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Feature Selection by Analyzing Class
Regions Approximated by Ellipsoids

Shigeo Abe, Ruck Thawonmas, and Yoshiki Kobayashi

Abstract—In our previous work, we have developed a method for
selecting features based on the analysis of class regions approximated
by hyperboxes. In this paper, we select features analyzing class regions
approximated by ellipsoids. First, for a given set of features, each class
region is approximated by an ellipsoid with the center and the covariance
matrix calculated by the data belonging to the class. Then, similar to our
previous work, the exception ratio is defined to represent the degree of
overlaps in the class regions approximated by ellipsoids. From the given
set of features, we temporally delete each feature, one at a time, and
calculate the exception ratio. Then, the feature whose associated exception
ratio is the minimum is deleted permanently. We iterate this procedure
while the exception ratio or its increase is within a specified value by
feature deletion. The simulation results show that our current method is
better than the principal component analysis (PCA) and performs better
than our previous method, especially when the distributions of class data
are not parallel to the feature axes.

Index Terms—TFeature selection, membership function, pattern classifi-
cation, principal component analysis.

I. INTRODUCTION

In developing a pattern classification system for a given problem,
we need to realize a high recognition rate for the unknown data, i.e.,
high generalization ability. The type of classifier used influences the
generalization ability, but the most influencing factor is the set of
features used.

There are two approaches to determining the set of features: feature
extraction [1]-[4] and feature selection [S]-[11]. Feature extraction,
linearly or nonlinearly, transforms the original set of features into a
reduced one. Principal component analysis (PCA) [1], [2] is a well-
known feature extraction method in which input axes are rotated
around the coordinate origin of the original features in the directions
of the eigenvectors of the feature covariance matrix and some of the
transformed features are selected from the most significant axes in

order. Discriminant analysis [1] finds the set of transformed features -

that gives the greatest class separation. In [3] and [4], class regions
were analyzed to retain useful features and to eliminate redundant
features.

Feature selection selects relevant features from the original fea-
tures. In [5], various measures, such as the Bhattacharyya probabilis-
tic distance, were discussed to select the set of features that maximizes
class separability. In [6], some fuzzy parameters to measure class
separability wére used to select features. In [7], features were selected
based on the mutual information criterion.

In [81, we proposed a feature selection method based on the
analysis of class regions that are generated by a fuzzy classifier with
hyperbox regions [9], [12]. The degree of overlaps in the class regions
is defined as the exception ratio and is used as a measure for feature
evaluation. Given a set of remaining features, the proposed algorithm
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eliminates the next feature, the elimination of which minimizes the
exception ratio. The simulations for four benchmark data (iris data,
numeral data, thyroid data, and blood-cell data) showed that the
proposed method could successfully delete irrelevant features. We
evaluated the recognition rates of the test data by the fuzzy. classifier
and the multilayered neural network classifier. Employing the reduced
features obtained by our method resulted in an inferior recognition
rate in comparison to the same number of features by the PCA,
only when the recognition rate was evaluated by the neural network
classifier for the blood-cell data. This inferior recognition rate was
considered to be caused by the analysis of overlapping regions of
hyperboxes whose surfaces were parallel to features [13]. Thus, when
the distributions of the class data are not parallel to the features,
analysis of the hyperboxes may include errors.

In this paper, to overcome this difficulty, we approximate class
regions by ellipsoids, with the centers and the covariance matrixes
calculated by the data belonging to the classes. Then, similar to [8],
the exception ratio is defined to represent the degree of overlaps
in the class regions approximated by ellipsoids. From the given set
of features, we temporally delete each feature, one at a time, and
calculate the exception ratio. Then, the feature whose associated
exception ratio is the minimum is deleted permanently. We iterate
this procedure while the exception ratio or its increase is within a
specified value by feature deletion.

In Section I, we first approximate the class regions by ellipsoids.
Then we define the exception ratio and propose the feature elimination
algorithm based on the exception ratio. In Section III, we compare
our method with that discussed in [8] and the PCA by the fuzzy
classifier with hyperbox regions, the fuzzy classifier with ellipsoidal
regions {13], and the multilayered neural network classifier for the
same four benchmark data sets used in [8].

II. FEATURE SELECTION

A. Approximation of Class Regions by Ellipsbids

We represent m features for classifying n classes by an m-
dimensional input vector . We assume that we have the data
belonging to each class for feature selection. Then, we approxi-
mate the region for class ¢ by one ellipsoid with the center ¢; =

(Cil, Tty ci‘m)t
1
Cik = — x 1
ik = Z k L
T e class:
where ¢ denotes the transpose of a matrix and N; is the number of
data belonging to class ¢ and the m X m sample covariance matrix

Q=1 ¥ G-a)E-ot @
z ¢ classi
If the sample covariance matrix @Q; is singular, we set all of the
off-diagonal elements of Q; to zero so that (J;becomes regular.
Now we can calculate the weighted distance of the input vector
from the class center ¢;, di(z) by

di(z)=(z~e) Q7 (2~ i) ®

where the superscript —1 denotes a matrix inversion.
Assuming that Q; is regular, J; is a positive definite matrix. Then
the mean-squared weighted distance is m (see the Appendix)

Alf' Y E@=m @)

k2
x e class:
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Fig. 1. Recursive definition of activation and inhibition hyperboxes.

Now we define the degree of membership of = belonging to class i by
10
mi(z) = ——d; . 5
(z) = exp ( (Z)> ®)

Here, the reason why we divide the squared weighted distance by
m is that, from (4), the mean value of d?(x)/m is one for any m,
and this makes the membership functions for different numbers of
features comparable.

If we classify x into class ¢ when

mi(g) > mj(z), forj=1,--,n,j #i ©)

the classification result coincides with that of the classifier discussed
in [13] when the data of each class are not divided, i.e., one cluster
per class, and when the membership function is calculated by

mi(z) = exp (—i—id?(x)> | %

where a; is the tuning parameter and o; = 1. [We note that
the classification result is the same even if the argument of the
exponential function in (7) is divided by m.] In [13], the efficient
training algorithm to determine o; is discussed.

B. Exception Ratio

In [8], the degree of overlap between two classes was defined
by two types of hyperboxes: activation and inhibition, which were
recursively generated from the training data. Fig. 1 shows the recur-
sive definition of hyperboxes for the two classes 7 and j. First, by
calculating the minimum and maximum values of the respective class
data, activation hyperboxes of level 1 A;; (1) and A;; (1) are defined.

Then the overlapping region is defined as the inhibition hyperbox of

level 1 I;; (1). Since there are data in the inhibition hyperbox I;; (1),
we further define the activation hyperboxes 4;;(2) and A;;(2). Since
there is no overlap between A4;;(2) and Aj;(2), we stop defining
hyperboxes. The degree of overlap of class i, with respect to class
J at level 1, is defined by

_ hypervolume of I;;(1)

(1 =
0,5 (F) hypervolume of A;;(1)

17

®

where F is the set of features. Since there is no overlap between
classes ¢ and j at level 2

oD (F) = 0. ®

Similarly we may define the overlap of ellipsoidal class regions

as follows. Assuming a positive value ¢(1 > ¢ > 0), we consider

the region {x|m;(z) > c and m;(x) > c} as the overlap between

X2

X1

Fig. 2. Approximation of an overlap of class regions.

classes i and j. Then we deﬁne the degree of overlap of the class ¢
region, with respect to the class j region, by (see Fig. 2)

/ dzx
(m i (L) Ze)N(m;(X) >c)

/ dzx
(m;(Z)2c)

The degree of overlap given by (10) is ¢ dependent, and it is difficult
to determine the proper value of ¢. Even if we can determine the
value of ¢, it is by no means easy to calculate the integral.

To overcome this problem, we take a probabilistic approach. Let
pi(z) be the probability that = belongs to class ¢. Then we define the
degree of overlap of class ¢, with respect to class j, by

/ dp;(z)

x ¢ class: )
/ dpi(x)
x ¢ class:

By integrating p;(z) over z belonging to class i, we obtain
the accumulated probability of class j for the class ¢ data. The
denominator of (11) normalizes the numerator, and it is one if the
probability p; () is normalized. To approximate p;(z), we use m(x)
and calculate (11) using the training data. Namely

>, mj=)
0i; (F) = x e class: )

Z m; (x)

x e classi

0,;(F) = (10

ol (F) =

1n

(12)

Equation (12) gives the measure in which the class i region
overlaps with the class j region. But if any of the class ¢ data are
not misclassified into class j, i.e., mi(z) > m;(z) for £ belonging
to class 7, the overlap given by (12) does not make the classification
of class i data difficult. To reflect this, we define the exception ratio
by [8]

O(F)= Y pijoij (F)

2, =1

(13)

where

pij =
the number of the class 7 data that are misclassified into class j
the total number of the training data )

The exception ratio given by (13) has the form similar to that defined
in [8]. The major difference is that, in the former, the class region is
approximated by one ellipsoid, while in the latter, the class region is
approximated by nested hyperboxes.
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C. Feature Elimination Based on Exception Ratio

The feature elimination discussed here is similar to the one
discussed in {8]. The major difference is the stopping criteria. We
select features by backward selection search [1], which begins with
all of the features and eliminates the most irrelevant feature, as
follows. First, each of the features is temporarily eliminated and
the exception ratio after each temporary elimination is computed.
Then, the feature whose elimination minimizes the exception ratios
is deleted permanently. We iterate this procedure and delete features
until the stopping criteria discussed below are satisfied.

Let Forg denote the set of the original M features where M > 2;
let F™ denote the set of m remaining features; and let F)" be the
set of m features obtained by temporarily eliminating f*" from
Fmtlje, F™ = P — {f™+1}, where f7 1 is the ith element
in F™1 Let F*~' satisfy

O(F = min (O(F™ ). (14)

Since monotonicity of the exception ratio is not always guaranteed,
ie., the exception ratio may be lower for the deletion of the
features (see Figs. 4-6 in Section III), we introduce two criteria
for terminating the feature elimination. The first criterion terminates
the feature elimination when the exception ratio exceeds that of the
original exception ratio

O (F7) = O (Forg)
0] (Forg)

2B (15)

where (3 is a small positive parameter. The second criterion terminated
the feature elimination when the exception ratio begins to increase

OF ) -0(F™)
5 Forg) ‘2 5 (16)

where 6 is a small positive parameter. The stopping criterion (15)
is the same as that in [8], while (16) is now added to prevent the
deletion algorithm from deleting too many features. In [8], § was
set to 0.5. So we use the same value for 8. The characteristics of
the exception ratio discussed in this paper differ from those in [8],
and to avoid deleting too many features, we use 6 = 0.01 in the
following simulations.

The feature elimination algorithm based on the exception ratio is
as follows.

Step 1) Initialize F™ by setting F™ «— Forq, hence, m = M.

Step 2) Compute O(F™™ ) fori=1,--, m.

Step 3) Find the feature f;" that satisfies (14).

Step 4) If (15) or (16) holds, terminate; otherwise, go to Step 5).

Step 5) Set F™~' — F"~'. (f]" is permanently eliminated from
Fm)

Step 6) Set m = m — 1. If m = 1, terminate; otherwise, go to
Step 2).

We call the above feature elimination algorithm, based on the
exception ratio ERFE with ellipsoids, ERFEE and that in [8], based
on ERFE with hyperboxes, ERFEH.

III. PERFORMANCE EVALUATION

We compare the ERFEE with the ERFEH and PCA by using the
same data used in [8]: 1) iris data [14], 2) thyroid data [14], 3)
numeral data [16], [17], and 4) blood-cell data [18]. The first two data
sets are well-known benchmark data for classification, the numeral

TABLE I
BENCHMARK DATA SPECIFICATIONS AND TRAINING CONDITIONS
OF THE THREE-LAYERED NEURAL NETWORK CLASSIFIER

Iris Thyroid _Numeral _Blood Cell
No. Inputs 4 21 12 13 ’
No. Classes 3 3 10 12 .
No. Training Data 75 3772 810 3097
No. Test Data 75 3428 820 3100
No. Hidden Units 3 3 6 18
No. Epochs 1000 10000 4000 15000
No. Runs 10 10 10 3

data are for license plate recognition, and the blood-cell data are for
white blood-cell classification, which is a very hard problem since
each class represents some stage of blood-cell growth, and thus, the
boundaries of some of the classes are very vague. The specifications
of the data are listed in the upper part of Table I. For each data set, all
of the available data are divided into training data and test data. The
training data are used both for eliminating features and for training
classifiers. The test data are used for evaluating the recognition rate
of the classifiers. In [8], both the discriminant analysis (DA) and
the feature selection method that performs backward selection search
using interclass Euclidean distance as the class separability measure
(EDFE) were shown to be inferior to the PCA for the above four
benchmark data sets. Therefore, we do not include their comparison
here. )

. Three classifiers are used, namely, the fuzzy classifier with hy-
perbox regions [9], the fuzzy classifier with ellipsoidal regions [13],
and a three-layered neural network classifier [15]. Unless explicitly
specified, the following sets of parameters are used for the fuzzy
classifiers and the neural network classifier, respectively. -

1) Fuzzy classifier with hyperbox regions:
expansion parameter (which controls the expansion size of the
inhibition hyperbox) = 0.001 and sensitivity parameter (which
controls the slope of the membership function) = 1.

2) Fuzzy classifier with ellipsoidal regions: ,
one cluster per class and the maximum number of misclassifi-
cations allowed for tuning one cluster parameter is ten.

3) The neural network classifier: ‘
learning rate = 1 and momentum = 0.

The training conditions of this classifier for the four data sets are listed
in the lower part of Table I. Since the recognition rate of the neural
network classifier varies according to the initial weights, we use the
average recognition rate for a set of three runs for the blood-cell data
or ten runs for the other data sets, each run having initial weights
randomly assigned between —0.1 and 0.1. The numbers of hidden
units and training epochs used in our experiments are the same as
those in [8], except for the number of training: epochs for the blood-
cell data. (We use 15000 epochs instead of 6000 to guarantee stable
recognition rates when features are deleted. But we make only three
runs instead of ten because Hitachi’s 30 MIPS mainframe computer
M-680 takes 14 h for the former.)

The parameters used for the ERFEH are the same as those used

-in [8], i.e., € = 0.001 (which specifies the minimum edge length)

and 8 = 0.5. And the parameters for the ERFEE are § = 0.5 and
§ = 0.01. '

Table II lists the numbers of features selected by the ERFEE and
ERFEH as well as the associated accumulation of eigenvalues by
the PCA when the number of features determined by the ERFEH is
used. In [8], for the iris data, the number of selected features was
two. This shows the robustness of the selection method even when
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TABLE II
NUMBER OF FEATURES SELECTED BY ERFEH AND ERFEE AND
THE ASSOCIATED ACCUMULATION OF EIGENVALUES (ACC.
Ev.) BY THE PRINCIPAL COMPONENT ANALYSIS (PCA)

Data Set Number of Features  Acc. Ev. (%)
ERFEH___ERFEE

Iris 3 3 99.65

Thyroid 5 7 73.33

Numeral 7 8 93.45

Blood Cell 10 10 99.53

: TABLE III
RECOGNITION RATE OF THE Fuzzy CLASSIFIER WITH HYPERBOX REGIONS (IN %)
DataSet  Original Features Reduced Features
ERFEH ERFEE PCA
Iris 92 93.33 93.33 90.67
Thyroid 99.15 99.01 99.21 85.82
Numeral 99.63 99.51 99.51 98.90
Blood 85.16 85.45 84.71 83.23
TABLE IV
RECOGNITION RATE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL REGIONS (IN %)
DataSet  Original Features Reduced Features
ERFEH ERFEE PCA

Iris 97.33 98.67 98.67 94.67*
Thyroid 95.60 96.82 96.65 92.42
Numeral 99.39 99.15 99.39 99.39
Blood 91.65 90.61 91.39 89.87

*: Without funing the recognition rate is 98.67%.

the exception ratio exceeded the stopping criterion (15). Here we use
the numbers of features. given by the stopping criterion (15) for the
ERFEH and the stopping criteria (15), (16) for the ERFEE. For the
iris and the blood-cell data, the numbers of selected features are the
same for the ERFEH and ERFEE. For the iris data, the same feature
(the second feature) is deleted. For the blood-cell data, one feature
out of the three that are deleted is the same. For the thyroid and
numeral data, the ERFEH eliminates more features than the ERFEE.
Among the first five features that are deleted from the numeral data,
three features are the same for both methods, and among the five
features that remain in the thyroid data, four features are the same
for both methods.

Tables HI-V list the recognition rates of one classifier for each of
the test data sets when the original features, features selected by the
ERFEH, features selected by the ERFEE, and features transformed
by the PCA are all used. For the ERFEE and the PCA, the same
number of features as the ERFEH listed in Table II are used. Table III
lists performance of the fuzzy classifier with hyperbox regions. In
the following, we abbreviate the recognition rate using the features
deleted by the ERFEH or ERFEE as the recognition rate with
hyperboxes or ellipsoids and the recognition rate using the features
transformed by the PCA as the recognition rate with the PCA. The
recognition rates with the PCA are worse than those with the others
for the four data sets, while the recognition rates with hyperboxes

.and ellipsoids are comparable.

TABLE V
RECOGNITION RATE OF THE MULTILAYERED NEURAL NETWORK (IN %)
DataSet  Original Features Reduced Features
ERFEH ERFEE PCA
Iris 97.47 97.20 97.20 96.00
Thyroid 98.23 98.61 98.31 92.63
Numeral 99.48 99.40 99.51 99.28
Blood 89.18 88.62 88.38 89.83
O :ERFEE
O : ERFEH
A : Exception ratio
100 -3
A
2
§ -
g 8 a -
2 R
s g
= L 43 8
g :
= v) <
o0 Q
& E
Q
» 1 1 Z

4 3 2 1
Number of features used

Fig. 3. Comparison of feature elimination for iris data. The recognition rates
for test data are evaluated by the fuzzy classifier with ellipsoidai regions.

Table IV lists the recognition rates of the fuzzy classifier with
ellipsoidal regions. Except for the numeral data, the recognition rates
with the PCA are the worst. For the numeral data, the recognition rate
with hyperboxes is 0.28% lower than that of the other two. Table V
lists the recognition rates of the multilayered neural network classifier.
Except for the blood-cell data, the recognition rates with the PCA
are the worst.

In summary, the recognition rates with the PCA are the worst
for the iris data and the thyroid data for the three classifiers, and
thus, feature elimination by the PCA is not as robust as that by the
ERFEE and ERFEH; the last two methods are comparable. As for
the classifier performance, the fuzzy classifier with hyperbox regions
performs best for the thyroid data, the fuzzy classifier with ellipsoidal
regions performs best for the iris data and the blood-cell data, and the
neural network classifier performs best for the numeral data. Although
the recognition rate of the fuzzy classifier with ellipsoidal regions for
the thyroid data is the poorest, this does not affect feature elimination.
The ERFEE works for the thyroid data.

Now we compare the robustness of the ERFEE with that of
the ERFEH for the four data sets. Fig. 3 shows, on the left-side
ordinate, the recognition rates of the fuzzy classifier with ellipsoidal
regions for the iris data when the features -are deleted by the
ERFEE and ERFEH. The right-side ordinate plots the exception ratio
with ellipsoids normalized by that with the original features. The
normalized exception ratio increases as the features are deleted. When
two features are deleted, the exception ratio satisfies (15). The first
eliminated features by both methods are the same, but the second
eliminated features are different. When three data are deleted, the
remaining feature is the same for both methods. Thus, for the iris
data, the ERFEH performs better than ERFEE, when the features are
deleted while satisfying (15).
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Fig. 4. Comparison of feature elimination for thyroid data. The recognition
rates for test data are evaluated by the fuzzy classifier with hyperbox regions.

Fig. 4 shows the recognition rates of the fuzzy classifier with
hyperbox regions for the thyroid data and the normalized exception
ratio. The normalized exception ratio does not exceed 1.0 until only
one feature remains. Thus, if we use (15), the algorithm does not
stop. But if we use (16) as well as (15), the normalized exception
ratio increases when one feature is eliminated from the remaining
seven features and the exception ratio satisfies (16). Therefore, we
can select seven features. This elimination is rather conservative, as
seen from the figure. The recognition rates by the ERFEH are better
than those by the ERFEE when seven to ten features are used, but
this is reversed when five or six features are used. Although the
recognition rate of the fuzzy classifier with ellipsoidal regions is the
poorest among the three classifiers, as listed in Tables HI and IV,
the exception ratio with ellipsoids well reflects the complexity of the
class regions of the thyroid data.

Fig. 5 shows the recognition rates of the multilayered neural
network for the numeral data and the normalized exception ratio.
The normalized exception ratio starts to increase when one feature is
eliminated from the remaining nine features and the exception ratio
satisfies (15) when one more feature is deleted. Thus, eight features
are selected. By the ERFEH, seven features are selected, as listed in
Table II. Although the number of features selected by the ERFEE is
larger than that by the ERFEH, the recognition rates are higher for
five to 11 features.

Fig. 6 shows the recognition rates of the fuzzy classifier with
ellipsoidal regions for the blood-cell data and the normalized ex-
ception ratio. The normalized exception ratio starts to increase when
one feature is eliminated from the remaining ten features and the
exception ratio satisfies (16). Thus, ten features are selected. The
recognition rates drop for seven to nine features using the ERFEH.
The high recognition rates are maintained for seven to nine features
using the ERFEE. According to our analysis, the distribution of blood-
cell data is not parallel to the feature axes. Thus, the ERFEH does not
fit this type of data, while the ERFEE does not have this weakness.

IV. DiSCUSSION

Both ERFEE and ERFEH are local optimization methods. They
delete each feature, one at a time, which minimizes the exception
ratio. Thus, global optimality of the features selected by those
methods is not guaranteed. But according to the simulations, both
methods showed better performance, in most cases, than the PCA.
Comparison of the ERFEE with the ERFEH pointed out that the
former method did delete more features than the latter, except for the
iris data; this was especially evident for the blood-cell data where

100L—

®

=

g 99s 4
=

=]

E=

& 99.0 3
3 O :ERFEE

- 985 ~ 0 :ERFEH

A : Exception ratio

%80 ”\‘\‘\‘
L I

A 0
2 1 1w 9 8 7 6 5

Number of features used

)
Normalized exception ratio

Fig. 5. Comparison of feature elimination for numerical data. The recog-
nition rates for test data are evaluated by the multilayered neural network
classifier.

< 92 1
g L
) -]
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" 89 §
|
O :ERFEE E
88 |- O :ERFEH 0.8 2

A : Exception ratio
| 1 i l

13 12 11 10 9 8 7 6
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Fig. 6. Comparison of feature elimination for blood-cell data. The recogni-
tion rates for test data are evaluated by the fuzzy classifier with ellipsoidal
regions.

the distribution of class data was not parallel to the feature axes;
since the ERFEH is based on hyperboxes, which are parallel to the
feature axes, it is unsuitable for this type of data. The weakness
of the ERFEE is the stopping criteria given by (15) and (16); they
usually give conservative elimination. Their improvement should be
the subject of a future study.

The features were eliminated according to analysis of the el-
lipsoidal regions approximated using the training data. Thus, the
ellipsoidal regions may not be a good approximation of the class
regions for the test data. Now we need to consider why the ERFEE
gave an inferior  performance to that of the ERFEH for the iris
data. As for the iris data, the second, fourth, and first features were
successively deleted by the ERFEE, while the second, first, and fourth
features were successively deleted by the ERFEH. The normalized
exception ratio was 1.70 when the second and fourth features were
deleted, and the normalized exception ratio was 1.94 when the
second and first features were deleted. Thus, the fourth feature was
deleted in addition to the second feature. But if we compare the
normalized exception ratio of the test data, the normalized exception
ratio was 2.80 when the second and first features were deleted, and
the normalized exception ratio was 6.11 when the second and fourth
features were deleted; this clearly indicates that the recognition rate
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of the test data eliminating the second and fourth features might be
worse than that eliminating the second and first features.

The fuzzy classifier with ellipsoidal regions does not perform well
when the distribution of data deviates from the Gaussian distribution.
This happens when features include discrete inputs, such as those of
the thyroid data. It is interesting to note that, although performance
of the fuzzy classifier with ellipsoidal regions for the thyroid data is
not good, the ERFEE successfully deletes the features. '

In general, selecting features by the backward selection search is
inefficient, especially when the number of initial features is large.
But since. the calculation of the exception ratio is not complicated,
both ERFEE and ERFEH are relatively efficient for a medium to
large number of initial features. For example, for the thyroid data
with 21 features, ERFEH selected features in 2 min (in turnaround
time) by using a workstation (Sun 4/20 model 71) under a multiuser
environment.

V. CONCLUSIONS

In this paper, we proposed a method of selecting features based
on the analysis of class regions approximated by ellipsoids. First, for
a given set of features, each class region was approximated by an
ellipsoid with the center and the covariance matrix calculated by the
data belonging to the class. Then, the exception ratio was defined
to represent the degree of overlap in the class regions approximated
by ellipsoids. From the given set of features, we temporally deleted
each feature, one at a time, and calculated the exception ratio. Then,
the feature whose associated exception ratio was the minimum was
deleted permanently. We iterated this procedure while the exception
ratio or its increase was within a specified value by feature deletion.
The simulation results showed that our method was better than the
PCA, and its performance was better than our previous method,
especially when the distributions of class data were not parallel to
feature axes.

APPENDIX
We show that (4) holds, assuming that @); is nonsingular. Let P;
be the orthogonal matrix that diagonalizes @;. Namely

P{Q; Py = diag(A1, -+, Am) (al)

where PP} = E, E is the unit matrix, diag denotes the diagonal
matrix, and A1, - -+, Ap, are the eigenvalues of Q;. From (al)

Qi =Pz diag(Aly Tty A7'7".)-Pzt (32)
Q7' =P diag(\r?, -+, AR P (a3)
Let
% =P} (z—¢;). (ad)
Then from (2) and (a4), (al) becomes
1 I .
F Z Ii.'l:f = dlag (/\1, ety /\m)- (35)
" ze classi
Thus, for the diagonal elements of (a5)
7\]1—- Z ‘i'?kz/\k, k=1,---,m. (ab)

z e class:
From (3), (a3), and (a4), the left-hand side of (4) becomes

1 2 1 .
A Z di(z) = A Z

z e class: x ¢ class:
m

="1\17 >N e

' xe classi k=t
Thus, from (a6) and (a7), (4) holds.

Fdiag (A1, -0, ARDE:

(a7)
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