquain-
tance node activities). ExperNet agents use
these types of knowledge during the prob-
lem-solving cycle, which involves

1. Detecting symptoms.
2. Having agents diagnose the symptoms.
3. Diagnosing the problem (if the agent is

responsible). If there are missing observ-
ables, ask agents to acquire the corre-
sponding value.

4. Informing agents interested in problems
to isolate and then repair them.

5. Generating a repair plan (if the agent is
responsible). If necessary, ask agents for
plan acceptance.

Local problem solving
The network management domain’s char-

acteristics, which the project consortium
identified during the knowledge acquisition
phase, include complex problem-solving
tasks (such as classification, diagnosis, and
planning), which lead to model-based sys-
tem development.5,6 We have modeled the
agents’ problem-solving competence as a
three-step process—detect, diagnose, and
repair (see Figure 2)—each step consisting
of customized, generic, knowledge-model-
ing methods.5

Initially, during symptom detection, the

system watches for signs of undesirable net-
work states and behaviors—a certain service
not responding, an unreachable host, or over-
or underused links. ExperNet tackles the
symptom detection phase as a heuristic clas-
sification task, based on the system’s data-dri-
ven, reactive nature. The task is accomplished
by three steps—abstraction, matching, and
refinement—which, in our model, are sup-
ported by network model knowledge and a set
of problem scenarios relating symptoms and
observables.

Subsequently, an agent performs diagnosis
by discriminating hypotheses of different
degrees of precision based on network data.
This diagnosis is a result of exploratory actions
to find the causes of symptoms (such as inad-
equate capacity for some resource, workload
and resource imbalance, and resource mal-
functions). Numerous network components
can malfunction in many ways, so there are
several possible diagnoses for ExperNet.
Because speed is crucial for ExperNet’s oper-
ation, we chose the establish and refine
method7 for diagnosis, so that we could
quickly focus on network malfunctions with-

SNMP agent

To other
management

subnodes

Management subnode

Management node
UI module

ExperNet
agent

BigBrother
modules

HNMP

HNMP
HNMP

To other
management

subnodes
HNMP

SQL

Log files
HNMS+

master module
SNMP

DBMS server

SNMP agent

Knowledge base

CSP-II
(Prolog system)

UI module

ExperNet
agent

BigBrother
modules

HNMP SQL

Log files
HNMS+

master module
SNMP

DBMS server

SNMP agent

UI module

ExperNet
agent

BigBrother
modules

HNMP SQL

Log files
HNMS+

master module
SNMP

DBMS server

Management subnode ExperNet agent

Device
(expert system

shell)

Figure 1. The ExperNet system architecture. The line on the left shows that ExperNet
agents at all levels communicate with each other.

JANUARY/FEBRUARY 2002 computer.org/intelligent 63

out using deep models of network compo-
nents.4 This method uses an abstract reason-
ing pattern based on a heuristic search in a tax-
onomy of problem hypotheses; we adapted it
to use three primitive inference steps:

• refine the problem hypotheses—uses a
knowledge base represented by a taxon-
omy of hypothesis classes related through
the is–a relation;

• select the best hypothesis—uses knowledge
about the validity of hypotheses (repre-
sented by frames) to establish whether we
can prove any of the input hypotheses; and

• acquire additional observables—de-
termines the sequence of exploratory
actions to get additional observables by
using a knowledge base of acquisition
methods (represented by rules).

Finally, the local problem-solving strategy
of ExperNet agents generates a sequence of
repair actions. Due to the complexity of net-
work problems, we apply a hierarchical plan-
ning strategy for repair, which is based on a
search in a hierarchy of specialists (top level,
fault detection, performance management,
and configuration) that are aware of any par-
tial abstract plans and dynamically composed
during the reasoning process.8

Social coordination
An important fragment of a node admin-

istrator’s time is not spent on local problem

solving but on coordinating his or her work
with other administrators. ExperNet requires
coordination in three types of situations:

• Information acquisition—additional ob-
servations are needed, which are available
within the agent society but are not acces-
sible by the node itself.

• Responsibility conflicts—different agents
intend to perform similar tasks.

• Interest conflicts—one agent does not
agree with its role in a certain repair plan
or with the effects that some plan will have
on its local situation.

We model the coordination process in these
situations as conversations9—logically coher-
ent sequences of agent interactions.4 Conver-
sations that cope with responsibility conflicts
are simple because they just involve one inter-
action, transferring the responsibility for some
task from sender to receiver. We have used
three kinds of conversations of this type: diag-
nosis and repair delegation, repair delegation,
and isolation delegation. Agents manage infor-
mation acquisition problems by means of the
observable acquisition and the plan refinement
conversations, in the course of which an inquir-
ing agent asks some target agent for a certain
observable or plan. The agent could reply
either with this information or by expressing
its inability (or unwillingness) to facilitate it.
Plan acceptance conversations manage interest
conflicts, where all affected agents need to

agree for a proposed plan to be accepted.
Interactions within a conversation are

based on a message-passing model to closely
reflect the cooperation model of human net-
work operators. We can call every message
exchanged during such interactions a speech
act, because the sender wants to influence the
receiver’s behavior by emitting it.10 Table 1
shows the different messages used in the net-
work management model as well as their
intended effect on the receiver.

Within conversations, there are various
degrees of freedom for the involved agents,
because they usually choose from several
behavior options. An agent’s choice is not just
determined by information regarding its local
situation, but also by its knowledge and expe-
rience with other nodes in the network. Thus, an
agent maintains agent models of all acquain-
tances with which it interacts, including itself.2

ExperNet implementation
The implementation of ExperNet’s

knowledge model is based on the Device
active knowledge base system,3 which runs
on top of a Prolog-based active object-ori-
ented database and provides many interest-
ing features, such as support for multiple
rule types (deductive, production, and event-
driven rules) and object orientation. We used
Device not only as an expert system shell for
developing the knowledge base itself, but
also as an integrator for network informa-
tion and agent communication. Device’s

64 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t A g e n t s

Diagnose and repair

Manage network

Establish and refine

Refine
hypothesis

Diagnose

Acquire
observable

Repair

Select
best

Detect

Heuristic classification

Abstract RefineMatch

Hierarchical planning

Select
specialist

Compose
plan

Propose
Partial plan

Hierarchical planning

Determine
applicability

Decompose
plan

Propose
plan

Heuristic
plans

RefinementApplicability
conditions

Acquisition
methods

Plan
structure

Plan
structure

Hypothesis
validity

Hypothesis
taxonomy

Network
model

Problem
scenario

Network
model

Figure 2. ExperNet agents’ local problem-solving structure.

ability to handle large data collections, such
as the status of a WAN’s network devices, is
important for developing the ExperNet sys-
tem. Device’s object-oriented architecture
and data types naturally correspond to the
representation of network management
information, such as standard SNMP MIB
and HNMS+ MIB variables, providing an
easy mapping to Device objects. (The MIB

is the set of variables needed to monitor and
control TCP/IP-based network components,
and the SNMP is a protocol that defines how
to access and modify this information
remotely.) For ExperNet, we reimplemented
Device in CS-Prolog II, a language that
offers extended communication facilities.
The latter, in conjunction with the ability of
integrating Prolog code with production

rules in a simple, clear, and robust manner,
offers an expert system shell in which we
can easily implement agent-based system
communication.

Capturing network data
Device acquires data concerning network

entities and their operational parameters from
the HNMS+ system through the Device HNMS+

JANUARY/FEBRUARY 2002 computer.org/intelligent 65

A crucial issue for the cooperation and coordination of
agents in a multiagent system is the implementation of com-
munication facilities. In ExperNet, we developed these facilities
with CS-Prolog II, a distributed Prolog system.1,2

General overview
The language’s syntax and built-in procedures are based on

the standard ISO/IEC 13211-1. Features not included in the ISO
standard, such as modularity, multitasking, real-time program-
ming, and network communication, have helped extend the
language.

CS-Prolog II supports the communicating sequential processes
programming methodology of Hoare3 (hence “CS” in the name)
in a Prolog multitasking environment. Prolog processes can be
distributed among several processors on a multiprocessor
machine; a time-sharing scheduler controls the concurrent
processes running on a single processor. The interprocess com-
munication is achieved with a rendezvous mechanism (synchro-
nous message passing through unidirectional communication
channels). Processes can backtrack, but communication is not
backtrackable. The system also provides an interface to rela-
tional database systems, real-time programming methods such
as cyclic behavior, reaction to predefined events, and timed
interrupts.

Networking facilities
As a natural extension of the CS-Prolog II channel concept,

the external communication conceptually consists of unidirec-
tional message streams. To speed up external communication,
asynchronous message passing is an option. Communication
with foreign (non–CS-Prolog) applications is also possible.

For the Prolog programmer, the communication environ-
ment appears as a homogenous address space, called a com-
munity, which consists of one or more fellow applications
with which the program can communicate (called partners).
Partners are accessed through channel messages, while a sep-
arate mechanism connects channels to external applications
(called foreign partners). The most important entity for
this task is the so-called port, which represents an incoming
message substream. Ports are explicitly created, and they
play the role of sender for a CS-Prolog II channel, which is
specified at the time of port creation.

Another important notion in CS-Prolog II is the connection,
which is the representation of an outgoing message stream. Its
attributes include the local channel, the partner’s name, and
the partner’s port (if the partner is not foreign). We can set
the size of the connection’s message buffer at creation. If the
buffering attribute’s value is greater than zero, we can store
more than one message in the connection buffer, allowing sev-
eral send operations to complete without blocking.

In a centralized subnetwork of CS-Prolog II applications
managed by HNMS+, the following types of partners can
appear for a specific CS-Prolog II program:

• Private partners—addresses must be available in advance
for the program.

• Net partners—signed up at HNMS+ and included in the net-
work’s local picture.

• Latent partners—known by HNMS+ but not included in the
local network picture.

To communicate with a net partner, the current TCP/IP imple-
mentation of the low-level communication protocol requires
the program to explicitly add that partner to its communication
environment in advance, using a special built-in predicate.

Working with foreign partners
Foreign applications do not understand the message format

used in Prolog-to-Prolog communication, so they need an agent
(or mediator) to perform the appropriate data and protocol
conversion. At present, there are two defined mediators: ASCII,
for plain-text communication, and HNMS, for communicating
with the HNMS server.

Conceptually, a local mediator communicates with a remote
mediator, hosted at the foreign partner, to address the dock it
offers. Data sent by the remote mediator are accepted at the
local mediator’s dock. Docks are similar to ports in the sense
that they play the same role in communication. The difference
is in the way a dock is prepared for operation and connected
implicitly by the mediator on the foreign partner’s behalf. To
configure a foreign partner, the application program should
create a dock and create an appropriate mediator, and config-
ure the desired foreign partner.

Once the foreign partner is successfully created, the proce-
dure to follow in message exchange is almost the same as for
any Prolog partner. The most important restriction in commu-
nicating with foreign partners is in the set of rules specifying
what kinds of Prolog terms they accept and produce.

References

1. I. Futó, “A Distributed Network Prolog System,” Proc. 20th Int’l
Conf. Information Technology Interfaces, SRCE Univ. Computing
Centre, Univ. of Zagreb, Croatia, 1998, pp. 613–618; www.ml-
cons.hu/dload-e.html#csprof (current 23 Aug. 2001).

2. I. Futó, “Prolog with Communicating Processes: From T-Prolog to
CSR-Prolog,” Proc. 10th Int’l Conf. Logic Programming, D.S. War-
ren, ed., MIT Press, Cambridge, Mass., 1993, pp. 3–17.

3. C.A.R. Hoare, “The Communicating Sequential Processes,” Comm.
ACM, vol. 21, no. 8, Aug. 1978, pp. 666–677.

The CS-Prolog II System

interface and divides them in two classes:

• HNMS+ MIB-type data, which describe
the network topology, the network entities

and devices, and their current operational
state. This set of objects consists of the
internal network representation in HNMS+.

• Standard MIB (SNMP)-type data, which

describe in greater detail a specific net-
work device’s operational parameters,
such as an interface’s Maximum Transfer
Unit (MTU) or whether the specific host

66 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t A g e n t s

Experience has shown that traditional monolithic network
management systems cannot address all the issues involved
with full-fledged data collection on large TCP/IP networks. The
Hierarchical Network Management System1 (HNMS) is a soft-
ware system designed to assist the network operator in man-
aging such networks. In ExperNet, we approach network mon-
itoring and management by

• developing HNMS+ (extending HNMS functionality to suit
our needs and correcting several shortcomings of its proto-
type version), and

• integrating the BigBrother network-monitoring tool with
HNMS+.

HNMS+: Extending the prototype
The HNMS prototype did not fully adhere to its specification,

making the collection of network state information for Exper-
Net difficult. The prototype did not support multiple separate
I/O modules, because their functionality was merged into the
single server module, and consequently, there was no true hier-
archy. The server module is the system’s hub; it provides a center
for disseminating global topology and status information. Its
responsibility is to maintain an up-to-date network model and
process all requests from other modules that connect to the
server. I/O modules directly monitor their LANs through SNMP
and promiscuous Ethernet monitoring, then forward the status
of network objects to the server. Multiple I/O modules were nec-
essary for collecting local information about subnetwork behav-
ior; I/O modules should be able to serve subscription requests
from intelligent agents. As a result, in the new HNMS+ system,
we combined server and I/O module functionality on a single
module, called the master module, but also provided the ability
to have a hierarchy of many such modules.

Master modules reside on hosts located at strategic points
within a WAN and use the SNMP protocol2 for local data col-
lection from the SNMP agents attached on their LANs’ actual
network devices, playing the role of I/O module. They also
accept information from low-level modules, playing the role
of server module, and build a network representation, pass-
ing filtered management data up to the immediate higher-
level modules with the HNMP protocol. Data is propagated
only when their values change to avoid bottlenecks created
when the network is flooded with management information
to ExperNet agents. This process is recursive and terminates
on the highest network level. We needed three such levels to
cover Ukraine’s experimental network zone.

HNMS’s HNMP extends SNMP by introducing a new set of
management information base variables (HNMS MIB) in addi-
tion to standard MIB variables.2 HNMP is generally suitable for
HNMS+, but we needed one vital change in the announcement
of new network objects. New ExperNet agents that subscribe to
their local master module are announced recursively upward
and downward in the hierarchy, because each agent should

know all existing agents, regardless of hierarchical position.
The network administrator can connect to a master mod-

ule at any level using an UI module, shifting the scope of net-
work monitoring. Similarly, any agent can connect to any
master module and obtain information on the corresponding
subnetwork state. However, in ExperNet we decided that to
minimize traffic, agents should connect only to their local
master module.

We added a new class of network entities in the HNMS+ MIB
(called hnmsService) to provide support for TCP/IP high-level ser-
vices (such as FTP) and any system resource on a network host
(such as processor load). Furthermore, we developed a database
module to store regularly the network status and performance
data on a PostgreSQL server (www.postgresql.org) to support
statistical analyses. The database module interacts with the
HNMS+ master module only when the values of the local master
module’s variables change to avoid network overloading by SQL
requests.

Integrating BigBrother
An important issue in network management is the evalua-

tion of TCP/IP network service quality and reliability. SNMP
agents cannot provide such information, so we integrated
BigBrother into HNMS+ to monitor TCP/IP services and
remote computer resources with ExperNet agents.

BigBrother is a free Web-based system monitor (www.iti.
qc.ca/users/sean/bb/ bb.html) that consists of simple shell
scripts to keep track of vital local system resources such as
disk usage, CPU load, transfer protocol servers, and so on. We
also extended HNMS+ MIB to incorporate the additional
monitoring values of BigBrother’s status matrix. The HNMS+
master module analyzes a local log file created by BigBrother
and fills out the previously mentioned MIB variables.

Furthermore, we developed a Unix daemon that offers the
possibility of remote Unix command invocation. ExperNet
agents can acquire information that cannot be obtained
directly from HNMS+ but only through command execution on
the monitored remote hosts (such as the traceroute and tcpdump
packet-monitoring utilities). Although we could use the usual
rsh Unix command for this purpose, we prefer the above solu-
tion because it restricts the set of allowed commands, through
appropriate configuration of the module, thus leading to a
more flexible and secure system.

References

1. G.A. Jude and L.E. Schecht, “The NAS Hierarchical Network Manage-
ment System,” Integrated Network Management III, H.-G. Hegering
and Y. Yemini, eds., Elsevier, Netherlands, 1993, pp. 301–312.

2. J. Case et al., A Simple Network Management Protocol (SNMP), tech.
report RFC 1157, Network Working Group, 1990; www.cis.ohio-state.
edu/cgi-bin/rfc/rfc1157.html (current 4 Sept. 2001).

The HNMS+ Network Management System

has IP forwarding capabilities. These are
available through the HNMS+ server,
through an explicit subscription process.

Each of these data is represented with an
appropriate object class in Device. There is a
one-to-one correspondence between each
class of objects in the HNMS+ MIB defini-
tion and a Device class: agent, internet, network,
subnet, ipaddr, site, processor, interface, equipment,
administrator, service, and module. Each such class
has specific slots corresponding to the attrib-
utes of the network entity it describes. In
addition, there is a superclass to which all
other classes belong that defines common
attributes for all network objects.

The MIB variables for each network entity
(processor, IP address, interface, and so on)
are represented as slots of the corresponding
network object class. The slot names have
the prefix mib_ to distinguish them from the
corresponding HNMS+ variables. Figure 3
shows a typical class definition example of
the interface HNMS class.

Knowledge base structure
Each basic inference method of the knowl-

edge model maps to a Device module. For
example, the top-level detect task (see Table
2) has three subtasks: abstract data, match symptom
class, and refine symptom class, which directly
maps to corresponding Device modules.

The advantages of such a modular knowl-
edge base are numerous. First, rules are
grouped into sets of a specific functionality,
thus providing a logical partitioning of the
knowledge base, which facilitates the addition
of more rules in each module without risking
unpredictable rule interactions. Another
advantage is that remote invocation of the
appropriate modules facilitates the agent
model implementation and helps coordination
between agents.

Each basic inference method uses a set of
inference objects to pass data from one task
to the next (see Figure 4). All data are available
to all modules; therefore, we don’t have to
worry about value passing between different
tasks. Inference objects belong to one of these
classes: symptom, hypothesis, problem, and plan.

Production rule actions create symptom
objects during the detect phase and store infor-
mation about observed abnormal situations in
the network. Hypothesis objects represent the
initial hypotheses concerning an observed
symptom’s cause and are created and con-
sumed during the diagnosis phase. Problem
objects describe an observed symptom’s cause

and are generated as an outcome of the diag-
nosis phase. Plan objects solve diagnosed
problems generated during the repair phase.
Figure 4 illustrates object generation during
an expert system’s operation cycle.

Rule examples
The knowledge necessary for implement-

ing tasks is encoded in rules, which create and
manipulate each task’s inference objects. For
example, the rule in Figure 5 concerns detect-

JANUARY/FEBRUARY 2002 computer.org/intelligent 67

Detect phase

HNMS+ and MIB
network data User

Diagnose phase Repair phase

Hypotheses Problems

Symptoms Plans

Figure 4. Generation of objects during an expert system’s operational cycle.

Table 1. Types of messages and interactions between ExperNet agents.

Message types Receiver’s intended reaction

Ask for observable Acquires observable and informs sender
Ask for plan acceptance Decides about acceptance and informs sender
Ask for plan refinements Refines plan and informs sender
Do diagnosis and repair Performs diagnosis and repair tasks
Do isolation Performs problem isolation
Do repair Performs repair task
Answer with observable Informs about observable
Answer with plan acceptance Informs about plan acceptance
Answer with plan refinements Informs about plan refinements

new([interface,[
is_a([genObj]),
slot(slot_tuple(hnmsObjPhysParent, global, single, optional, plog)),
slot(slot_tuple(hnmsObjAgent, global, single, optional, plog)),
slot(slot_tuple(hnmsIfProcIfIndex, global, single, optional, integer)),
slot(slot_tuple(mib_ifMtu, global, single, optional, integer)),
slot(slot_tuple(mib_ifInOctets, global, single, optional, float)),
slot(slot_tuple(mib_ifOutOctets, global, single, optional, float)),
slot(slot_tuple(mib_ifSpeed, global, single, optional, integer)),
slot(slot_tuple(mib_ifInDiscards, global, single, optional, float)),
slot(slot_tuple(mib_ifOutDiscards, global, single, optional, float)),
slot(slot_tuple(mib_ifInErrors, global, single, optional, float)),
slot(slot_tuple(mib_ifOutErrors, global, single, optional, float)),
slot(slot_tuple(mib_ifAdminStatus, global, single, optional, integer)),
slot(slot_tuple(mib_ifOperStatus, global, single, optional, integer))

]]) => mm_entity_class

Figure 3. The interface class definition.

Table 2. Mapping of the detect subtasks to Device modules.

Tasks Modules

abstract_data #module(abstract_data,_).
match_symptom_class #module(match_symptom_class,_).
refine_symptom_class #module(refine_symptom_class,_).

ing a host’s unavailability. It belongs to the
detect phase and more particularly to the match
symptom class task. The rule’s meaning is rather
straightforward: “If there is an object of type
processor and its hnmsObjReachStatus is three (the
mentioned host is unreachable), then create a
new symptom object of the class host_is_unreach-
able.” The created object has the appropriate
description of the abnormal situation as well
as additional information required by later
stages of the diagnosis and repair phases. Such
information is the name of the target_host,
which is the nonresponding host, and the
name of the source_host, which is the host that
cannot reach the target host.

Another example rule in Figure 6 belongs
to the refine symptom class task and refines an
already diagnosed symptom that concerns a
Web service’s unavailability. More specifi-
cally, the rule detects whether the symptom
is valid by ensuring that the host on which
the Web service is located is reachable (if it
were not, there should be a symptom of the

type host is unreachable for that host) and then
determines the Web host machine’s relative
topology with respect to the source host.

Finally, the rule in Figure 7 is a control rule
that switches to module notify-agents-to-repair
when there is a symptom and a corresponding
diagnosed problem, but we don’t know which
agent is responsible for solving the problem.

System operation
The ExperNet system’s operation consists

of two phases: initialization and normal
operation.

Initialization phase. This phase consists
mainly of initializing the expert system and its
connections to the HNMS+ master module and
the existing ExperNet agents. During connec-
tion initialization, ExperNet initializes the
agent’s community, connects to a specific
HNMS+ master module in the hierarchy, dis-
covers other ExperNet agents in the network
(partners), and creates the necessary advertised

ports through which the agent communicates.
One problem we encountered was the

agent community’s initialization. The main
issue was how to notify agents about other
agents in the network and of the information
required for setting up communication, such
as their network addresses and available
communication ports. The problem becomes
harder considering that due to agent distrib-
ution over the WAN, members of the agent
community might become unreachable due
to network failures or might simply halt and
restart at any time for various reasons.

We tackled this problem by introducing a
new type of object in the HNMS+ MIB
through which agents could announce their
existence along with any other necessary
information. The announcement takes place
during the agent’s connection to the HNMS+
master module. During normal operation,
each agent learns about societal changes
through alert events generated by the CS-
Prolog-to-HNMS+ interface and then up-
dates its social knowledge accordingly.

As soon as the agent’s connection with
HNMS+ is established, the agent obtains a
list of all network objects, which is a super-
set of the network for which that agent is
responsible. This occurs because in the hier-
archical architecture of HNMS+, each mod-
ule contains not only the objects that it has
discovered directly but also the set of all
objects that the lower-level modules have dis-
covered. To resolve this, each network object
is marked with an indication of the HNMS+
module that originally discovered it. The sys-
tem then subscribes only to network vari-
ables of the objects that belong to the agent’s
area of responsibility. This information helps
create the corresponding Device objects.

ExperNet prompts the user to specify
which subnetworks correspond to leased lines
between sites. In some cases, the absence of
SNMP-manageable modem devices does not
let the system determine that information.
This final step completes the system’s ini-
tialization phase.

Normal operation phase. During this phase,
the system monitors the network state and
reports any abnormal situations to the user
through its Web-based interface. ExperNet’s
main cycle consists of three steps:

1. Receive and interpret messages from
HNMS+, which mainly concern changes
to the values of HNMS MIB and stan-
dard MIB variables of the subscribed

68 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t A g e n t s

#rule(switch_to_ntf_agents_to_repair,_,_).
“if Sym@symptom(focus=yes) and

Problem@problem(symptom_oid:Sym, resp=unknown)
then switch_task(ntf_agents_to_repair)”
#endrule.

Figure 7. A control rule.

#rule(host_unreachable,_,_).
“if Target_id@processor(hnmsObjReachStatus=3) and

Module@module(hnmsModuleHostName:HostName) and
Source_id@processor(hnmsObjUName=HostName)

then new([_,[description([‘host is unreachable’]),
target_host([Target_id]),
source_host([Source_id]),
resp([unknown])

]])=>host_unreachable”
#endrule.

Figure 5. Symptom generation.

#rule(www_lan_placement,_,_).
“if Sym@www_service_is_down(target_host:Target_oid,source_host:Source_oid) and

not Sym2@host_unreachable(target_host:Target_oid) and
prolog{relative_topology(Target_oid,Source_oid,Place)}

then put_placement([Place]) => Sym,
put_focus([yes]) => Sym”

#endrule.

Figure 6. Refining a symptom class.

objects. During this step, the system
modifies the device parameter database,
but the rules perform no reasoning.

2. Receive, execute, and answer possible
request messages originating from
remote agents, invoking the correspond-
ing rule modules.

3. Execute rules based on the newly arrived
network data. The system detects abnor-
malities in the network, performs diag-
nosis, and reports problems and a list of
repair actions to the user.

The normal operation cycle is executed
until the user explicitly terminates it by gen-
erating an appropriate system interrupt.

ExperNet’s output includes all relevant infor-
mation concerning the detected problem, which
it displays on the system’s Web page and
refreshes in a period of five seconds. When an
error occurs in the network, a large, red, blink-
ing indicator informs the network operator.
Sometimes, ExperNet cannot detect malfunc-
tions automatically because certain pieces of
information are not available to it (such as
modem malfunction). In these cases, the system
questions the network operator that is physically
closer to such hardware devices, and he or she
is more likely to answer them. In case the oper-
ator cannot answer the question in a specified
time limit, ExperNet assumes a default answer,
because the system cannot wait for a response to
a critical network error indefinitely.

System evaluation and testing
We installed and tested the ExperNet sys-

tem in an experimental network zone in
Ukraine that included one metropolitan
(national), three district, and eight regional-
level nodes (see Figure 8). There is one Exper-
Net management node at each metropolitan
and district node. The system monitors and
manages each node’s LAN and WAN subnet-
work. ExperNet does not manage the regional-
level nodes’LANs because the Ukrainian ISP
does not own private networks.

We initially used this experimental instal-
lation to test the system’s correctness. Later,
local network operators received adequate
training for using ExperNet in their day-to-
day business. Our tests cover typical cases of
fault and performance management, such as
the following:

• A router is unreachable. Either the router
interface is down or the process inetd that
controls the router’s network operation
does not exist.

• A host is unreachable. An interface prob-
lem exists, the inetd process is missing from
the processor’s memory, or there is some
other cabling problem.

• The HTTP or FTP service is not respond-
ing. The httpd or ftpd process does not exist
in the host’s memory, the specific host’s
response time was bad, or the processor
was overloaded.

• Bad leased line. The TCP/IP connection
over a leased line is malfunctioning
because there was a problem with the
modem devices, there were physical errors
on the line, the interface’s MTU value was
badly configured, or the line was simply
overloaded.

• A modem is not working properly. The
modem connection over a leased line is
broken due to a hardware or cabling fault.

We used these malfunctioning cases to
evaluate ExperNet’s performance during the
demonstration that we prepared at the end of
the project for all cooperating parties. Due to
space limitations, we present here only the
most representative cases. Of course, all
these errors could not possibly have hap-
pened during the demonstration accidentally,
so we deliberately caused them by switching
off devices or artificially flooding the net-
work connections with packets.

Figure 9a presents a case where the leased

line between a district and a regional node
was overloaded due to a wrong MTU value.
ExperNet suggested the correct values for the
MTU to repair the malfunction and recom-
mended decreasing the MTU’s value on the
malfunctioning leased line. This solution is
justified because on such a low-bandwidth
line, “long” packets can cause more errors
and packet discards than shorter ones. The
network operator would continue to get this
message (if the line remained overloaded)
until he or she manually changed the MTU
on both interfaces. ExperNet does not auto-
matically alter critical network parameters
because network operators do not feel com-
fortable with such automation, even if the
system gets permission first.

Figure 9b shows a similar malfunction in
which the line between two nodes of the sec-
ond and third levels came down because of
physical problems. However simple the diag-
nosis might seem, it requires reasoning from
ExperNet to exclude every other possible
cause. The system must first determine if net-
work devices work properly on both sides of
the leased line and then that the parameters of
corresponding interfaces are correct. After
excluding all other possible problem causes,
the system computes the percentage of pack-
ets discarded and those rejected due to errors
over the number of total transmitted packets.
A number over 15 percent indicates that the

JANUARY/FEBRUARY 2002 computer.org/intelligent 69

Figure 8. The experimental network zone of ExperNet in Ukraine.

most probable problem is a physical error on
the line. Only an experienced network oper-
ator could follow such reasoning, spending
a lot of time to check all these values.

A similar case concerned an overloaded
leased line between two sites on a node of
the same level. In this case, agents on each
side had partial information about the
problem—communication between them
occurred through the exchange of messages
about the problem. The messages consisted

of inquiries about the interfaces’ status and
operational parameters. Having determined
that the problems did not lie anywhere else
but in the MTU value, the agents notified net-
work operators on both sides with a message
similar to the one in Figure 9b about the
problem’s cause and remedy.

Figure 9c shows another case of problem-
atic leased line operation. The correspond-
ing ExperNet specialist has classified this
case as a performance management problem
and not a hardware fault. The differentiation
is based on the MTU value, which was valid,
and the sum of errors and discards, which
were less than 15 percent. Such a differenti-
ation is difficult for a network operator to
achieve, because it requires complex rea-
soning during busy periods of the day.

A common case occurs when a remote
machine that hosts important networking ser-
vices is unreachable (see Figure 10). In this
scenario, ExperNet detected which processor
and interface was unreachable and asked the
operator whether the remote interface could
be brought up by using the ifconfig command.
ExperNet could not perform this test auto-
matically through remote command invoca-
tion, because local administrators have strong

objections concerning security. So, the sec-
ond-level network operator called the remote
host operator on the phone—he answered that
the interface could not be brought up. Exper-
Net asked again whether there were any prob-
lems with the interface’s MTU or any other
parameters. The remote operator answered
negatively again, and ExperNet concluded that
hardware or configuration fault might be
involved, which was true because the remote
host was switched off. Network operators
could not have detected and repaired this
problem manually until the service’s users
complained (by phone or email). Fixing
abnormal situations like this leads to an
increased availability of services and, con-
sequently, more satisfied clients.

Figure 11 shows a more complicated case
that ExperNet successfully handled. The sys-
tem detected that all remote hosts were
unreachable and thus the leased line con-
necting the remote hosts had a problem, not
the hosts themselves. Consequently, it asked
the user if the modems on both sides of the
line worked (ExperNet could not automati-
cally obtain this information because the
modems were not SNMP-compliant). In this
test case, the local modem was switched off,
so the network operator replied negatively.
The system suggested a problem with either
modem configuration or the leased line itself.
In this case, ExperNet’s contribution lies in
the fact that the unreachability of multiple
hosts has been aggregated (alarm correlation)
as a single line’s problem.

Practical experience
We developed the system under an EU-

funded project’s strict time limitations. Dur-
ing development, we encountered several dif-
ficulties. First, the knowledge acquisition
procedure for building such a large and com-
plex system requires a lot of time and
resources, more than were originally avail-Figure 11. ExperNet reporting modem failure and suggesting actions.

Figure 9. Various leased line problems: (a) an overloaded line due to wrong maximum transfer unit, (b) a bad physical line, and
(c) an overloaded line due to high traffic.

70 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t A g e n t s

Figure 10. Remote host is unreachable.

able. Additionally, our network experts lived
in a different country (Ukraine) from the
knowledge engineers (Spain and Greece).
This limited our communication to ques-
tionnaires exchanged over the Internet and a
few face-to-face interviews. Moreover, we
had no experienced HNMS+-monitoring sys-
tem users among the network operators
involved in the knowledge acquisition phase.
If we had such operators, they could have
delivered expert knowledge and everyday
rules of thumb concerning network manage-
ment to our knowledge engineers. Develop-
ing and integrating the various subsystems
in a robust and efficient product was a time-
consuming task because we had to

• extend the original HNMS system to pro-
vide a true hierarchical structure and fix
various bugs;

• implement an interface between CS-Pro-
log II and the new HNMS+ system;

• develop an additional interface between
the intelligent agents and the HNMS+ sys-
tem based on CS-Prolog II’s networking
primitives to adequately receive and trans-
late networking data; and

• debug the various subsystems and the
interfaces between them.

Our initial system design did not include
interaction with the network operators;
ExperNet had to perform all detection, diag-
nosis, and repair actions automatically. Sev-
eral unexpected problems came up that
changed our plans to include questioning the
operators. The most important problems for
full automation proved to be

• technology in the experimental installa-
tion zone included non–SNMP-compliant
devices that the system could not auto-
matically monitor;

• single-line connections between network
nodes caused the complete unreachability
of hosts should modems, lines, or routers
break down; and

• the fragmentation of the network’s own-
ership caused responsibility conflicts and
security objections.

We encountered another major problem
when we installed ExperNet in several nodes
of the Ukrainian network. Although network
administrators showed interest in ExperNet’s
network monitoring and repairing facilities,
the practical application of ExperNet,
HNMS+, and BigBrother required

• significant additional computer resources;
• additional negotiations with network admin-

istrators concerning data security; and
• allocation and additional training of per-

sonnel for operating the network-moni-
toring software (HNMS+/BB).

The explosive growth in demand for
networking in the last decade has

increased the need for advanced management
software that offers intelligent administra-
tion services. Our multiagent intelligent sys-
tem can significantly decrease the downtime
of network components, thus leading to an
increased availability of the overall network.

ExperNet is based on existing and widely
used management protocols (SNMPv2), which
makes its application to any existing network
possible. We installed and tested the system in
a real network environment, and it has per-
formed well. It is now working on two operat-
ing systems—Solaris 2.5 and FreeBSD 2.2.6—
and we plan to extend its area of application.

The most significant extension that could
add to its current implementation concerns the
knowledge base itself. New management cases
should be added to cover the full range of man-
agement areas, including fault, performance,
configuration, security, and accounting man-
agement. Adding these new cases would
require minor modifications (if any) to the exist-
ing system. Additionally, a number of vendor-
specific knowledge bases could help exploit
each network device’s management character-
istics. This modular approach will increase the
present system’s mobility and flexibility.

More explanation facilities could increase
the user’s trust in the system and provide a
platform for tutoring resolution methods for
network management problems. In addition,
HNMS+ could be extended to cooperate with
SNMPv3 agents, but such an extension
would require modifications to the monitor-
ing tool’s core. These modifications should
be rather simple because the system struc-
ture is modular, and changes would not affect
other parts of the system.

We are currently developing an integrated
Web-based user interface (based on PHP and
XML technologies) that will host both
ExperNet and HNMS+ data and messages.
This will allow remote monitoring of net-
work status so that the network operator does
not have to physically be on the same site as
the visual HNMS+ user interface.

Acknowledgments
The EU INCO-Copernicus project, ExperNet:

A Distributed Expert System for the Management
of a National Network, No. 960114, funded the
work described in this article (see www.csd.
auth.gr/~lpis/projects/inco/lnco.html).

References

1. I. Vlahavas et al., “System Architecture of a
Distributed Expert System for the Manage-
ment of a National Data Network,” Proc. 8th
Int’l Conf. Artificial Intelligence, Springer,
New York, 1998, pp. 438–451.

2. J. Cuena and S. Ossowski, “Distributed Mod-
els for Decision Support,” Multiagent Sys-
tems: A Modern Approach to Distributed
Artificial Intelligence, AAAI/MIT Press,
Cambridge, Mass., 1999, pp. 459–504.

3. N. Bassiliades, I. Vlahavas, and A.K. Elma-
garmid, “E-DEVICE: An Extensible Active
Knowledge Base System with Multiple Rule
Type Support,” IEEE Trans. Knowledge and
Data Eng., vol. 12, no. 5, Sept./Oct. 2000, pp.
824–844.

4. M. Molina and S. Ossowski, “Knowledge Mod-
eling in Multiagent Systems: The Case of the
Management of a National Network,” Intelli-
gence in Services and Networks, Paving the Way
for an Open Service Market, H. Zuidweg et al.,
eds., Springer, New York, 1999, pp. 501–513.

5. B.J. Wielinga, A.T. Schreiber, and J.A.
Breuker, “KADS: A Modeling Approach to
Knowledge Engineering,” Readings in
Knowledge Acquisition and Learning, B.
Buchanan and D. Wilkins, eds., Morgan
Kaufmann, San Francisco, 1992, pp. 92–116.

6. J. Cuena and M. Molina, “KSM: An Envi-
ronment for Knowledge Oriented Design of
Applications Using Structured Knowledge
Architectures,” Applications and Impacts:
Information Processing 94, K. Brunnstein and
E. Raubold, eds., Elsevier, Netherlands, 1994,
pp. 143–148; www.isys.dia.fi.upm.es/ksm
(current 23 Aug. 2001).

7. B. Chandrasekaran, T. Johnson, and J. Smith,
“Task-Structure Analysis for Knowledge
Modeling,” Comm. ACM, vol. 35. no. 9, Sept.
1992, pp. 124–137.

8. D. Brown and B. Chandrasekaran, Design
Problem-Solving: Knowledge Structures and
Control Strategies, Morgan Kaufmann, San
Francisco, 1989.

9. M. Barbuceanu and S. Fox, “COOL: A Lan-
guage for Describing Coordination in Multi-
Agent Systems,” Proc. Int’l Conf. Multiagent
Systems, AAAI/MIT Press, Cambridge,
Mass., 1995, pp. 17–24.

10. H.-J. Müller, “Negotiation Principles,” Foun-
dations of Distributed Artificial Intelligence,
O’Hare and Jennings, eds., Wiley, New York,
1996, pp. 211–225.

JANUARY/FEBRUARY 2002 computer.org/intelligent 71

72 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t A g e n t s

Martin Molina is an
associate professor in
the Department of Arti-
ficial Intelligence,Tech-
nical University of
Madrid, Spain. He also
leads a research group in
the Department of Arti-
ficial Intelligence. His

research interests include knowledge-engineering
methodologies, problem-solving methods, multi-
agent architectures, and intelligent Web-based
applications. He received a BSc and PhD from the
Technical University of Madrid, Spain. Contact
him at the Dept. of Artificial Intelligence, Faculty
of Computer Science, Technical Univ. of Madrid,
Campus de Montegancedo s/n, 28660 Boadilla del
Monte, Madrid, Spain; mmolina@fi.upm.es.

Sascha Ossowski is
an associate professor at
the University Rey Juan
Carlos. His research
interests include intelli-
gent agents and mul-
tiagent systems. He
received an MSc in
informatics from the

University of Oldenburg, Germany and a PhD in
informatics from the Technical University of
Madrid. Contact him at E.S.C.E.T., Univ. Rey Juan
Carlos, Campus de Mostoles, Calle Tulipan s/n,
Edificio Departamental I, E-28933 Mostoles,
Madrid, Spain; s.ossowski@escet.urjc.es.

Iván Futó is a profes-
sor at the Budapest
University of Econom-
ics and State Adminis-
tration and the IT vice
president of the Hun-
garian Tax Control
Administration. His re-
search interests include

simulation, logic programming, and multi-
processor systems. He received a BS in electrical
engineering from the Technical University of
Budapest. He has also received the Award of the
Hungarian Academy of Sciences, the Hungarian
State Award, and the Award of the US Society for
Computer Simulation. Contact him at ML Con-
sulting and Computing Ltd, Frankel Leó út 45,
Budapest 1023, Hungary; futo@ml-cons.hu.

Zoltán Pásztor works
at ML Consulting and
Computing in Budapest.
He received an MS in
electrical engineering
from the Moscow Insti-
tute of Chemical Engi-
neering and an MS in
applied mathematics

from Eötvös Loránd University, Budapest. Con-
tact him at ML Consulting and Computing Ltd,
Frankel Leó út 45, Budapest 1023, Hungary;
pasztor@ml-cons.hu.

János Szeredi works
at ML Consulting and
Computing in Budapest.
He received an MS
in mathematics from
Eötvös Loránd Univer-
sity, Budapest. Contact
him at ML Consulting
and Computing Ltd,

Frankel Leó út 45, Budapest 1023, Hungary;
szeredi@ml-cons.hu.

Igor Velbitskiyi is the
general director of Tech-
nosoft. His research
interests include soft-
ware engineering, net-
work management,
intelligent systems,
and visual program-
ming. He received a

PhD in physical and mathematical sciences
from the Institute of Cybernetics of the National
Academy of Sciences of Ukraine, Kiev. Con-
tact him at Technosoft, 4, Glushkov Ave., Kiev,
03680, Ukraine; vel@technosoft.kiev.ua.

Sergey Yershovworks
at Technosoft and is an
assistant professor in
the Ukrainian Institute
of Statistics. His research
interests include soft-
ware engineering meth-
ods, intelligent network
management, electronic

business, and e-Government. He received an MS
in applied mathematics from the Kiev Technical
University and a PhD from the Institute of
Cybernetics of the National Academy of Sci-
ences of Ukraine, Kiev. Contact him at Tech-
nosoft, 4, Glushkov Ave., Kiev, 03680, Ukraine;
yershov@technosoft.kiev.ua.

Igor Netesin is a
deputy director of Tech-
nosoft. His research
interests include artifi-
cial intelligence, net-
work management, and
software engineering
for communication net-
works. He received an

MS in mathematics from the Moscow State
University and a PhD from the Institute of
Cybernetics of the National Academy of Sci-
ences of Ukraine, Kiev. Contact him at Tech-
nosoft, 4, Glushkov Ave., Kiev, 03680, Ukraine;
netesin@technosoft.kiev.ua.

T h e A u t h o r s
Ioannis Vlahavas is
an associate professor
in the Department of
Informatics at the
Aristotle University of
Thessaloniki, Greece.
His research interests
include logic program-
ming, knowledge base

systems, and AI applications. He received a PhD
in computer science (logic programming
machines) from the Aristotle University. He is a
member of the Greek Physics and Computer
societies, a member of the IEEE, and a member
of the Association for Logic Programming. Con-
tact him at Dept. of Informatics, Aristotle Univ.
of Thessaloniki, 54006 Thessaloniki, Greece;
vlahavas@csd.auth.gr; vlahavas@csd.auth.gr.

Nick Bassiliades is a
part-time lecturer in the
Department of Infor-
matics, Aristotle Uni-
versity of Thessaloniki.
His research inter-
ests include deductive
object-oriented data-
bases, active databases,

knowledge base systems,parallel database systems,
and Web databases. He received a BS in physics
from the Aristotle University of Thessaloniki, an
MS in applied artificial intelligence from the Uni-
versity of Aberdeen, Scotland, and a PhD in paral-
lel knowledge base systems from Aristotle Uni-
versity. He is a member of the Greek Physics,
Computer, and Artificial Intelligence societies; the
IEEE; and the ACM. Contact him at Dept. of Infor-
matics, Aristotle Univ. of Thessaloniki, 54006
Thessaloniki, Greece; nbassili@csd.auth.gr.

Ilias Sakellariou is
currently pursuing his
PhD in distributed con-
straint logic program-
ming in the Depart-
ment of Informatics at
Aristotle University.
His research interests
include expert sys-

tems, planning and scheduling, and parallel and
constraint logic programming. He received a BS
in physics from the Aristotle University of Thes-
saloniki and an MS in knowledge based systems
from the University of Edinburgh, Scotland. He
is a member of the Greek Physics Society, the
IEEE, and the ACM. Contact him at Dept. of
Informatics, Aristotle Univ. of Thessaloniki,
54006 Thessaloniki, Greece; iliass@csd.auth.gr.

