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Abstract—The visual robustness of biological systems is in ability to actively integrate (fuséjnformation from a number

part due to their ability to actively integrate (fuse) informa-  of visual cues [2], [29] as well as to compose behaviors in
tion from a number of visual cues [2], [29]. In addition to response to dynamic events.

active integration, the perception—action nature of biological Providi hanical acti - t ith simil
vision demands event-driven behavioral composition. Providing roviding mechanical active vision systems with simiiar

mechanical vision systems with similar capabilities therefore capabilities therefore requires tools and techniques for cue
requires tools and techniques for cue integration and behavioral integration and behavioral composition. In this paper, we focus

composition. _ _ _on two important features of a robust vision system: process
In this paper, we address two issues. First, we present a unified integration and process composition.

approach for handling both active integration and behavioral

composition. The approach combines a theoretical framework

that handles uncertainty using a voting scheme with a set of A. Process Integration

behaviors that are committed to achieving a specific goal through . . . -

common effort and a well-known procesg corﬁpositic?n model.g While ml.JCh. of.t.he research in a(?tlve VISIO".] has focgsed
Secondly, we address the issue of integration in the active ON developing individual modules for implementing behaviors,

vision activity of smooth pursuit. We have experimented with such as fixation and smooth pursuit, it is becoming increasingly

the fusion of four smooth pursuit techniques, such as template clear that a robust vision system should make use of a seamless

matching and image differencing. We discuss each technique, integration of a number of functionally equivalent (homo-

the techniques. a6cording 1o our formal framework mproves  JS€OUs) or nonequivalent (nonhomogeneous) modules [29].

system tracking behavior. Indeed, integration forms the basis of a proposed extension

of the Marr paradigm [2] in which the authors stress that

future progress in computer vision will be a result of module

integration: “Now that most of the modules have been studied

I. INTRODUCTION in isolation, we think that it is time that they be tested in

a;?airs, triples, and so on.” The advantages of integration are

hevident in biological systems in which visual effectiveness

4' S in exploiting information from a variety of mechanisms,

of the inherent ability of such systems to dynamically adju ‘HSi_”Q the information to take _ad\_/a_ntage of strengths while
voiding the weaknesses of individual mechanisms under

visual parameters to effectively integrate data from a wi . .

range of visual cues and to compose modules in a timely evely'nd conditions [12].

driven manner. Research into the benefits and advantages of -

dynamic visual sensory systems over passive systems Rad’rocess Composition

been explored in the area of active vision. It has been shownWhile integration contributes to robust implementations of

that a moving system leads to improved robustness and thdividual modules, the perception—action nature of active

elimination of ill-posed conditions in several computer visiomision demands event-driven module composition. The compo-

problems [3], [5], [6]. In addition to adjusting parameters, thsition mechanism must provide means for encoding temporal

visual robustness of biological systems is also due to thaind structural dependencies necessary for effective behavior of
reactive systems. This requires powerful yet flexible process
composition tools [37].

Index Terms—Active vision, module fusion, reliability, voting.

IOLOGICAL vision systems are remarkably adept
providing useful, high-quality visual information in ric
dynamic environments. These capabilities are, in part, a re

Manuscript received October 23, 1996; revised December 7, 1997. Tiis Outline of the Paper
work was supported in part by the European Community, Israel collaboration . . .
ECIS-003 project. The paper is made up of two major parts. In the first
J. A. Fayman and E. Rivlin are with the Department of Computepart, we present a unified approach for handling both process

Science, Technion—lIsrael Institute of Technology, Haifa, 32000 Isra : i :
(efff@virtue3d.com). ﬁﬁtegraﬂon and process composition. The approach combines a

P. Pirjanian is with the Laboratory of Image Analysis, Aalborg Universittheoretical framework that handles uncertainty using a voting

Aalborg East, Denmark. scheme with a set of behaviors that are committed to achieving
H. I. Christensen is with the Centre for Autonomous Systems, Royal

Institute of Technology, Stockholm, Sweden. LIn this work, the terms active integration and fusion are used interchange-
Publisher Item Identifier S 1094-6977(99)00103-0. ably.

1094-6977/99$10.001 1999 IEEE



74 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 1, FEBRUARY 1999

a specific goal through common effort and a well-knowaxtend the power of robot schemas to encompass both module
process composition model. In the second part of the papetegration and module compaosition in a unified manner.
we show that our approach indeed works. We address the issue
of integration in the active vision activity of smooth pursuit, —_
While a variety of techniques exist to implement smootﬁ' Reliability
pursuit, each of these techniques has strengths and weaknessé&gliability in robotics has been studied along several main
making it robust under some conditions and weak under othepgths: reactivity, error recovery and uncertainty handling
The ability to fuse these techniques such that their strengfReactive behavior-based systems [4], [10] provide immediate
can be exploited and their weaknesses avoided naturally le&ggponses to unpredictable environmental changes through a
to more robust system behavior. We have experimented witht coupling of perception and action. Reactive architectures
the fusion of four smooth pursuit techniques. We discu$gve shown improved reliability when compared with classical
each technique, highlighting strengths and weaknesses. ¥@@se-plan-act architectures. In error recovery techniques, a
then show that fusing the techniques according to our fornggt of dedicated modules monitor the task continuously and,
framework improves tracking. upon detection of an error (cognizant failure), an appropriate
The remainder of the paper is organized as follows. gprrective action is invoked, which can handle unanticipated
Section I, we review related work. In Section Ill, we in-Situations. Error detection and recovery was first introduced
troduce the approach we have adopted for handling modigerobotics in [16]. The task control architecture (TCA) [36]
composition. In Section IV, we extend the notation presenté@cilitates a methodology for incremental development of
in Section 1l with the capability to handle integration. Nextfeliable autonomous agents. We start with a deliberative plan
in Section V, we discuss the theoretical framework we hag@nstructed to work correctly for foreseeable situations and
adopted for the fusion of redundant multivalued behaviors. then incrementally add task-specific monitors and exception
Section VI, we discuss the active vision activity of smoothandling strategies (reactive behaviors) that detect and handle
pursuit and focus on four motion estimation techniques foinpredicted situations. A similar approach is advocated in [20].
its implementation. These will be used in Section VII, whert [31], a fault tolerance technique using redundant sets of
we present experiments in fusing the results of the motidi¢haviors was investigated. In this approach, the system is
estimation techniques leading to more robust smooth purspipvided with a redundant set of behaviors to perform a task
behavior. We conclude with Section VIII. under different conditions. For each behavior, a performance
model exists and a failure is detected if the behavior performs
worse than expected. Upon detection of a failure, a new
Il. RELATED WORK behavior is invoked until an acceptable behavior is selected.
This approach has several points in common with the approach
A. Active Vision presented in this paper. The major similarity is the exploitation
. . . . of redundancy of homogeneous behaviors/modules to reduce
S"?CG 1985, when active vision first beggn to appear _g}stems sensitivity to uncertainties. The differences lie in that
the literature [3], [5], [6], the topic has received a dramatig . ohroach does not utilize explicit models, which make it
INCrease n interest. Iniial work_ focused on buﬂ@ng aCtvVR,ore appropriate for situations in which it is difficult to obtain
vision dewces.g.nd understanding a_nd tr'ansfe.rr!ng to thesql?ch models. Secondly, while in [31] a sequential invocation
devices capabilities possessed by biological vision SySte;a?behaviors is utilized, we propose a simultaneous invocation

s_uch as focus [2??]’ saccades [9], _sr_nooth pursu_it [9]. [1 sing voting (this is actually how use of models is avoided).
fixation [28], attention [38], and prediction [11]. While severa The basic idea behind uncertainty handling techniques is

of these works point out that many times these capabilities L have explicit “models” of the robot's sensing and action

_composed of various cues (€.g., disparity and acc0mm()datl:((l;{babilities. Using this model, the agent (robot) can predict
In vergence [13]’.[28].)’ o Fhe best .Of our knowlgdge, NQhat actions to take to increase the expected utility or the
previous work exists in which benefits of th_e f“S'O’? of ?eliability of its task [27]. Various combinations, such as
.”“r_“'?er of .homogeneo.qs. modules are exploited to 'mpro}/@activity and uncertainty handling, have been explored. The
individual visual capabilities. usual approach is to combine (high-level) deliberative planners
that have uncertainty handling capabilities with (low-level)
B. Process Composition reactive modules (behaviors) that handle run-time contingen-

Process composition by representing task/plans as netwdfi€S [22], [34]. The most popular approaches for reasoning
of processes was first proposed by Lyatsal. [24], [25], in under uncertainty are based on probability theory [32], Demp-
which the Robot Schemas (RS) model is discussed. Kosegk@r—Shafer theory [35], fuzzy set theory [39], and certainty
et al. [21] adopt RS and show how we can synthesize a finitactor formalism. Methods t_hat epr0|.t redundancy are usua}lly
state machine supervisor that serves as a discrete event &$€d on data/sensor fusion techniques [1], [17], in which
troller. Elementary behaviors appropriate in the domain of 4gliability is improved by pooling evidence.

“intelligent delivery agent” are described, and experiments in

robot navigation are presented. Our work also makes use of th
9 P §Uncertainty handling can be further divided into the two related areas

RS. model, however, we rec’tonze th_e |mpqrtance of mOdl‘Uﬁexplicituncertainty handling and methods exploitirglundancy(such as
fusion to the robust behavior of active vision systems ardnsor fusion).
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TABLE |
SUMMARY OF RS CoMPOSITION OPERATORS

1. Sequential Composition: T = P;@Q. The process T behaves like the process P until that terminates, and then
behaves like the process @ (regardless of P’s termination status).

2. Concurrent Composition: T = (P|Q)°. The process T behaves like P and ) running in parallel and with the input
ports of one connected to the output ports of the other as indicated by the port-to-port connection map c.

3. Conditional Composition: T'= P{v) : @,. The process T behaves like the process P until that terminatcs. If P
aborts, then T aborts. If P terminates normally, then the value v calculated by P is used to initialize the process
@, and T then behaves like @,,.

4. Disabling Composition: T = P#Q. The process T behaves like the concurrent composition of P and @ until either
terminates, then the other is aborted and T terminates. At most one process can stop; the remainder are aborted.

5. Synchronous Recurrent Composition: T = P (v} :;Q,. This is recursively defined as
P3Q=P:(Q;P Q)

6. Asynchronous Recurrent Composition: T = P (v} :: Q. This is recursively defined as

P:Q=P:(Q|(P:Q).

Sensor integration/fusion has the potential of reducing ovdor temporal structuring of processes. However, RS does
all uncertainty, overcoming sensor imperfections, and proet address the quality issue (integration of homogeneous
ducing more reliable results. In [1], image segmentation modules) in an explicit manner.
performed in a framework in which fuzzy set theory is In order to get the benefits of improved quality along with
adopted for sensor fusion, where uncertainty is modeled usitig temporal structuring necessary for effective behavior, we
membership functions. A drawback of fuzzy set theory is thaktend the RS notation with a fusion operator. In this section,
the estimation of the fuzzy sets or membership functions ca® discuss the RS model. In the next section, we show how
be cumbersome if no clear guidelines can be found. Howevere have extended the RS model to incorporate integration
recent works have proposed methods for estimating membier-an explicit manner, and then in Section V, we present a
ship functions, in particular, from statistical data, that partialijormalism for process integration.
avoid this problem. Fuzzy set theory also provides a large
set of combination operators, which allow for adaptive fusiom. Robot Schemas
Therefore, it should be mentioned that fusing behaviors with Process composition in our system is based on a model

different reliabilities using fuzzy set theory is an interestingroposed in [24] and [25] called RS. RS provides notation

alternative to simple voting schemes. for specifying process concurrency that captures the temporal

d In 326]'”6‘ decentra::z_ed ;pprgach to datg fusion |s_|ntr%-ng structural dependencies required to implement complex
uced. This approac IS based on Bayesian reasoning 3 ception—action tasks, such as those demanded by active
utility theory. The Bayesian methods, however, may not sion

suitable in certain applications for wo reasore:priori Table | summarizes the RS composition operators. In the RS

probabilities can be gilllﬁlculg 'I not impossible to obtgm andy o del, communication channels between concurrent processes
In many cases, we will need 1o express ighorance with regalgs ajieq “ports.” Messages are written to, and read from,

to specific choices. Under these conditions, other techniq ts. A port-to-portconnection relationcan be specified as
are called for. Dempster—Shafer theory is suitable for handling optional third parameter in concurrent composition. This
ignorance and does not requariori probabilities. However, connection relation specifies a set of couples — ip

in the general case, Dempster’s rule of combination has an %icating that portip and op are connected. '

ponential computational complexity. In specific cases, this can . o o
be circumvented and tractable implementations are possible.l) Sequenna! Compositionl” = P’Q' The processr
behaves like the procesB until that terminates and

then behaves like the procesg (regardless ofP’s
termination status).

We distinguish between two forms of module integra- 2) Concurrent CompositiarZ’ = (P | Q). The proces§’
tion: integration of functionally equivalent (homogeneous) behaves like” and ¢ running in parallel and with the
modules and composition of functionally nonequivalent (non-  input ports of one connected to the output ports of the
homogeneous) modules. The goal of integrating homogeneous other, as indicated by the port-to-port connection map
modules is to improve quality (in the sense that the set of3) Conditional CompositionT = P{(v) : (J,,. The process
integrated modules are better able to handle uncertainty than 7" behaves like the proced3 until that terminates. I
any of the individual member modules), while the goal of aborts, ther¥” aborts. If P terminates normally, then the
process composition is to encode the temporal and structural valuew calculated byP is used to initialize the process
dependencies between processes necessary for effective be- @ andT behaves likeQ,.
havior (decisions/actions/commands). We adopt the notatiod) Disabling CompositionT” = P#(. The processl’
of the well-known RS model that proposes an elegant notation  behaves like the concurrent composition Bfand @

I1l. M ODULE INTEGRATION AND COMPOSITION
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of the object at image center. In pursuit, vergence, foveal
motion detection, and dynamic accommodation are used to
continuously drive motion of the vision sensor

pursuit= (vergence # foveal motion
# accommodation) :; move

IV. INCORPORATING REDUNDANCY

In this section, we extend the RS model with a fusion oper-
ator so that integration of homogeneous modules is provided
in an explicit manner. The RS notation of Table | is based
on the composition of individual processes that are defined
as a “unique locus of computation” drasic schemassuch
as a piece of hardware or physical agent of change. It is not
possible to describe or analyze behavior below the level of a
basic schema.

We augment the RS model to include fusion capabilities
with the addition of theintegrating composition operator
fuse which extends the definition of schemato include the
(b) fused output of a set of behaviors. A set of homogeneous
) . behaviors that in combination pursue a specific goal are called
Fig. 1. (a) Synchronous recurrent composition; (b) asynchronous rec:urrear}t)ehavior teamGiven a behavior team made up of behaviors
composition.

b;, we define the behavior of the schemaresulting from
Etegrating compositioras follows:

until either terminates, and then the other is aborté
and 7" terminates. At most, one process can stop; the
remainder are aborted.

5) Synchronous Recurrent Compositidii = P(v) :; Q.. - . '
This is recursively defined a8 :; Q = P : (O P :: Q). The formal description of the operatéuse is left undefined

6) Asynchronous Recurrent Compositioh = P \langle v as there are various ways to integrate modules, as discussed

\rangle :: Q_v. This is recursively defined &:: Q = in Section V. For the purposes of this paper, we use plurality
P:(Q '|' (P_~: Q) h approval voting. Note that we have not modified the existing

RS operators in any way, we have only extended the definition
of a basic schema in a well-defined manner. The formalism
presented in Section V shows that the reliability of schébna

B = fusabl, boy .., bn)

Of the six RS operatorssynchronous Recurrent Composi
tion and Asynchronous Recurrent Compositigquire further

explanation. Both operators express iterati@ynchronous will be at least as good as the reliability of any of theAs a
_Recu_rrent Composmoepemfl_es th_e standard “loop cons_truc‘esult of this extension of the definition of a schema, we retain
in which process” and@ are iteratively executed sequentlally.aII of the analytic power of the RS model and provide module
Execution of the loopP followed by @2 continues until process integration benefits of Section V

P aborts. Asynchronous Recurrent Compositia similar To give an example of how th'e new operator is used, we

Ioopl_ng mechamsm; however, in this case, _proo@ss not_ will rewrite the definition ofpursuitin Section IlI
required to terminate before proceeding with the iteration.

This enables multiple instances of procégto be generated
and executed concurrently. The behavior of these operators is
illustrated in Fig. 1.

For an interpretation of the RS operators in the context of ) ) . ]
active vision, we express the high-level active vision activitid® include module integration. Pursuit can now be defined as
of fixation and pursuit in RS notation. Fixation is responsiblf®!lows:
for centering the image of an object and is initialized with a ]
saccade to the fixation point followed by continuous vergencBUrsult
control driven by disparity and accommodation cues = (vergence # fuse(blob, idiff,

edge, sob) # accommodation) :; move.

pursuit = (vergence # foveal motion
# accommodation) :; move.

fixation = saccade; ((disparityaccommodation) :;

(vergence control)). The four motion detection techniques, BLOB, IDIFF, edge,

and SOB, are integrated under fluse operator, yielding their

Pursuit is employed for tracking objects during motion. Thimtegrated behavior. Our experiments in Section VII verify that
motion may originate from egomotion or object motion. Ihe use of thduseleads to dramatic improvements in tracking
both cases, the objective of pursuit is to stabilize the imagdility over any individual technique.
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V. UNCERTAINTY HANDLING USING VOTING SCHEMES

S

In this section, we present an approach for constructing s (®) / \
reliable modules from less reliable ones. A team of redundant / N
modules vote for a set of possible actions. The votes are @
then combined, and the most appropriate action, corresponding I
to the action with the highest number of votes, is chosen. b () \\\
Voting is a common technique for construction of reliable .
hardware components and critical systems, such as certain .
components used in the aviation industry. Simplicity is a .
virtue of voting techniques and enables cost-effective and ot
efficient hardware as well as software implementations. The / Y
basic idea behind this approach is similar to that of sensor "= / \\/

!

fusion with the hypothesis that the overall reliability will
be improved by combining pieces of evidence provided by @

independent/partially independent sources. However, in thig. 2. Schematic of the composition process in a team of homogeneous
approach presented here, no explicit model, probabilistic ®pdules. The modules generate their votes (left), which are combined using
otherwise, is used in the fusion process. It is thus interestiW@ composition operator. The composed module is illustrated on the right.
to investigate how simple model-free voting techniques can be

used to improve the reliability of purposive modules. most appropriate one from a module’s point of view. In the
case of purposive modules, more than one action can be
A. Homogeneous Modules appropriate; thus, a variant of weighted consensus voting,

We f i dulé ina f i known asapproval voting is called for.
€ lormaliz€ a module as a mapping from an action Space  pyqfinition v.1 (n-out-ofs Approval Voting): An approval

© to the interval(0, 1] voting scheme$ : © — [0,1], in which n is the number

b:© —[0,1]. (1) of homogeneous modules, is defined in the following way:
. . i LS b(0), if S v (8) >m
— _ n =1 " b =1 “? p
The action spac® = {6,6.,...,0,} is defined to be 6(6) = {07 otherwise (3)

a finite set of possible actions or control parameters. The
mapping assigns to each actigh € © a preference, in where
which the most appropriate actions are assigned one and
undesired/illegal actions are assigned zero. Consider having vi(0) =
a set of modulesp, all providing the same objective, such as ) , )
object tracking, obstacle avoidance, or door traversal. is the voting function that determines whether a module votes
A set of modules with the same objective will be denotel" @ given action. o
homogeneous modufesThe output of the modules are com- A module votes for an action if its preference for that

bined using a voting techniqué and the most appropriateSpeC'f'C _act|on is>0. If >m modyles vote fo_r an actlorﬁ,,_ _
action chosen i®'. where then their preferences are combined according to the original

approval voting scheme, which is an (possibly weighted)
6(60") = max{6(6) | # € O}. (2) addition of the preferences.
) ) ) ) In this paper, we experimentally show that fusion of ho-
Fig. 2 illustrates how the outputs are combined using thgogeneous modules using such simple voting schemes can
composition operato#, producing a new preference over thgyprove system reliability. In the following, we characterize

1, if bz(9) >0

0, otherwise fori=1,....n (4

action space. the reliability of a team of homogeneous modules and use
_ the reliability for selecting an appropriate-out-of-n approval
B. Voting Schemes voting scheme. More specifically, the parameteihas to be

In the literature of reliability theory, numerous votingchosen to ensure improvement in system reliability. In order
schemes have been proposed, and in [30], a taxonomytdsenhance the clarity of the paper, we only present important
given for existing classes of Voting schemes. The most us@@perties from the theoretical characterization. For a com-
and most general voting schemes are majority votingsand Plete analytical treatment of performance characterization, see
out-of-n voting, respectively, which belong to the same cladd3]. The general problem (i.e., including other classes of
of voting known asweighted consensus votintn majority voting schemes) of selecting the optimal voting scheme that
voting, an action is chosen that has received more than halffégximizes system reliability is investigated in [8].
the total number of votes. Im-out-of-n voting, an action is
selected if it receives: or more votes out of. In their original C. Reliability of Teams of Homogeneous Modules

formulations, however, weighted consensus voting schemeshe reliability of a behaviob; is defined as its probability
require that each module votes for only one action—th§ success and is denoteg. The reliability of a team

3Even though they have the same objective, these modules can be basegfonom()geneous mOdUI_eS usimg-out—ofﬂ appioval voting,
different sensing modalities, algorithms, etc., to achieve the same objectivdenotedr.,,,(p1,...,p,), is defined as a function ofr and
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the reliability of the modules constituting the team ... ,p,. blob edges is found; therefore, an edge operator is used on
rm(p1,...,0n) €Xpresses the probability that the system ihe input image to find the edges. Strengths and weaknesses
successful if at least: of its n behaviors are successful.  of edge tracking are similar to those of blob tracking.

Using these definitions, it can be shown that the reliability of In our implementation, the Sobel edge detector [7] is used
a m-out-of-n system is greater than or equal to the reliabilityo find the edges. The resulting edge image is then thresholded
of a (m + 1)-out-of-n system. Thus, by induction, it can beto segment the object from the background. The centroid of
concluded that a 1-out-of-system will provide the maximum the edges is then computed and returned.
reliability. This result (as shown in [8]) applies generally, i.e.,
with no assumptions about statistical independence betw%en
the modules. A 1-out-ofi voting strategy is denoted plurality
voting and chooses the action that has received the maximurhmage differencing is the simplest of our motion analysis

number of votes. Based on these results, we use a pIuraFRgh”iqueS- Image differencing is performed by taking the
approval voting in this paper. difference of two consecutive frames

Image Differencing

VI. SMOOTH PURSUIT AND CUE GENERATION din,z,y) = f(n,z,y)— f(n —1,2,y) (5)

The visual robustness of biological systems is due in part
to the update of visual system parameters, which ensuwmsere d(n,z,y) is the difference imagef(n,z,y) is the
continuous delivery of high-quality images of salient objectsurrent frame, andf(n — 1,z,y) is the previous frame.
Smooth pursuit is a primary visual behavior used by biologic&lifferencing segments the scene into static and moving regions
systems for this purpose and is a topic of much interest &s only objects that have changed position between two
the active vision community. Smooth pursuit is the procesensecutive images will have nonzero pixel values.
by which a moving object is tracked. The goal is to keep The strengths of differencing lie in its simplicity, making it
the retinal position of the moving object inside the foveauitable for real-time implementation, and its ability to handle
Benefits of smooth pursuit include object stabilization in theaultiple objects. However, the structure of the moving object
image as tracking emphasizes the signal of the target over tias to be simple in order for subtraction to segment one
background and the localization of image processing to tbheject into one motion region. A problem with using image
region of the fovea [15]. differencing in smooth pursuit is that retinal motion of the

In both biological and machine vision systems, motion andtackground induced by camera movement can be mistaken
ysis provides the basis of smooth pursuit. The smooth pursag object motion unless this motion is first subtracted out
behavior team used in our experiments (Section VII) consigif the image.
of the following motion analysis techniqueblob tracking In our implementation, the centroid of all pixels falling
edge tracking image differencing and template matching above a grayscale threshold was computed over a two times
We chose these techniques as they are relatively simplébsampled fovea of 10 100 pixels in the difference
to implement and are sufficient for the purposes of oumage. Here, thresholding eliminated pixels that would have
experiments. We now briefly discuss the techniques focusimgstakenly been used in the centroid computation when,
on strengths and weaknesses. in fact, they were an artifact of noise introduced by the

imaging process.

A. Blob Tracking

Due to its simplicity and suitability for real-time imple-D. Template Matching

mentation, blob tracking has been perhaps the single MOStyq jgeq hehind template matching is to find the location

commonly used technique for motion detection in tracklngf a particular object in an image by searching the image

systems. Numerous works, such as [14], have reported systeiSihstances of a second, smaller image called a “template”
that are able to track a black or white blob. The source of magyt <ontains the object. The template matching algorithm

of tr;]ese systek:nsflks)labmowrllg I'gl_ht' such as alf_la_shllghti(_ compares the template with the image at different image
_ The strength of blob tracking lies in its simplicity, makingj,aiong and finds the location in the image that best matches
it suitable for real-time implementation. However, it is unablﬁ1e template

to handle multiple objects and is not useful in realistic envi- Correlation provides the basis of template matching. For

ronments, as it assumes an object with high contrast relatg(gch image location, a similarity measure is computed, indicat-

to the background. ing how well the template matches the image at that location.

In our implementation, we assume a dark blob moving ove§,q jmage location that provides the maximal similarity mea-
a light background. The algorithm thresholds the input imagege s selected as the location of the object in the image.

to segment the blob from the background and then compute$ytterences in various template matching techniques are

and returns the centroid of the blob. usually found in the method used for computing the similarity
measure. Several common techniques include the sum of
squared differences (SSD) technique and normalized cross

Edge tracking is similar to blob tracking. However, rathecorrelation. We use the SSD for computing the similarity
than finding the centroid of the entire blob, the centroid oheasure in our implementation.

B. Edge Tracking
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TABLE I want to show and how it can be shown. We then present our

MODULE TIMING ANALYSIS. EFFECTIVE SAMPLE RATE GIVES experiments followed by a discussion of the results.
THE SPEED AT WHICH EACH MODULE RUNS INDEPENDENTLY,WHILE

THE ACTUAL SAMPLE RATE Is THE RATE USED IN THE EXPERIMENTS
A. Experimental Setup

Module Effective Sample Rate | Actual Sample Rate

ﬁfi’a‘;g;g‘ﬁ e T o . The goal of our experiments is to investigate the hypothesis
Edge Tracking 3 iz, 1010z that fusion of homogeneous behaviors can lead to improved
Zomplate Matching AL St reliability. In particular, we want to show that active vision

can indeed benefit from module fusion. In order to show
this, we have implemented the four cue generation modules
The SSD similarity between a functigf{z) and a template discussed in Section VI as well as a module that fuses their

t(z) is given by results by approval voting. With this configuration, we run
v N a series of tracking experiments on a robotic head. In each

experiment, a robotic manipulator effects horizontal translator

SSDiy) = Y [f(@) —Hz— ) 6 =P P Y

motion consisting of two motion segments: from the starting

location to a location 200 cm to the right and return to the

where M and N are the size of the template. starting location. The speed of the manipulator was set so
Strengths of template matching include its ease of infhat the entire 400-cm manipulator motion was completed in

plementation and efficient calculation over the entire set gpproximately 15 s.

locations. However, template matching is sensitive to changesn the experiments, we measured the ability of each module

in object shape, size, orientation, and changes in image intéfitrack various combinations of objects and backgrounds. We

r=—1y=-—1

sities. call each such combinationszenario The six scenarios used
in our experiments are shown in Fig. 3. As can be seen in
E. Cue Implementation Details the figure, objects range from a simple blob to real objects.

The reliability of each of the motion analysis modules i$imilarly, backgrounds range in complexity from a constant
global in the sense that it is dependent on variables, suchP&ge background to a natural background with randomly
lighting, focus, etc. While it would be interesting to analyz&!aced objects. _
the effects of such variables on tracking, for the purposes of'Ve tested the performance of each of the five modules [blob
our work, we were not interested in finding implementatiori§acking (BLOBY)], image differencing (IDIFF), edge tracking
that provide the best possible results. We in fact show that it@OB), template matching (TM), and fusion (FUSE)], on each
not critical to have the most accurate implementation, as fusigenario. A total of 3@xperiment setaere conducted using
tends to enhance overall performance. Therefore, our impl8€ Six scenarios, in which each experiment set consisted of
mentations are simple and straightforward. Understanding #§§ting each of the four motion tracking modules plus the
effects of these other variables and improving the behavior fion module on a scenario. To account for variations in
the individual techniques is an orthogonal effort and can onlighting and other conditions, each scenario was used for five
help to improve the results of fusion. experiment sets (corresponding to 150 single e>_<p(_er|ments).

In all but template matching, image thresholding is used td'€ Scenarios were chosen so as to push the limits of one
segment the object from its background. For each technig@é,more of the modules at a time so that they would fail. We
gray-level thresholds were empirically chosen to provide the$€d the number of failing modules on a particular scenario
best segmentation over the entire range of experimental sé8-& measure of the scenarios complexity, e.g., if a sétiing
narios (Section VII). Timing analysis for the modules is givef?ads to the failure of three of the modules and another setting
in Table II. b leads to the failure of one module, and then we say that

The effective sampling rate gives the speed at which ea%ﬁttinga is more complex than setting. This allows us to
module can run independently. However, in order to obtalivestigate the performance of the fusion module relative to
comparable results, we eliminate variations in sampling rafé® complexity of the scenario. The histogram in Fig. 4 shows
that may influence the performance of the modules (oftdRe distribution of the number of failed modutesr each of
higher sampling rates lead to improved performance). vilge 30 experiments; e.g., in 11 of the experiments, all but one
normalized the sampling rate by executing all modules s@f the modules failed to track the object.

quentially while actuating the motors based on the results of WO measures are used to quantify each module’s ability
the particular module we were testing only. to track: absolute errorand relative error. Absolute error

is a yes/no answer to the question of whether a module
successfully tracks during a single experiment. A module is
] . . ) . said to track an object successfully if some part of the object is
In this section, we present experiments in which we U$gcated at the image center during the entire motion sequence,

the tools and motion analysis techniques presented in previgi§erwise it has failed to track. The ratio of the number of

sections to execute smooth pursuit while exploiting the benefits4 o N _ _

of integration. Our experiments focus on module integratiogett\i/r\:g call a scenario, lighting conditions, etc., during the experiments a
In p'rfawous works, we havef expe”memed W_'th Process CoMsgcenario complexity is determined based on the performance of the
position [18], [19]. We begin with a discussion of what werimitive modules; thus, the fusion module is not considered in the histogram.

VIl. EXPERIMENTS
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Fig. 3. In the experimental scenarios, various combinations of objects and backgrounds provide differing complexities.

successful runs to the total number of runs provides a measoase) to afixed point on the moving object. We term this

of module reliability. expressiordistance error We also separate this distance into
Relative error quantifies the quality of tracking, i.e., #s X (horizontal) andY” (vertical) components to investigate

measure of how well tracking is performed. As an expressitine contributions of these components to the error. Here

for relative error, we use the distance (in pixels) from thee present the mean and standard deviation of the distance

image center (where the tracked object should be in the ideator, along with the mean and standard deviations of the
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Fig. 5. Comparison between the success of individual modules and the
success of fusion. The histogram represents 30 trials. The bars of the histogram

) o . ) _ represent the number of times there weresuccessful modules, where
Fig. 4. Distribution of the number of failing modules at each trial duringanges from zero to four. The shaded portion of the bars represent the number
30 trials. The fusion module is not taken into consideration here. Settiag times that fusion succeeded. The most interesting part of the histogram

complexity increases from left to right.

is in the first segment (zero successful modules). What this is saying is that

in three of the 30 experiments, none of the individual modules successfully
tracked the object. However, in one of those three cases, fusion succeeded.

TABLE 1lI
Absolute Error. MODULE SUCCESS AND FAILURE RATES. RELIABILITY
Is CALCULATED AS THE RATIO OF SUCCESSFULRUNS TO THE TOTAL
NUMBER OF EXPERIMENTS. THE MAIN RESULTS ARE HIGHLIGHTED

Module No. of successes i No. of Failures | Reliability
Blob Tracking 11 19 36.7%
Image Differencing 14 16 46.7%
Edge Tracking 12 18 40.0%
Template Matching 13 17 43.3%
Fusion 24 6 80.0%

TABLE IV
Relative Error. MobuLE PERFORMANCE RESULTS FOR30 RUNS. RELATIVE
ERROR |s PRESENTED BY THEMEAN DISTANCE ERROR AND STANDARD
DEVIATION. THE STATISTICS FOR THE CORRESPONDINGX AND Y
CoMPONENTSARE ALSO LISTED. THE MAIN RESULTS ARE HIGHLIGHTED

Module Mean X | Std.Dev X | Mean Y | Std.Dev Y | Mean | Std.Dev.
Blob Tracking 136.1 188.9 110.0 198.1 | 185.9 266.4
Tmage Differencing 44.0 86.4 12.8 488 | 49.9 97.3
Edge Tracking 72.1 109.0 25.9 92.7 1 82.6 139.7
Template Matching 76.4 125.1 30.2 111.8 88.6 164.4
Fusion 17.2 24.1 5.2 25.8 19.8 34.3

correspondingX andY components, for the 30 experiments
(see Table IV). To obtain the distance error, we recorded
each motion sequence to videotape. Using the videotape, we
manually extracted the pixel distance between image center
and the fixed point on the moving object over the duration
of the tracking® This determines the “ground truth.” To make
the results of ground truth extraction as accurate as possible,
we overlayed a-+” symbol at the image center and selected
the object point located under the-" at the start of tracking

as the fixed object point for the rest of the sequence. Further,
in order to analyze the behavior of the modules, we recorded
their outputs, denoted @sacking resultswhich where used to
control the camera head. Since the tracking results themselves

Errorin Y [pixel]

Error in X [pixel]

QDO orenre e

100 f-

............ b—— T -

BLOB

IDIFF

Tsoe

— FUSE

i00

Frame Nr.

150

100

Frame Nr

150

This is a powerful point. Even though, no individual tracking module was
able to track the object, the fusion of the modules succeeded. We call this
phenomenon “corrective reinforcement.”

did not contain information about how well the actual trackingig. 6. Plot of distance error for the modules during experiment. (a) Distance
was going, we had to relate them to the ground truth. Thus,dtior in the.X (horizontal) direction. (b) Distance error in the (vertical)

order to correspond the ground truth with the tracking resulf&/ecton
we logged, along with the tracking results, the sample/franm@mber at which the results were generated. We printed the

6Every fifth frame of each video sequence was analyzed manually to obt
the distance error.

same sample number on (the upper left corner of) each frame
3f the video sequence.
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Fig. 7. Sequence showing the tracking results and the fusion process. During the sequence, the camera is driven by the fusion module. The plots present
each module’s votes for each action (here motion in the horizontal direction). These votes are combined by the fusion module (FUSE), and the best actio
indicated by the dot in the plots is selected. Sequence showing the tracking results and the fusion process.

B. Experimental Results error. The table also lists for bot andY the mean value of
Experimental results are presented in Tables Il and I\(]I.istance error along with corresponding standard deviation.

Absolute error results are listed in Table Il along with module The plot in Fig. 5_|Ilustrates the_perfor_mance of the_: fusion
module as a function of scenario/setting complexity. The

reliabilities. Columns 2 and 3 in the table list the numbeﬂgure consists of two superimposed histograms, one (solid

of successful runs and the number of failures, respecuve{:yames) showing the distribution of the per-trial number of

Module reliabilities, listed in the last column, are calculated agccessful modules and the other (filled area) showing the
the ratio of the number of successful runs to the total numbermrresponding portion of the successful fusion trials. In the

runs (30). Table IV summarizes the relative error results arfijure, the complexity of the experimental setting decreases
in particular, the mean and standard deviations of the distarfoem left to right—the fewer modules that succeed in a setting
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Fig. 7. (Continued) Sequence showing the tracking results and the fusion process. During the sequence, the camera is driven by the fusion module. The
plots present each module’s votes for each action (here motion in the horizontal direction). These votes are combined by the fusion module (fgSE), and
best action indicated by the dot in the plots is selected. Sequence showing the tracking results and the fusion process.

the more complex it is. As can be seen, in three of theln order to explain this effect and to highlight several
experiments, none of the modules succeed. Nonetheless, itlteresting aspects of fusion, we present data from a single
fusion module (surprisingly) succeeds in one of these thregperiment. The scenario used for this particular experiment
cases. Note also that, in 11 of the cases, only one modideshown in Fig. 3 in the last row, second column. Fig. 6
succeeds, but in seven out of the 11 cases, the fusion modalea plot of the distance errors (the sign of the error is
manages to track successfully. How the fusion can succeadluded in the plots) inX and Y, respectively. Looking
even though all or the majority of the individual modules failat the figures, we see that in this scenario, the BLOB, ID-
is interesting and will be explained intuitively in the remaindeliFF, and SOB modules are unable to track the object. On
of this section. We are planning a theoretical analysis of thtise other hand, template matching (TM) and fusion (FUSE)
effect in future work. succeed in tracking.
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Fig. 7. (Continued) Sequence showing the tracking results and the fusion process. During the sequence, the camera is driven by the fusion module. The
plots present each module’s votes for each action (here motion in the horizontal direction). These votes are combined by the fusion module (fFgSE), and
best action indicated by the dot in the plots is selected. Sequence showing the tracking results and the fusion process.

Fig. 7 contains plots of the actual outputs generated duringsumes tracking, and in frame 81, IDIFF resumes tracking.
one experiment. The plots show the outputs generated by tkaditionally, in subsequent frames, it seems that BLOB drifts
five modules over 151 frames (with a step of ten frameaway and later resumes tracking.

i.e., 1 s). The output of each module is illustrated as aAs evident from Fig. 6, if run independently IDIFF fails to
triangular window of width equal to ten pixelsOnly the track the object through the entire experiment. However, in
plots for the X-axis are shown. The output of each modul€ig. 7, it is seen that IDIFF can resume tracking, when run
should be interpreted as the vote for moving the imagde conjunction with the other modules. This can be explained
center to a given pixel. The commanded output is given &s follows: when run independently, if a module loses track
the camera head driver, which translates the pixel valuesdbthe object, due to some artifact in the image that confuses
joint angles and drives the motors. The commanded outputlie algorithm, it may not have the chance to correct itself,
chosen as the output with maximum vote. The vertical axisgecause losing the object eventually causes the object to leave
in each plot, determines the votes that range from zero ttte region of interest (fovea) or even the image. However,
one, with one being the most desirable and zero the leasth fusion, this problem can be corrected do to an effect
desirable. The last plot within each subplot is the output of thieat we terncorrective reinforcement, as other modules may
fusion module, which combines the votes received from tlw®ntinue to drive the object into the region of interest, where
individual modules and chooses the action with the maximutine object/motion is searched for, giving a failing module the
vote, indicated with the dot in the figures. If the maximum ispportunity to regain tracking. This will only work if the cause
nonunique, one is chosen at random. for failure of the modules is disjoint so that the modules never

What is interesting to note in the figure is the behavior ¢br at least rarely) fail simultaneously.
the individual modules and their affect on the behavior of one
another and the fusion module. In particular, frames 51, 61, VIII. C ONCLUDING REMARKS
71, and 81 are interesting. In frame 51, it is seen that IDIFF _ i . i
and TM lose track of the object, while fusion tracks based on Blological vision systems are remarkably adept at provid-

information provided by BLOB and SOB. In frame 71, ™ N9 useful, high-quality visual information in rich dynamic
environments. These capabilities are, in part, a result of the

7Changes in window size are due to scaling. inherent ability of such systems to effectively integrate data
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from a wide range of visual cues as well as compose modules] E. Gat and G. Dorais, “Robot navigation by conditional sequencing,”
in a timely, event-driven manner.

In this paper, we have explored various aspects related to {hg
integration of homogeneous modules and their composition in
the context of active vision. In particular, we have present?gz]

a unified approach for effectively providing both process

integration and process composition. The approach combirré}
a formalism for integrating homogeneous modules and a well-
known process composition model, RS.

Our experiments in smooth pursuit have confirmed that the

performance of several integrated motion analysis modulgs]

is dramatically better than the performance of any of the

participant modules when run independently. In the course g§;
our experiments, we discovered an interesting and powerful
effect that we callcorrective reinforcement which can lead

to higher tracking success rates.

Future work includes experimenting with the compositiof?8!
and fusion of modules for performing other active vision agzg)

tivities, such as fixation and stabilization, a thorough analysis

of corrective reinforcement, and an extension of our work to (30]

include nonhomogeneous modules.
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