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A Fuzzy Classifier with Ellipsoidal
Regions for Diagnosis Problems

Shigeo Abe, Ruck Thawonmas, and Masahiro Kayama

Abstract—In our previous work, we developed a fuzzy classifier with
ellipsoidal regions that has a training capability. In this paper, we extend
the fuzzy classifier to diagnosis problems, in which the training data
belonging to abnormal classes are difficult to obtain while the training
data belonging to normal classes are easily obtained. Assuming that
there are no data belonging to abnormal classes, we first train the
fuzzy classifier with only the data belonging to normal classes. We
then introduce the threshold of the minimum-weighted distance from
the centers of the clusters for the data belonging to normal classes.
If the unknown datum is within the threshold, we classify the datum
into normal classes and, if not, abnormal classes. The operator checks
whether the diagnosis is correct. If the incoming datum is classified into
the same normal class both by the classifier and the operator, nothing
is done. But if the input datum is classified into the different normal
classes by the classifier and the operator, or if the incoming datum is
classified into an abnormal class, but the operator classified it into a
normal class, the slopes of the membership functions of the fuzzy rules
are tuned. If the operator classifies the datum into an abnormal class,
the classifier is retrained adding the newly obtained datum irrespective
of the classifier’s classification result. The online training is continued
until a sufficient number of the data belonging to abnormal classes are
obtained. Then the threshold is optimized using the data belonging to
both normal and abnormal classes. We evaluate our method using the
Fisher iris data, blood cell data, and thyroid data, assuming some of the
classes are abnormal. We show that, for the Fisher iris data and blood
cell data, more than a 90% recognition rate is obtained, even if there are
no training data belonging to abnormal classes.

Index Terms— Blood cell data, diagnosis problems, Fisher iris data,
fuzzy classifiers, membership functions, neural networks, rule extraction,
thyroid data, tuning.

I. INTRODUCTION

To overcome the problem of intractability in multilayered neural
network classifiers, several fuzzy classifiers with a training capability
have been proposed [1]-{6]. They are categorized by the shapes of
their fuzzy regions as follows:

1) classifiers with ellipsoidal regions [2], [3];

2) those with hyperbox regions [4], [5];

3) those with polyhedron regions [6].
The advantage of these fuzzy classifiers, in addition to tractability,
over multilayered neural network classifiers is a fast training ability.

The generalization ability of multilayered neural network classifiers
depends on the training method used and the initial values of weights.
But, in general, multilayered neural network classifiers have a robust
generalization ability over a wide range of applications. Some of
the fuzzy classifiers lack robustness, but in [3] the generalization
ability of the fuzzy classifier with ellipsoidal regions was shown
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to be comparable to the maximum generalization ability of neural
network classifiers when the training data did not include discrete
input variables.

A diagnosis problem in which a system state is diagnosed as normal
or abnormal is one type of classification problem, and diagnosis is
one of the fields to which multilayered neural network classifiers
and fuzzy classifiers are applied. At the initial stage of classifier
development, usually the data belonging to abnormal classes are
difficult to obtain, although the data belonging to normal classes
are readily available. But without a sufficient number of the data
belonging to abnormal classes, we cannot obtain a neural network
classifier or a fuzzy classifier with a sufficient generalization ability.
To overcome this problem, we usually generate training data that
belong to abnormal classes, adding noises to the data belonging to
normal classes [7] or using experts’ knowledge.

In this paper, we take a different approach using the fuzzy classifier
with ellipsoidal regions: we use online training. Assuming that there
are no data belonging to abnormal classes, we first train the fuzzy

- classifier using only the data belonging to normal classes. We then

introduce the threshold of the minimum-weighted distance from the
centers of the clusters for the data belonging to normal classes. If the
unknown datum is within the threshold, we classify the datum into a
normal class and, if not, into an abnormal class. The operator checks
whether the diagnosis is correct. If the incoming datum is classified
into the same normal class both by the classifier and the operator,
nothing is done. But if the input datum is classified into the different
normal classes by the classifier and the operator, or if the incoming
datum is classified into an abnormal class but the operator classifies
it into a normal class, the slopes of the membership functions of the
fuzzy rules are tuned. If the operator classifies the datum into an
abnormal class, the classifier is retrained adding the newly obtained
datum, irrespective of the classifier’s classification result. The online
training is continued until a sufficient number of the data belonging
to abnormal classes are obtained. Then the threshold is optimized
using the data belonging to normal and abnormal classes so that the
recognition rate is maximized.

In Section II, we introduce the threshold to the fuzzy classifier with
ellipsoidal regions. In Sections III-V, we discuss fuzzy rule genera-
tion, fuzzy rule tuning, and threshold optimization. In Section VI, we
describe online training of the classifier dividing the training process
into two stages. In Section VII, using the Fisher iris data, blood cell
data, and thyroid data, we evaluate the proposed fuzzy classifier and
compare its performance with that of the neural network classifier
and the fuzzy classifier with hyperbox regions [5] when a sufficient
number of the data belonging to abnormal classes are available.

II. Fuzzy CLASSIFIER WITH THRESHOLD

In a typical diagnosis problem, we may classify the system state
into one normal class and one abnormal class. But in other types of
problems, there may be sevéral normal and abnormal classes. Since
the data belonging to normal classes are easily obtained, it is relatively
easy to determine how many normal classes we should consider. But
since the data belonging to abnormal classes are difficult to obtain, it
is not easy to determine the number of abnormal classes without
obtaining a sufficient number of the data belonging to abnormal
classes. The most important thing in diagnosis problems is whether

1094-6977/99$10.00 © 1999 IEEE
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the system in consideration is in the normal or abnormal state.
Therefore, here we assume that we know the number of normal
classes, but do not know the number of abnormal classes. Thus, in
the following, we assume that there is only one abnormal class.

We consider classification of an M -dimensional input vector x into
n — 1 rormal classes and one abnormal class. Assume that class 4
(t = 1,...,n) is divided into several clusters 7§ (j = 1,...), in
which cluster ¢j denotes the jth cluster for class ¢. For each cluster

ij, we define the following fuzzy rule:
R;;: If x is ¢;; then x belongs to class ¢ €3]

where c;; is the center of cluster ;. The membership function m;;(x)
of (1) for input x is given by

mi;(x) = exp (—hi;(x)) @)

() = 20 3
(s 7%

d3;(x) = (x — i)' Qi;' (x — cij) @)

where d;j(x) is the weighted distance between x and c;j;, hi;(x)
is the tuned distance, o;; (> 0) is the tuning parameter for cluster
if,cij = (Cij1y-vv,cijm)t, Qiy is the M x M covariance matrix
of cluster ij, ¢ denotes the transpose of a matrix, and —1 denotes
the inverse of a matrix.

The center c;; and the covariance matrix ();; are calculated using
the data belonging to cluster ¢j, assuming that clustering is 100%
correct. Namely, we do not assume a weight for each datum. After
we calculate c;; and @Q;;, using the membership function m;;(x)
given by (2), we know the weight of each datum. The center c;; is
calculated by calculating the average values of the data belonging
to cluster ¢j

1
Cijk = N E Tk (5)
i xEcluster iy

where [V;; is the number of the data belonging to cluster 5.
The covariance matrix Q;; is calculated by

Q=3 >

) XEcluster 17

(x — cij)(x— ci;)". ©6)

If the covariance matrix ();; is singular, we set all the off-diagonal
elements of Q);; to zero so that ();; becomes regular. By this setting,
the axes of the ellipsoidal regions are parallel to the input variables.
But since the kth diagonal element of Q;; is the variance of zx
belonging to cluster 75, the diagonalized @;; is still a good estimate
of the covariance matrix. In the extreme case, if only one datum
belongs to cluster 35, Q;; is a zero matrix. In this case, we set a
small value to the diagonal elements of ;.

Assuming that Q;; is regular, Q;; is a positive definite matrix.
Then it is easy to see that the mean square weighted distance is M

1
e >

XEcluster 5

di(x) = M. O

Now we introduce the threshold ¢, (> 0) for the normal classes. If

for x, the membership function for cluster 5 (1 > ¢ > n — 1), ie.,
m4;(x), is the largest among n classes and

df; (%)

—— <t 8

o St (®)

is satisfied, x is classified into the normal class . If mi;(x) (1 <

i < n — 1) is the largest but (8) is not satisfied, x is classified into

the abnormal class n. If my;(x) is the largest, x is classified into the

abnormal class n irrespective of the value of the weighted distance
dij(x). Note that to exploit (7), we use the weighted distance, not the

x : Abnormal class datum

o: Normal class datum

@)

Contour lines with same
degree of membership

®

Fig. 1. Classification by a fuzzy classifier with ellipsoidal regions. (a) With
a threshold but without fuzzy rules for the abnormal class. (b) With a fuzzy
rule for the abnormal class.

tuned distance, in (8). Otherwise, we need to set different thresholds
to different clusters for normal classes.

Introducing the threshold, we can classify the data belonging to the
abnormal class, even if there are no fuzzy rules for the abnormal class.
But to improve the recognition rate, we need to generate fuzzy rules
for the abnormal class when we get the data belonging to the abnormal
class. Consider the two-dimensional (2-D) case shown in Fig. 1(a).
When the threshold is a, the datum 1 belonging to the abnormal class
is correctly classified into the abnormal class but data 2—4 that belong
to the normal class are misclassified into the abnormal class. If we
increase the threshold to b, data 2—4 belonging to the normal class are
correctly classified, but datum ! belonging to the abnormal class is
now misclassified into the normal class. Thus, in this case, we cannot
correctly classify all the data that belong to the normal and abnormal
classes. This means that, since by the threshold the class boundary
between normal and abnormal classes is defined by an ellipsoid, the
data belonging to the normal class that are outside of the boundary
but are far away from the abnormal class region are classified into
the abnormal class. This can be avoided, as shown in Fig. 1(b), if
we define a fuzzy rule for the data belonging to the abnormal class
and adjust the tuning parameters o;; so that the data belonging to
the normal and abnormal classes are correctly classified. In this case,
we may further introduce a threshold with a large value to improve
reliability of classification.

III. Fuzzy RULE GENERATION

Here we discuss adaptive fuzzy rule generation. There are many
clustering techniques; most of them are iterative [2], [8]-[11]. In the
following, we use a clustering technique that is similar to the method
discussed in [2]. The major difference is that we do not consider the
conflict between different classes since overlapping between different
classes is resolved by tuning c; after fuzzy rule generation. The
method discussed here is that, if a new datum is within a specified
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Fig. 2. Concept of tuning. If the slope of the membership function for class
2 is increased so that the resulting function lies between the shaded regions,
datum 1 is misclassified, but data 2—4 are correctly classified.

distance from the center of the cluster to which the datum belongs,
that datum is included in the cluster. If there is no such cluster, we
generate a new cluster.

Suppose we have the fuzzy rules R;; (j = 1,...,n;) for class ¢
and a new datum x belonging to class ¢, where n; is the number of
fuzzy rules for class ¢ already generated. If

min [|x — ¢y < om 9
250

is satisfied for cluster ¥ (k € {1,...,n:}), we recalculate c;z and

Q:x using x and the data belonging to cluster k, where o is the

maximum radius of the cluster and ||-|| is the Euclidean distance. The

reason why we do not use the weighted distance is that, when there

is an insufficient number of data, the associated covariance matrix

calculated by (6) may not approximate the true covariance matrix.
If (9) is not satisfied, we generate a fuzzy rule R;n,+1 with

ci,n,;+1 =X (10)
€ 0
Qi,ni-{-l = . (1 1)
0 €
where ¢ is a small positive value. The covariance matrix Qi n;+1
given by (11) is a rough estimate. Thus, in tuning «;;, as discussed

in the following section, Qs n;+1 is first tuned. Then all o;; are tuned.

IV. Fuzzy RULE TUNING

Tuning of the tuning parameters «;; is discussed in [3]. Here,
we summarize the procedure of tuning, and we discuss the detailed
procedure in the Appendix.

To explain the concept of tuning, we consider a two-class case
with one rule for each class, as shown in Fig. 2. (In the figure,
instead of the Gaussian function, we use the triangular function as
the membership function.) Datum 1 is correctly classified into class
2, while data 24 are misclassified into class 2. If we increase a1 or
decrease a21, datum 1 is first misclassified, but if we allow datum 1 to
be misclassified, we can make data 2-4 be correctly classified. Fig. 2
shows this when ao; is decreased so that the degree of membership
for class 2 lies between the shaded regions. Then, by allowing one
datum to be misclassified, three data are correctly classified, i.e., the
recognition rate is improved by two data.

@ : Correctly classified

B : Misclassified

Current 0 Tuned o
Ly(2) Li1) U l Uy2)
e P
ORI OO B;(2)

Fig. 3. Determination of tuned o;;. If the current o;; is modified to the
tuned ov;; in (B;;(2), U;;(2)), one correctly classified datum is misclassified,
but four misclassified data are correctly classified.

Now, suppose we tune the tuning parameter a;;. Up to some
value, we can increase or decrease «;; without making the correctly
classified data belonging to class ¢ be misclassified. Now let U;;(1)
and L;;(1) denote the upper and lower bounds that do not make
the correctly classified data be misclassified, respectively. Likewise,
Us;;(1) and L;;(I) denote the upper and lower bounds .in which
{—1 correctly classified data are misclassified, respectively. Then, for
instance, if we set a value in the interval [U;;(1),Ui;(2)) to auj, one
correctly classified datum belonging to class ¢ is misclassified, where
[a,b] and (a,b) denote the closed and open intervals, respectively.

Similarly, if we increase or decrease a;;, misclassified data may
be correctly classified. Let §;;(!) denote the upper bound of «;; that
is smaller than U;;(l), and that makes the previously misclassified
data be correctly classified. And ~;;(!) denotes the lower bound
of «;; that is larger than L;;(7), and that makes the previously
misclassified data be correctly classified. Fig. 3 shows an example.
If we change the current «;; to the tuned «y; in (5:;(2),Us;(2)),
one correctly classified datum is misclassified but four misclassified
data are correctly classified.

Then the next task is to find which interval among (L:;(1),v:;{1))
and (B:;(1),Ui;(1)) (I = 1,...) gives the maximum recognition
rate. To limit the search space, we introduce the maximum I, i.e.,
Ing. Let (Lij(1),7vi;(1)) be the interval that gives the maximum
recognition rate for the training data among (L;;(k),~;(k)) and
(Bij(k),Ui;(k)) for k = 1,...,1n. Then even if we set any value
in the interval to o;, the recognition rate for the training data does
not change but the recognition rate for the test data may change. To
control the generalization ability, we set o;; as follows:

aij = Bij () + 8(Uii (1) — Bi; (1)) (12)
for (8i;(1),U;;(1)), where § satisfies 0 < § < 1 and
aij = i (1) — 8(7i; (1) — Liz(1)) (13)

for (Li;(1), v:;(1))-
According to the above discussion, the tuning algorithm becomes
as follows.

1) Set a positive number to parameter lp;, where Iy — 1 is the
maximum number of misclassifications allowed for tuning «;;,
a value in (0,1) to 6 in (12) and (13), and the same positive
initial value (usually one) to oj.

2) For a; (1 = 1,...,n,5 = 1,...), calculate Li; (1), Uij(l),
Bi; (1), and ~;(I) for I = 1,...,lp. Find the interval
(Li; (1), vi; (D) or (Bi;(1),Us;(1)) that realizes the maximum
recognition rate of the training data, and change «;; using
(12) or (13).

3) Iterate step 2) until there is no improvement in the recognition
rate.
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Usially Iy = 10 is sufficient. According to our experiments [3],
the value of 6 did not affect the recognition rate of the test data sig-
nificantly, but a small value of § sometimes gave a better recognition
rate of the test data. Thus, in the experiments in Section VII, we use
0.1. The detailed tuning algorithm is discussed in the Appendix.

We call the update of all a;; (¢ = 1,...,n,7 = 1,...) one
iteration of tuning, and if there is no improvement in the recognition

rate for the two consecutive iterations, or the recognition rate of the .

training data reaches 100%, we stop tuning. Our tuning algorithm
determines, for each fuzzy rule R;;, the optimum tuning parameter
oj, allowing the data that are correctly classified before tuning R;;
to become misclassified after tuning R;; as long as the recognition
rate of the training data is improved. To allow the data that are
correctly classified before tuning some fuzzy rule to be misclassified
after tuning that fuzzy rule is, so to speak, to prevent the tuning
process from leading to convergence to a local minimum. But of
course, since the tuning process is nonlinear, we cannot guarantee
that this method always gives the optimal solution.

V. THRESHOLD OPTIMIZATION

When a sufficient number of the data belonging to the abnormal
class are obtained, we can determine the threshold ¢, so that the
recognition rate is maximized. Letting N (a) be the number of the
correctly classified data with threshold a, then we give N(a) by

N(a) = Nun(a) + Naa(a) (14

where Np,(a) is the number of the data that are correctly classified
into the normal classes with ¢, = a and Naq(a) is the number of the
data that are correctly classified into the abnormal class with ¢, = a.
By introducing the threshold the regions for the normal classes are
bounded. Thus, the following relations hold:

Npn(a) € Npn(o0), Naala) > Nao(oo) for positive a.  (15)

Therefore, there is an optimal a that maximizes V(a) — N(c0),
Since

N(a) = N(0) = Nag(a) = Naa(00) 4+ Npn(a) — Nun(oo)
= ANga(a) + ANpn(a)

where ANa.(a) (> 0) is the increase of the data correctly classified
into the abnormal class by introducing ¢, = a and AN, (a) (< 0)
is the decrease of the data correctly classified into the normal classes
by introducing t, = a.

To simplify the maximization of (16), we set the interval
[th,min, th max), Where ¢4 min > 1, and in the interval, we calculate
(16) for t min + kA, where th min + KA < tpmax fork=0,1,...,
and we obtain £ min + kA that maximizes (16).

VI. ONLINE TRAINING

The parameters of the fuzzy rule R;; are the center c;;, the
covariance matrix (J;;, and the tuning parameter o;;. The first two
parameters are determined by the training data. Thus, if a sufficient
number of the training data for that rule are not available, c;; and Q;;
need to be recalculated when the associated data are obtained. The
tuning parameter c;; is determined so that the recognition rate of the
training data is maximized. Thus, if the fuzzy rule R;; is determined
using a sufficient number of the training data, we only need to tune
a;; for that rule using the training data.

Now for the diagnosis problem we assume that at the initial
development stage of the fuzzy classifier we have a sufficient number
of the data belonging to the normal classes, but no data belonging to
the abnormal class. Thus, the parameters c;; and @i; of the fuzzy

(16)

TABLE [

PROCESSING AFTER CLASSIFICATION
Classifier's Operator's Processing
classification __ classification

the same normal class none
different normal classes tune q;
normat abnormal modify rules and tune oy;
abnormal normal tune o

abnormal abnormal modify rules and tune oj;

rules for the normal classes are calculated only once at the initial
generation and are fixed thereafter. By contrast the parameters c;;
and @J;; of the fuzzy rules for the abnormal class are recalculated or
new fuzzy rules are generated whenever new data belonging to the
abnormal class are obtained until there are a sufficient number of the
data belonging to the abnormal class.

The development of the fuzzy classifier is divided into two stages:
the training stage with an insufficient number of the data belonging
to the abnormal class and the tuning stage with a sufficient number of
the data belonging to the abnormal class, as described next. Training
stage: in this stage, there are no rules for the data belonging to the
abnormal class or, even if they exist, their reliability is low. Therefore,
we set the small threshold ¢, to avoid misclassification of the data
belonging to the abnormal class. But to ensure a sufficient recognition
rate of the data belonging to the normal classes, ¢; needs to be
larger than one. After classification of data by the fuzzy classifier,
the operator checks the result and feeds back the operator’s decision
to the classifier. Processing thereafter is divided into five cases, as
shown in Table L. If the input datum is classified into the same normal
class both by the classifier and the operator, no processing is done.
But if the input datum is classified into the different normal classes by
the classifier and the operator, all a;; are tuned using the previously
obtained data and the newly obtained datum. If the input datum is
classified into one of the normal classes by the classifier, but classified
into the abnormal class by the operator, or classified into the abnormal
class both by the classifier and the operator, the rules for the abnormal
class are generated or modified and then all «;; are tuned using the
previously obtained data and the newly obtained datum. If the input
datum is classified into the abnormal class by the classifier, but it
is classified into one of the normal classes by the operator, all «;;
are tuned using the previously obtained data and the newly obtained
datum. The input datum is stored for tuning or rule generation or
modification thereafter.

Tuning stage: in this stage, a sufficient number of the data
belonging to the abnormal class are obtained, and hence; modification
or generation of fuzzy rules for the abnormal class is not necessary.
Then, if the classification of the classifier and that of the operator are
different, ;; are tuned and the threshold ¢;, is optimized.

VII. PERFORMANCE EVALUATION

We evaluated the performance of the fuzzy classifier with ellip-
soidal regions using iris data [12], blood cell data [13], and thyroid
data [14] and compared the performance with that of the multilayered
peural network classifier and the fuzzy classifier with hyperbox
regions [5] when a sufficient number of the data belonging to the

.abnormal class were available. By combining several classes into

one, classification usually becomes difficult. Thus, in our study, we
combined several classes into one class and considered it as the
abnormal class. When we clustered classes, we only clustered the
data belonging to the abnormal class. Then to test the feasibility of
online training, we first generated a fuzzy classifier using all data
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TABLE II
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR IRIS DATA BY CHANGING o py (WITHOUT THRESHOLD)

_0m_No. Clusters  Init. _ Final Iterations Time (s)

0.5 1 2 2 2 2
0.4 2 1 2 l 2
0.3 2 1 2 1 2
0.2 3 2 2 1 2
0.1 7 2 2 1 2

belonging to the normal classes included in the training data. Then
we trained the fuzzy classifier online, successively feeding the data
belonging to the abnormal class selected from the top to the bottom
of the training data file. At each online training step, we evaluated
the recognition rate using the test data. The recognition rates in the
following tables are all those of the test data.

Unless otherwise stated, for «;; tuning, we set «;; = 1 as initial
values, 6 = 0.1, and Ipy = 10 and, for threshold tuning, we set
th,min = 2, thmax = 10, and A = 0.2. For evaluation of the fuzzy
classifier with hyperbox regions, we used a 16-MIPS workstation.
Except for that, we used a 60-MIPS mainframe computer, and the
calculation times listed in the following tables are the CPU times.
We trained the three-layered neural network by the backpropagation
algorithm [1]. The performance of the fuzzy classifier with hyperbox
‘regions was evaluated for the expansion parameters of 0.01, 0.1, 0.15,
0.2, 0.25, and 0.3, where the expansion parameter is the parameter
for expanding the overlapping hyperbox regions.

A. Iris Data

The Fisher iris data [12] consist of 150 data with four input features
and three classes. In our study, the training data set was composed of
the first 25 data of each class, while the test data set was composed
of the remaining 25 data of each class. We assumed that the first
and the second classes were abnormal classes and combined them
into one class. Table II shows the results of the fuzzy classifier with
ellipsoidal regions when all training data were used. We changed
oy from 0.5 to 0.1 and the threshold was not used. In the table,
the number of clusters is for the data belonging to the abnormal
class. The numbers in the “Init.” and “Final” columns are the initial
and final numbers of misclassified data, respectively. The number
of iterations shows the number of tunings of «;;. For opr = 0.1
to 0.4, the number of iterations was one. This was either because
the recognition rate of the training data was 100% for the initial
values or because it reached 100% by one iteration of tuning. The
number of misclassified data was not changed even if we determined
the optimal threshold using the test data. The minimum number of
misclassifications was one with two clusters for the abnormal class
and without tuning. Table IIT shows the performance of the test data
using the neural network classifier and the fuzzy classifiers trained
with all training data. The three-layered neural network classifier
with two hidden units was trained ten times using different initial
weights distributed in [—0.1,0.1]; for each training, the number of
epochs was 1000 and the learning rate was set to one with zero
momentum. The minimum number of misclassified data was one,
and the average number of misclassified data was 1.7. The minimum
number of misclassifications was one using the fuzzy classifier with
hyperbox regions, and the corresponding number of rules was 17.
The results of the fuzzy classifier with ellipsoidal regions were
summarized from Table II. The number of fuzzy rules was the number
of clusters for the abnormal class plus one for the normal class. The
performance, including the computation time, was comparable for
the three classifiers.

TABLE III
PERFORMANCE FOR IRIS DATA

Classifier No. Wrong _ No. Rules  Time(s)

N.N. 1.7(1-3) 2 units 2
Hyperbox 1-5 17-5 1
Ellipsoid 1-2 2-8 2

(): Minimum and maximum numbers of misclassified data

50

40 —

30 [

20 Without threshold

Number of misclassified data

10 —  With threshold

0 ] |
0 10 20 30 40 50

Number of training data belonging to abnormal class

Fig. 4. Number of misclassified iris data in online training.

Fig. 4 shows the results of online training of the fuzzy classifier
with ellipsoidal regions. The data belonging to the abnormal class
were not clustered. The numbers of misclassified data were counted
without the threshold and with the threshold of two. When there
were no abnormal training data or in the early stage of training, the
fuzzy classifier with the threshold worked better than that without
the threshold. When no data belonging to the abnormal class were
used for training, the data belonging to the abnormal class were
classified into the normal class without the threshold. Thus, without
the threshold, 50 test data were misclassified into the normal class.
But with the threshold, only six data were misclassified; the numbers
of misclassified data belonging to the abnormal class were almost
constant for the increase of the training data belonging to the
abnormal class. Since the first 25 data were the first class in the
original iris data, the recognition rates of the classifier without the
threshold were poor when the numbers of the training data belonging
to the abnormal class were ten and 20.

B. Blood Cell Data

The blood cell data consist of 3097 training data and 3100 test data.
The blood cell classification involves classifying optically screened
white blood cells into five normal and seven abnormal classes, using
13 features. This is a very difficult problem; class boundaries for some
classes are ambiguous because the classes are defined according to
the growth stages of blood white cells. In this study, we combined
seven abnormal classes into one abnormal class. Thus, the classes
consisted of five normal classes and one abnormal class.

Table IV shows the results of the fuzzy classifier with ellipsoidal
regions when all training data were used. We changed o 5s from one to
0.3. In the table, “co” and “Optimal” columns denote the recognition
rates, after tuning of «;;, without the threshold and with the optimal
threshold determined by the test data, respectively. When the optimal
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TABLE IV
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR BLoOD CELL DATA BY CHANGING 0 jz
(WrITHOUT . THRESHOLD OR WITH OPTIMAL THRESHOLD)

Final
_om_No. Clusters  Init. oo Optimal Iterations Time (s)
1.0 1 91.87 94.52  95.06 (3.0) 3 19
0.9 3 93.71 95.03 9526 (3.0) 3 23
0.8 3 93.71 95.03  95.26 (3.0) 3 23
0.7 5 94.58 95.16  95.39 (3.0) 3 29
0.6 7 95.16 94.58 9487 (3.2) 3 30
0.5 17 95.06 95.68 95.77 (7.6) 3 51
0.4 28 95.16 95.06 95.13 (7.6) 3 69
0.3 59 93.19 94.71 9491 (7.6) 3 114
(): threshold #;,
TABLE V

PERFORMANCE FOR BLOOD CELL DATA

Classifier Rate No. Rules Time (s)
N.N. 94.24* 30 units 95 min.
) 95.68 - 93.42 '

Hyperbox 93.65 - 92.74 88 -61 2

Ellipsoid 95.68 -9452 22-6 51-19

*: Average recognition rate

threshold was used, the recognition rate was slightly improved. When
the threshold was determined using the training data, the recognition
rates were also improved for ops = 1.0 to 0.6. For example, with
onm = 1.0 the recognition rate was 94.61% for t;, = 7.6.

Table V shows the results by the neural network classifier and the
fuzzy classifiers trained with all training data. The neural network
classifier with 30 hidden units was trained five times with different
initial weights; the number of epochs was 10 000, which required 95
min of CPU time. The recognition rate of the fuzzy classifier with
hyperbox regions was 1-2% lower, but the fuzzy rule extraction was
extremely fast. The results of the fuzzy classifier with ellipsoidal
regions were summarized from Table IV for oas = 1.0 to 0.5. The
number of fuzzy rules was the number of clusters for the abnormal
class plus five for the normal classes. The maximum recognition rate
of the fuzzy classifier with ellipsoidal regions was the same as that
of the neural network classifier, and the recognition rate with one
abnormal cluster exceeded the average performance of the neural
network classifier. Although the training time was longer than that of
the fuzzy classifier with hyperbox regions, it was much shorter than
that of the neural network classifier. Thus, the training time does not
hinder online training.

Fig. 5 shows the results of online training of the fuzzy classifier
with ellipsoidal regions when data belonging to the abnormal class
were not clustered. The recognition rates were calculated without the
threshold and with the threshold of two. The fuzzy classifier with the
threshold worked better than that without the threshold when there
were no data belonging to the abnormal class or the data belonging
to the abnormal class were not sufficient. When no data belonging
to the abnormal class were used for training, with the threshold of
two, the recognition rate of 90.58% was achieved. Fig. 6 shows
the distributions of the normal and abnormal test data against the
square of the weighted distance from the cluster center when no
data belonging to the abnormal class were used for training. The data
belonging to the normal classes whose square of the weighted distance
were larger than two occupied 7.3% of the total data belonging to
the normal classes, while the data belonging to the abnormal class
whose square of the weighted distance were larger than two occupied
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Fig. 5. Recognition rate of the blood cell data for online training.

89.8%. Namely, since the data sets belonging to normal and abnormal
classes were distributed in the quasi-Gaussian distributions, the fuzzy
classifier with the threshold worked.

C. Thyroid Data

The thyroid data classify input data consisting of 21 features into
three classes. The training data and the test data consist of 3772 and
3428 data, respectively. The characteristics of the data are that the
input features include 15 discrete features and more than 92% of
the data belong to one class. We assumed the first two classes were
abnormal and combined them into one abnormal class.

Table VI shows the results of the fuzzy classifier with ellipsoidal
regions when all training data were used. We changed o from 1.9
to 1.2. The recognition rates were calculated without the threshold.
The initial recognition rates were extremely low. This meant that
the covariance matrices did not approximate the distributions of the
training data; namely, their distributions were not Gaussian.

Table VII shows the results by the neural network classifier and
the fuzzy classifiers trained with all training data. The neural network
classifier with three hidden units was trained five times with different
initial weights; the number of epochs was 10000, which required
60 min of CPU time. When six and nine hidden units were used,
the average recognition rates were 97.72% and 97.87%, respectively,
and there was not much difference for the change of the number of
hidden units. The fuzzy classifier with hyperbox regions performed
best. The minimum recognition rate was the maximum recognition
rate of the neural network classifier, and the training time was
negligible. The results of the fuzzy classifier with ellipsoidal regions
were summarized from Table VI for oar = 1.9 to 1.3. The number
of fuzzy rules was the number of clusters for the abnormal class
plus one for the normal class. The recognition rate of the fuzzy
classifier with the ellipsoidal regions was the worst. Thus, for the
thyroid data, we cannot use the fuzzy classifier with the ellipsoidal
regions. Fig. 7 shows the distributions of the normal and abnormal
test data against the square of the weighted distance from the cluster
center when only the data belonging to the normal classes were used
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Fig. 6. Distributions of blood cell test data. (a) Distribution of normal class
data. (b) Distribution of abnormal class data.

TABLE VI
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL REGIONS FOR
THYROID DATA BY CHANGING 037 (WITHOUT THRESHOLD 37 = 50)

_Onm_No. Clusters __Init. Final Iterations _Time (s)

1.9 i 10.39 9341 4 13
1.8 2 9.16 93.41 4 17
1.7 4 8.87 9341 4 27
1.6 5 890 9349 4 31
1.5 7 9.25 93.49 5 54
1.4 10 9.31 9343 4 69
1.3 12 9.63 93.67 4 86
1.2 15 9.63  93.58 4 132

for training. The data belonging to the normal classes whose square of
the weighted distance was larger than two occupied 14.7% of the total
data belonging to the normal classes, which was twice as large as that
of the blood cell data, and the data belonging to the abnormal class
whose square of the weighted distance was larger than two occupied
40.9%, which was half as small as that of the blood cell data. Thus,
we could not expect a high recognition rate using the threshold.

To investigate the effect of discrete input variables to classification,
we used only the six continuous input variables of the thyroid data,
ie., the first and the seventeenth to twenty-first input variables.
Table VIII shows the results of the fuzzy classifier with ellipsoidal
regions. We changed o7 from 0.7 to 0.3. The recognition rates were
calculated without the threshold. The initial recognition rates were

TABLE VII
PERFORMANCE FOR THYROID DATA

Classifier Rate No. Rules _Time (s)
N.N. 97.65* 3 units 60 min.
97.87 -97.26
Hyperbox 98.19-97.87 21-25 2
Ellipsoid 93.67-9341 13-2 13-86
*: Average recognition rates
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Fig. 7. Distribution of thyroid test data. (a) Distribution of normal class data.
(b) Distribution of abnormal class data.

TABLE VIII
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH
ELLIPSOIDAL REGIONS FOR THYROID DATA WITH SIX INPUT
VARIABLES BY CHANGING )7 (WITHOUT THRESHOLD)

om._No. Clusters _Init. Final Iterations Time (s)
0.7 1 53.03 95.13 8 6
0.6 2 50.79 95.22 8 7
0.5 3 4942 95.10 8 9
0.4 9 4562 95.16 8 17
0.3 14 45.01  95.04 7 27

low but better than those when all the input variables were used (see
Table VI). And the final recognition rates were better than when all
the input variables were used. Thus, the 15 discrete input variables
did not contribute to improving the recognition rate.

Table IX shows the results by the neural network classifier and
the fuzzy classifiers. The neural network classifier with three hidden
units was trained ten times with different initial weights; the number
of epochs was 10000. When six and nine hidden units were used,
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TABLE IX
PERFORMANCE FOR THYROID DATA WITH SIX INPUT VARIABLES

Classifier Rate No. Rules_Time (s)
N.N. 96.72* 3 units 21 min.
96.82 - 96.65
Hyperbox 97.02 -9691 40-36 2
Ellipsoid 9522-9504 13-2 6-27

*: Average recognition rates
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Fig. 8. Classification of thyroid data with six input variables by the fuzzy

classifier with ellipsoidal regions trained by only the normal class data.

the average recognition rates were 96.82% and 96.83%, respectively.
Thus, there was not much difference in the change of the number of
hidden units. The fuzzy classifier with hyperbox regions performed
best. The number of fuzzy rules was the number of clusters for the
abnormal class plus one for the normal class. The recognition rate of
the fuzzy classifier with the ellipsoidal regions was the worst. But the
performance gap was decreased. Fig. 8 shows the recognition rate of
the fuzzy classifier with ellipsoidal regions with the threshold for the
thyroid test data, when only the data belonging to the normal class
were used. Since the test data belonging to the normal class occupied
92.71% of the total test data, the recognition rate with the threshold
lower than this value was meaningless. For ¢, = 2, the recognition
rate was 88.96%, but when ¢, was larger than or equal to five, the
recognition rate exceeded 92.71%. Thus, if we set a large value to
the threshold, we could obtain an improved recognition rate by the
fuzzy classifier with ellipsoidal regions.

VIII. DiscUSSION

The fuzzy classifier proposed in this paper performed well even
when there were no training data belonging to the abnormal class, if
the training data did not include discrete input varjables. This is one
of the advantages of the fuzzy classifier with ellipsoidal regions over
other classifiers since, without training data belonging to the abnormal
class, training of the neural network classifier or fuzzy classifier with
hyperbox regions is impossible. The training time was short enough
for implementing the online system. At the training stage, we need a
sufficient number of training data, but after we generate fuzzy rules,
ie., at the tuning stage we can select training data for tuning o;; and
threshold optimization. Namely, to tune c;; we need only the data
that exist at the boundary of classes, i.e., away from the centers of
the clusters. In addition, to optimize the threshold, we only need the
data around the threshold. Thus, by deleting data that are near the

centers of clusters from the training data, we can reduce the number
of training data.

IX. CONCLUSION

In this paper, we extended a fuzzy classifier with ellipsoidal regions
to make it applicable to diagnosis problems, in which the data
belonging to the abnormal class are difficult to obtain. Assuming
that there were no data belonging to the abnormal class, we first
trained the fuzzy classifier with only the data belonging to the normal
classes. We then introduced the threshold of the weighted distance
from the center of the cluster for the data belonging to the normal
classes. Based on agreement or disagreement of the classification by
the classifier and the operator, the classifier was adapted until there
were a sufficient number of the data belonging to the abnormal class.
We evaluated our method using the Fisher iris data, blood cell data,
and thyroid data and obtained good performance when the training
data did not contain discrete input variables.

APPENDIX

In Appendix A, we calculate the upper bound and the lower bound
of a;; that allow the I — 1 (> 0) data that are correctly classified
to become misclassified. And in Appendix B, we check how many
data that are misclassified are correctly classified if «;; is changed
within the bounds calculated in Appendix A. Then in Appendix C,
a;; is determined so that the recognition rate of the training data is
maximized.

A. Upper and Lower Bounds of a;

We calculate the upper bound Us;(!) and the lower bound L;;(1)
of ;; allowing the I — 1 (> 0) data that are correctly classified to
be misclassified. We divide a set of input data into X and Y, where
X consists of the data correctly classified using the set of fuzzy rules
{R:;} and Y consists of the misclassified data. Then, we choose
x (€ X) that belongs to class ¢, and that satisfies

hij (%) < min hix(x). an

If (17) does not hold, x remains to be correctly classified even if we
change «;. If x further satisfies

X . .
hi(x) = ( )< < min  hop(x) <minhi(x)  (18)
there is a lower bound L;;(x) to keep x correctly classified

B _ dz] (%) B

Lij(x) = RS TN < oj. (19)
If (18) is not satisfied, namely
R (%) = ( X) <m1n Ri(x) < min A2 (x) 20)
o#i,p=1,...

@;j can be decreased without making x become misclassified.

Now the lower bound L;;(1), which is defined as the lower bound
that does not make any correctly classified data become misclassified,
is

Li]'(l) = ;nea.))((Li]‘(X). (21)
To clarify the discussion, we assume that L;;(x) is different for
different x. Then (21) is satisfied by one x. Similarly, L;;(2), which
is defined as the lower bound that allows one correctly classified
datum to be misclassified, is the second maximum among L;;(x)
and is given by

L;;(2) = L;(x). (22)

max
x€X,L;j(x)#L;;(1)
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In general

’ max
XEX,Lij(x)#Li5(1),, Liz(i—1)
In the similar manner that we determined the lower bound L;;(1),
we can determine the upper bound U;;(1). We choose x (€ X),
which belongs to class o (# ). Let cluster op have the minimum
tuned distance hop(x)

hop = min hop(X). (24)
q

Since the tuned distance h;;(x) is larger than h.p(x), the upper

bound U;; (x) of «;, in which x remains correctly classified, is

4% (x)

ming h,(x)’ @3

Uij(x) =
Now the upper bound VU,» (1), which is defined as the upper bound
that does not make any correctly classified data be misclassified, is

Ui;(1) = };Iélg{l Uij (x). (26)

Here we also assume that U;; (x) is different for different x. Then
(26) is satisfied by one x. Similarly, U;;(2), which is defined as
the upper bound that allows one correctly classified datum to be
misclassified, is the second minimum among U;;(x) and is given by

L (2) = ' (%), 2
Ui; (2) xeX’U;_r(l}g;#Uﬁ(l)UJ(X) 27

In general

Ui (1) = Ui (x). (28)

min
x€X,U;;(x)2U;;5(1),..,Us5(1~1)
Thus, a;; is bounded by
w0 < L) < Lij(1=1) < - < L (1) < a5 < Ui(1)

<< Ul=1) <UD < - 29)

If we change c; in the range of (L;;(1), Ui;(1)), the correctly
classified data remain to be correctly classified, where (a, b) denotes
the open interval. And if we change c; in the range of [Us;(l —
1), Ui; (D), or (L5(1), Li; (I — 1)], the I — 1 correctly classified data
are misclassified, where [a, b] denotes the closed interval.

B. Resolution of Misclassification by Changing o

For x (€ Y') that is misclassified into class ¢ or that belongs to
class ¢ but is misclassified into class o (s ¢), we check whether it can
be correctly classified by changing ;. First we consider increasing
ay;. Let x, which belongs to class 7, be misclassified into class o.
This datum can be correctly classified if

d3; (x)
min, h2,(x)

aij > Vij(x) = (30)
irrespective of the values of h;x(x) (k # 1), where V;;(x) is the
lower bound of «;; that makes the misclassified x correctly classified.

Let Inc(l) denote the number of the misclassified data that are
correctly classified if we set the value of o;; in [U;;(1 — 1), Us;(1)).
We increase Inc(l) by one if V;;(x) is included in (:;, Us;(1)), and
we define

max
Vi) <Uiz (D)
If o is set to be larger than max(8;;(1), Us;(I — 1)), Inc(l) data
are correctly classified although the I — 1 correctly classified data are
misclassified.

Let x, which belongs to class o, be misclassified into class 7. Then
similar to the above discussions, we check whether x can be correctly

Bi; = Vij (%) (3D

classified by decreasing «;;. First, the minimum tuned distance for
class o should be the second minimum among n classes, namely, g
in the following needs to be o:

min hik(x) < min  her(x). 32)
k q#i,r=1,...

r—=

Second, h;;(x) needs to be the minimum in class 7, and the second
minimum in class ¢ is larger than the minimum tuned distance in
class o

hij(x) < min hyp(x) < min hik(x). (33)
P k#j
Then, the datum can be correctly classified if
i
a;; < Kij(x) = J(X) (34

min, AZ,(x)

where K;;(x) is the upper bound of «;; that makes misclassified x
become correctly classified.

Let Dec(l) denote the number of the misclassified data that are
correctly classified if we set the value of o;; in (L;;(1), Li; (I — 1)].
We increase Dec(l) by one if K;;(x) is included in (Li;(1), ;).
We define

vi(l) = Kij(x).

If o;j is set to be smaller than min(vy;;(1), Li;(I — 1)), Dec(l)
data are correctly classified although the ! — 1 correctly classified
data are misclassified.

(35)

min
K;j(x)>L;;(1)

C. Modiﬁcation of aij

For Inc(1),l = 1,...,1m, where I is a positive integer, we find
! that satisfies

m;mx(Inc(l) —14+1). (36)
Similarly, for Dec(l),l = 1,...,In, we find [ that satisfies
m?,x(Dec(l) —-14+1). 37N

If there are plural !’s that satisfy (36) or (37), we chose the smallest
l. First we consider the case in which (36) is larger than or equal to
(37). If we increase a;; so that it is larger than G;; (1) in (eu;, Ui (1)),
the net increase of the correctly classified data is Inc(!) —{+ 1. Thus,
we set ai; in [Bi;(1),U;; (1)) as follows:

aij = Pi; (1) + 8(Us; (1) — Bi; (1)) - (38)

where 6 satisfies 0 < § < 1. Here, 8;;(1) > U;;(I — 1) holds,
otherwise [ cannot satisfy (36).

Likewise, if (36) is smaller than (37), we decrease o;; so that it is
smaller than ~;; (1) in (Li;(1),v;(1)] as follows:

a; = % (1) = 8(viz (1) = Ly (1))

Equations (38) and (39) are the same as (12) and (13), respectively.
The parameter 6 is used to control the recognition rate of the test
data (the recognition rate of the training data is the same irrespective
of the value of §).

(39)

ACKNOWLEDGMENT

The authors are grateful to Prof. N. Matsuda of the Kawasaki
Medical School for providing the blood cell data and to P. Murphy
and D. Aha of the University of California at Irvine for organizing
the databases, including the thyroid data (ics.uci.edu: pub/machine-
learning-databases). Thanks are also due to the anonymous reviewers
for their constructive comments.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 1, FEBRUARY 1999 149

REFERENCES

[1] S. Abe, Neural Networks and Fuzzy Systems: Theory and Applications.
Boston, MA: Kluwer, 1996.

[2] M. T.Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels,
“On the training of radial basis function classifiers,” Neural Networks,
vol. 5, no. 4, pp. 595-603, 1992.

[3] S. Abe and R. Thawonmas, “A fuzzy classifier with ellipsoidal regions,”
IEEE Trans. Fuzzy Syst., vol. 5, pp. 358-368, Mar. 1997.

[4] P. K. Simpson, “Fuzzy min-max neural networks—Part 1: Classifica-

tion,” IEEE Trans. Neural Networks, vol. 3, pp. 776-786, Sept. 1992.

S. Abe and M.-S. Lan, “A method for fuzzy rules extraction directly

from numerical data and its application to pattern classification,” IEEE

Trans. Fuzzy Syst., vol. 3, pp. 18-28, Jan. 1995.

F. Uebele, S. Abe, and M.-S. Lan, “A neural network-based fuzzy

classifier,” IEEE Trans. Syst, Man, Cybern., vol. 25, pp. 353-361, Mar.

1995.

[7]1 A. Kawato and S. Hayashi, “A method of ball-bearing diagnosis by
neural network using the normal mode data,” Trans. Inst. Elect. Eng.
Japan, vol. 115-C, no. 11, pp. 1362-1368, 1995 (in Japanese).

[8] M. P. Windham, “Cluster validity for the fuzzy c-means clustering
algorithm,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-4,
pp. 357-363, Apr. 1982.

[9] R. Krishnapuram and J. M. Keller, “A possibilistic approach to cluster-

ing,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 98-110, Feb. 1993.

J. C. Bezdek and R. J. Hathaway, “Convergence theory for fuzzy c-

means: Counterexamples and repairs,” IEEE Trans. Syst., Man, Cybern.,

vol. SMC-17, pp. 873-877, Sept. 1987.

T. Kohonen, Self-Organization and Associative Memory, 2nd ed.

Berlin, Germany: Springer-Verlag, 1987.

R. Fisher, “The use of multiple measurements in taxonomic problems,”

Ann. Eugenics, vol. 7, part II, pp. 179-188, 1936.

A. Hashizume, J. Motoike, and R. Yabe, “Fully automated blood cell

differential system and its application,” in Proc. IUPAC 3rd Int. Congress

Automat. New Technol. Clinical Lab., Sept. 1988, pp. 297-302.

S. M. Weiss and 1. Kapouleas, “An empirical comparison of pattern

recognition, neural nets, and machine learning classification methods,”

in Proc. Int. Joint Conf. Neural Networks, pp. 781-787, 1989.

[5

[hed]

[6

—_

(10]

[11]
[12]

{13]

[14]

Neural-Network-Based Fuzzy Model and Its Application'
to Transient Stability Prediction in Power Systems

Mu-Chun Su, Chih-Wen Liu, and Shuenn-Shing Tsay

Abstract— This paper presents a general approach to deriving a new
type of neural-network-based fuzzy model for a complex system from
numerical and/or linguistic information. To efficiently identify the struc-
ture and the parameters of the new fuzzy model, we first partition the
output space instead of the input space. As a result, the input space
itself induces corresponding partitions within each of which inputs would
have similar outputs. Then we use a set of hyperrectangles to fit the
partitions of the input space. Consequently, the premise of an implication
in the new type of fuzzy rule is represented by a hyperrectangle and the
consequence is represented by a fuzzy singleton. A novel two-layer fuzzy
hyperrectangular composite neural network (FHRCNN) can be shown to
be computationally equivalent to such a special fuzzy model. The process
of presenting input data to each hidden node in a FHRCNN is equivalent
to firing a fuzzy rule. An efficient learning algorithm was developed to
adjust the weights of an FHRCNN. Finally, we apply FHRCNN’s to
provide real-time tramsient stability prediction for use with high-speed
control in power systems. From simulation tests on the IEEE 39-bus
system, it reveals that the proposed novel FHRCNN can yield a much
better performance than that of conventional multilayer perceptrons
(MLP’s) in terms of computational burden and classification rate.

Index Terms—Fuzzy systems, neural networks, transient stability pre-
diction. ‘

I. INTRODUCTION

Neural networks and fuzzy systems have attracted the growing
interest of researchers in various disciplines of engineering and
science. Their applications range widely from consumer products to
decision analysis. Basically, a neural network is a massively parallel-
distributed processor. Among the many appealing properties of a
neural network, the property that is of primary significance is the
ability of the neural network to inductively learn concepts from
given numerical data. A neural network improves its performance
by adjusting its synaptic weights. Feedforward neural networks
[e.g., multilayer perceptrons (MLP’s)] have been proven to be able
to approximate any real continuous function on a compact set to
arbitrary accuracy [1]-[3]. Therefore, a feedforward neural network
is an efficient tool for system modeling and identification, however,
there are three major disadvantages in a feedforward neural network.
The first one is that there is no systematic way to set up the topology
of a peural network. The second one is that it usually takes a lot
of time to train a neural network. The third and the most apparent
one is that a trained neural network is unable to explain its response
(i.e., the inference process cannot be stated explicitly). Therefore,
even if we can finally model a complex system by a trained neural
network, the knowledge encoded in the values of the parameters of the
trained neural network is not physically meaningful to humans when
they depend on appropriate and understandable information to make
decisions. Accordingly, how to acquire a relevant and meaningful
system description from observed data or experience is very much
demanded.
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