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Abstract—This paper highlights an evolutionary computing 16 Inputs 10 Outputs
intelligence for a computerized color recipe prediction that — D) Whhe
requires function approximation and combinatorial solution of t— L o
colorants to produce color recipes for a given target color sample. Spucn GF— O orwem
We attack this real challenging problem in the color (paint)  Target Color Distriustion . cotor O Ret
industry by using an evolutionary computing system that consists A - » Recipe (D Groen2
of a problem-specific knowledge and three principal constituents measure Prediction | @) vioist
of soft-computing: neural networks, a fuzzy system, and a genetic e Sreem L mea
algorithm. Departing from the recipe results obtained by neural ——® vetiow1
networks (NN) approaches, the evolutionary system attempts ——@® vetow2
to improve them in conjunction with fuzzy classification, a B —@ ewe
knowledge base and neural fithess functions. All components Surtace Spectral Colorant
function synergistically in obtaining precise color recipe outputs Reflactance Proportions

through simulation of color paint manufacturing process. Such o ' o _
computational intelligence can be useful, especially when an exactFig- 1. Input-output relation in a color recipe prediction system. The inputs

mathematical model of the real-world process under consideration are sampled values of the surface spectral reflectance of a given target color,
is not available explicitly and the outputs are proportions of colorants.

Index Terms—Color recipe prediction, computational intelli- e rgistically rather than competitively. Their mutual depen-
gence, fuzzy systems, genetic algorithms, neural networks, soft

computing. dence may present unexpected performance enhancements. We
shall demonstrate how the synergism of techniques surpasses
the individual capacity of any one technigque; color matching is
. INTRODUCTION an excellent test of these methods because it is difficult even for
OLOR is important to our daily lives; for instance skilled human operators to do well, yet human color perception
painting a room the proper color can enliven it and makg sensitive, and therefore the matching must be done very well
it more comfortable. Painters often need to deternuntr t0 meet acceptable standards.
recipefor producing a color specified by other individuals. In In the next section, we explain thlor recipe prediction
the color industry, it is important to develop scientific method&sk. We then present backpropagation (MLP) approaches, and
in calculating color recipes efficiently. For this purpose, th@ neuro-fuzzy approach in respective Sections IIl and IV. After
Kubelka-Munk theonjhas been widely used [23], [24]; how-that, we shall describe in detail our genetic-neuro-fuzzy ap-
ever, it requires certain assumptions to formulate differentigfoach.
equations. In practice, those assumptions limit the situations
where the theory may be applied [24]. Hence, a simple back- Il. COLOR RECIPE PREDICTION
propagation multilayer perceptron (MLP) approach has beena rea| challenge in the color industry éelor recipe predic-
introduced as an alternative method to overcome practiggy which is a problem of computing a color recipe to match a
obstacles in color recipe prediction [2], [13], [20]. ~~ sample color submitted by a customer. Technically, color recipe
This paper serves to introduce a computational intelligenggediction often relatesurface spectral reflectanaef a target
technique focolor recipe predictiorthat combines a knowledge cojor to a list ofcolorant proportionghat are needed to produce
base (KB) and three principsbft computingomponents: fuzzy he same color as the given reference color, as shown in Fig. 1. In

systems (FS), neural networks (NN), and genetic algorithrgsyractical situation, it is necessary to examine the color match
(GA). When such constituents are put together, they functigigaylight as well as in artificial light. It is actually an arduous

task even for professionablorists. The trained colorists have
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Procedures of trained Corresponding computational Target Color s
. measure urface 1
human colorists processes - Spectral -—_—
Reflectance b}
Search color sampies close
== (Decrease colorant proportion errors
enough to a given target color
} ! g
Colorant i predict Color toed . Color
T Reclpe [|™
Proportions | prediction|  02%%  Difference
Adjust their color recipes ! !
A o g Decrease color differences | mix !
to reproduce the target color ; :
&
ary ] -
Fig. 2. Two important procedures of skilled human operators (or colorists) | !
for color recipe prediction and their corresponding computational measures. measure Surface L':
Professional colorists first search their file of previous color recipes to find — Spectral -— aty
similar recipes for the given target color, and then adjust their color recipes by Reflectance b
changing colorant proportions to match the reference color, as seen by humar Produced Color_ _ _ _ _ _ !

eyes. These two steps can be measured numerically by “colorant proportion

error” and “color difference.” The ultimate goal is to make the color differencgijg. 3. Color paint manufacturing process. The dotted part includes

small enough. time-consuming paint manufacturing based on predicted recipe results. The
number of repetitions of this time-consuming process can be reduced by
effective color recipe prediction.

difference. Theolorant errorshows how close to the previous

recipe data, and theolor differenceindicates how much the =~ . o o
newly-produced color from the predicted recipe is close to tffeevitably involves a factor of “trial and error” to finalize color

target color, as perceived by human eyes. recipes until color difference becomes small enough. Fig. 3
In our recipe prediction problem, ten-dimensional coloraf’0Ws the entire cycle aolor paint manufacturing, in which

proportion vectors are considered as output (see Fig. 1). The dotted part is usually time-consuming and labor-intensive.
“colorant error” is defined as A succinct description of the main concerns in the recipe pre-

diction is summarized in Table I. Recall that the output vector
is a list of ten colorant proportions; those ten outputs included

Colorant error Z(ti — 0;)? (1) three pairs of the same types of colorants (i.e., green, yellow,
im1 and red ones) and also complementary colorants such as “green
and red,” and “blue and yellow” (see Fig. 1). We must care-
where (t1,t2,...,t10) and (o1, 02,...,010) are the colorant fully determine which colorants to use, avoiding use of the same
proportion vectors of a target color sample and of a producedlorant types and complementary colorants to maintain accept-
color sample, respectively. able cost performance. Since the desired average number of col-

For evaluating color difference, we adopted CIE 1976rants required to produce any color was approximately four
(L*, a*,b*)-space, which provides a useful measure for deut of ten colorants (see Table Il), this recipe prediction task
termining “color differences” numerically [4], [24]. That is, itinvolves aspects afombinatorialproblems as well as those of
defines the color difference and perceptual attributes of colaonlinear regression analysis.

“lightness,” “hue,” and “chroma” as shown in (2) at the bottom For experimentation, we used 1446 training samples of Mun-
of the page, wheré*, «*, andb* are obtainable from surfacesell color chips and 302 checking samples of standard paint
spectral reflectance arid;, a}, by ) are the values of the targetcolor chips from the Japan Paint Manufacturers Association.
color. For details about the transformation from surface spectfidiose data distributions on thé—b* plane are shown in Fig. 4.

reflectance tqL*, a*, b*) (see [24]). The input data consist of surface spectral reflectance of target

The goal of colorists is to decide the color recipe so thablors sampled at 16 points in the visible range of color spec-
the color difference between a newly-produced color samgleim between 400 nm and 700 nm in wavelength (20-nm in-
and the reference color is less than 1.0, because human dgegals). They were collected by using spectrophotometers [7].
can hardly distinguish between smaller color differences [24ll subsequent experiments were conducted using the same data
To acheive this goal, the colorists’ decision-making processts.

Color Difference \/(L; — L*)2 + (af — a*)2 + (bF — b*)?
Lightness L*
Hue tan='(b*/a*)
Chroma +/(a*)% + (b*)? )
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TABLE |
MAIN CONCERNS INCOLOR RECIPE PREDICTION

(P1) It is diflicult to predict precise colorant concentrations. This task sometimes
requires as low as 0.01%, which is the desired minimal colorant proportion level.

(P2) It is necessary to specify use of a limited number of colorants to use to meet
acceptable cost performance. In the choice of colorants, we need to avoid use
of complementary colorants and of the same types of colorants.

(P3) It is important to consider human visual sensitivity to color difference,
which is closely related to perceptual attributes of color, i.e., lightness,
hue, and chroma [24], [4].

(P4) The magnitude of mean squared error of colorant vectors may not correspond
exactly to that of color difference. The question is which colorant is dominant
in the entire color.

(P5) Any color can be uniquely identified by its surface spectral reflectance curve,
i.e., its physical color attribute, but some combinations of colorants may
have the same perceptual attributes of color as seen by humans.

TABLE I
NUMBER OF DATA CLASSIFIED BY THE DESIREDNUMBER OF COLORANTS REQUIRED TOPRODUCE COLOR RECIPES INDATA SETS

Two colorants | Three colorants | Four colorants |[ Desired average #
desired desired desired of colorants to use
1446
. 4 60 1,382 3.95
training data
302
test data 0 13 289 3.96
ok Ao X It is an important concern in color recipe prediction to
1 . oy
b ® . specify such output range extremities [2], [13].
100 x . . . .
x X For instance, a sample color recipe might be given as follows:
x x ‘x %
60| x x

White | Black | Red1| Yellow 1

e ”f " 0.9754 |0.0006| 0.0028 0.0212
0 ‘: . XX x
-20 * % !&ﬁ F . . .
b x This recipe uses only four colorants and thus the other six col-
vy XX)E Xy X . . .
o orant proportions must be zero. Sinlckack colorant is most
~80

likely to have a significant influence on the entire color, its col-
orant proportion tends to be extremely small compared with the
Fig. 4. Data distribution plots on the* — b plane for (a) 1446 training others, especially in bright color recipes. _ .
data and (b) 302 checking data. There are relatively many data near the origin]O handle these concerns, we have introduced in MLPs
because dark color samples are hard to predict their recipes. modified sigmoidal functionandtruncation filter functionsn
the output layer [9], [13]. Here we compare the two types of
MLPs: NNyorm and NN,oq; NNy has normal sigmoidal
functions andNN,,,,q hasmodified sigmoidal function® the
Since MLPs are by far the most commonly employed Niutput layer. BotiNN,,o;; andNN .4 have the same model
structures for a wide range of applications, a simple MLBjze (16 x 18 x 21 x 10 neurons), mapping surface spectral
NNnorm, Was first applied as a touchstone to the aforemefeflectance of a target color (16 sampled inputs) to a list of
tioned recipe prediction to fathom its intrinsic dlﬁlCU'ty [13] It required colorant concentrations (ten Outputs) (See F|g 1),
is then realized that the weakness of the Simple MLP approaml@se NNs were trained by using Polak-Ribiere’s Conjugate
was due to the following reasons. gradient methods [19]. Since the modified sigmoidal function
 Colorant selection is of great importance as indicated prevents an NN from exceeding the desired output range, the
(P2) of Table I, which is a sort of combinatorial problemsoutputs are further processed to eliminate redundant colorants
Table Il shows the desired number of colorants in our dagd the minimum of the desired output range. The effects of the
sets. The average number of colorants required to produnedified sigmoidal functions can be seen clearly in Fig. 5.
any color is fewer than five; this means six of the ten finalhe NN, tends to specify use of more colorants than
outputs should be zero. necessary; it averages almost seven specified colorants, which
» We sometimes need to predict proportions with enougd far from the ideal number atbout four. On the other hand,
precision to specify levels such as 0.01% [Table | (P1)ln Fig. 5, theNN,,,,q shows the predicted number of colorants

I1l. MLP A PPROACHES
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TABLE Il
PERFORMANCE COMPARISON OFSINGLE MLP APPROACHES NN ,,orm AND NN, 04, USING 302 GHECKING DATA. NN, orm |S A SIMPLE BACKPROPAGATION
MLP, AND NN 04 IS AN MLP WITH MODIFIED SIGMOIDAL FUNCTIONS. THE COLUMN, “ERROR’ D ENOTES THEAVERAGE COLORANT PROPORTIONERROR

Ave. # of | Error | # of test data which outputs same or complementary color
colorants | x1072 | 2Green | 2Yellow | 2Red | Red & Green | Yellow & Blue

NNporm 6.66 2.616 97 154 125 198 129
NNmod 3.90 2.031 14 7 5 0 1
Ideal 3.96 0 0 0 0 0 0

o 7 A | A8t WICl + w202
g°f | N /\'(__P%:\:zzzm ot = e - W2
by W i [ﬁ ______ =» = WiCt + W2C2
norm stk w2 q
-'g' T~ . f- ; product | | C1=pIXeqi¥ert |
g - et [\ czepxsven |
5 s -
i L L"i | Ideat # Fig. 6. Inferencing mechanism of a two-input, one-output Sugeno (TSK)
E R \ B fuzzy model, in which rules’ consequents are linear.
; 3 NN . -
?i 2| . A. Neuro-Fuzzy Inferencing Mechanism
@t . This subsection briefly introduces a Sugeno-type (or TSK)
ol fuzzy inference system [22] using Fig. 6, in which the system
P 10,000 2000 %0000 Reration has two inputs X andY’) and a single output. A typical fuzzy

rule in the TSK fuzzy system has the form

Fig. 5. Learning behaviors with respect to the number of necessary colorants ) . .
predicted by an MLP with the normal sigmoidal functigfi$N ..., ) and an Rulei: If X is A; andY is B;,

MLP with the modified sigmoidal function&NN,,,.4). thenC; = piX + ;Y +r; 3)
(2 T T T

asymptotically approached the ideal number of colorants W§ereA:; and B; are linguistic terms characterized by proper
iterations progressed. The comparison of prediction accurdt§zy membership functions (MFs)p;, ¢i, i } are modifiable
betweenNN,,,,, and NN, iS shown in Table III;NN,_, Parameters. _ o

was more effective in avoiding use of the same types of 1he overall outputis computed via weighted average
colorants and of complementary colorants thN,,...,,. For W1Cp + WaCs

more details about modified sigmoidal functions and truncation Output= WL W, (4)
filter functions (see [11] and [13].

Recall our objective discussed in Section II; that is, the col¥hereW; are firing strengths defined as the product of mem-
difference should be lowered close enough to 1.0. In light 8€rship grades on the antecedent part (see Fig. 6). In the orig-
this criteria, the results obtained BN.,.q was not completely inal TSK model,C; is a linear function of inputs. But it can
satisfactory, because the average predicted color difference R8Ny function; for instance, an MLP (neural network) can be
2.847, as will be shown in Table VII. Inde@iN .4 did a better employed. CANFIS realizes such a rather complicated fuzzy in-
job thanNN,...,,, but greater precision in concentration specference model in the layered network architecture. For more de-
fication is desired. tails, see [12].

B. Fuzzy Partitionings

IV. NEURO-FUZZY APPROACHES In fuzzy systems, the number of MFs should be carefully de-
termined so that fuzzy rules can be held to meaningful limits.
Since some problem-specific knowledge can be obtain€bnsidering these points, it must be a good idea to set up MFs
from professional colorists, we contend that knowledge-basfet perceptual attributes of color such as “lightness,” “hue,” and
approach, such afizzy modeling, must complement simpléchroma” [4], [24] (see also Section V-F). Those values must be
MLP’s to enhance overall performance. In this section, waore suitable as MF inputs for treating color in a linguistically
show how the knowledge is incorporated into NN models, reaeaningful way than the 16 spectral values, which were used
sulting inneuro-fuzzynodels, and how they can be generalizefbr MLP inputs.
for application to color recipe prediction. Our neuro-fuzzy When we consider one perceptual attribute of color “hue” as
approaches are expressed within the framework of the CoActadinguistic variable, we can build up five fuzzy MFs according
Neuro-Fuzzy Inference System (CANFIS), detailed in [91p the “hue” angle on the polar coordinates that define color gra-
[11], and [12], which has enormous potential for augmentirggation: “red=- yellow = green=- blue=- violet=- red.” Fig. 7
the learning capacity of its predecessor ANFIS [5]. (top) illustrates duzzy membership value generatitimat is, if
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Membership Value Generator logic standpoint. When too many MFs are introduced, resulting
fuzzy rules may be ill-defined, or hard to understand simply
because of the difficulty of specifying the difference between
“greenish yellow” and “very yellow” that humans perceive by
saying “slightly greenish yellow,” or using some other vague
description [11]. Instead of increasing MF’s, we can construct
more sophisticated rules’ consequents such as neural rules (or
local color expertNN’s), as suggested previously; that &,

in (3) can be an MLP. Fig. 7 illustrates such a CANFIS with
five color neural rules. This CANFIS model can be viewed as a
variant of themodular network§l1], [12]. The given prediction

r |
il ML ; | task is decomposed into five color rules using five local color
NN N expert MLPs, which form rules’ consequents. For instance, the
L \\ - Ty “green rule” has a neural consequent (green MLP) that has 16
— N\ MLP spectral reflectance inputs.
— CANFIS in Fig. 7 is constructed to handle an important aspect
. ,»/ T Green of color vision “hue angle” alone. Yet, of course, it is possible
— / MLP to construct another CANFIS that deals with the other two per-
1/ Y g Yellow! ceptual aspects: “lightness” and “chroma” so as to alleviate the
] /,{/ :lis: Yeliow2 problem (P3) in Table I. For details on such a CANFIS [11].
)/ Blue
16 Inputs Violet 10 Outputs C. Knowledge-Embedded Structures
Spoc MLP oo ment In Fig. 7, adaptive fuzzy MF’s specify the degree of member-
Reflectance neentaton ship of five color regions (red, yellow, green, blue, violet) ac-

cording to perceptual attributes of color. They determine what

Fig. 7. CANFIS with five color rules for color recipe prediction. Each rule’ : ; )
consequent has been realized by an MLP. In the fuzzy membership v;Mglght should be aSSIQned to each rule’s output to prOduce a

generator (top), five bell-shaped MF'’s are centered at red, yellow, green, bifigal output. We have applied the colorist’s knowledge to the
and violet regions according to the hue angle on«he- b~ circular plane  CANFIS architecture so that several connections between local

(see Fig. 4, also). If a given target color sample looks “greenish yellow,” fi . .
instance, then it may be close to 22 terms of the hue angle. In this case,%roIor experts and the final ten outputs can be pruned. For in-

the yellow MF and the green MF specify the degree of membership of th&tance, the yellow expert has no effect on blue colorant propor-
color regions_; the larger degree of the 'yc_ellow MF t_han that of the green Mfons because of the ye||OW_b|ue Comp|ementary color relation-
(M, > M,) is a useful measure for defining “greenish yellow” numerically. ship. This idea is pictured in Fig. 8 where the yellow MLP has
just eight output units, fewer than the ten final output units; see

a given color sample looks “greenish yellow,” it may be clos&able 1V for the size of all local experts as well as the number
to 125 in terms of the hue angle on thé — &* circular plane, of output units (or neurons). As previously stated, the desired
where the five center positions of those five color regions aneimber of colorants should be about four; this means six of the
indicated by arrows. The membership value of the yellow Mten final outputs should be zero. Reducing the number of zero
implies how yellow the presented color looks as seen by humautputs through the pruning procedure can possibly have a posi-
eyes. In Fig. 7 (top), the yellow MF and the green MF specifijve impact on the construction of the desired input-output map-
the degree of membership of their color regions. The larger dgngs inside CANFIS. This modification is intended mainly to
gree of the yellow MF than that of the green MI#Z,, > M) eliminate the problems of (P1) and (P2) in Table I.
is a useful measure for defining “greenish yellow” numerically.

Fuzzy rules in the “if-then” format [cf. (3)] serve to determine

color selection: for instance V. COLOR PAINT MANUFACTURING INTELLIGENCE

This section describes a cooperative hybrid system to simu-
o late the entire manufacturing process in an attempt to construct
Yellow rule: If the target color is “yellow' evolutionary “manufacturing intelligence” for color recipe
then use a yellow consequef. prediction. In particular, we integrate the three major elements
of soft computing and problem-specific knowledge. To be
Each of five color MFs specifies the degree of membership obncrete, NNs, an FS, and a GA with a KB complement each
its color region, and assigns the degree value to each color rather in obtaining more precise recipe outputs than individual
(rule’s consequent) as the firing strength; see (4). In the abdv&l methods through simulation of the whole decision-making
yellow rule, the firing strength is determined by the yellow Mprocess of a professional colorist.
because CANFIS in Fig. 7 has a single MF input “hue angle.” A GA may be a good choice for dealing with a combinatorial
Introducing many more MFs might yield better results, bgroblem (P2) in Table I; hence, the GA plays a leading role in
cause the number of adjustable parameters will be increasatrmixing NN'’s, an FS, and a KB to evolve colorant recipe
accordingly. But there is one important caveat from a fuzayectors (or chromosome).
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18 inputs 18 inputs 8 Outputs TABLE IV
— 0— O whne OPTIMAL STRUCTURES OFFIVE LOCAL COLOR EXPERT MLPs IN CANFIS,
G~ B— [ me=x AND THEIR INITIAL NUMBER OF TRAINING/TEST DATA CLASSIFIED INTO THE
?“— — =@ areert FIVE COLOR REGIONS DURING THE LEARNING PHASE, MF PARAMETERS ARE
H NN for Yellow O men UPDATED; HENCE, THE AMOUNT OF DATA INTO THE FIVE COLOR CATEGORIES
ali color color [ a2 CHANGES ACCORDINGLY. SINCE DIFFERENTAMOUNT OF TRAINING DATA
regions expert NN GOES INTO EACH LoCAL COLOR EXPERT, EACH MLP MAY HAVE A
—@ Moz
DIFFERENTMODEL SIZE AND CAN BE OPTIMIZED FOR ITS OWN TERRITORY.
Colorist’s jé :':; THE STRUCTURESWERE OPTIMIZED BY A PROCESS OFTRIAL AND ERROR
& & NOTICE THAT EACH COLOR EXPERT S OUTPUT UNITS ARE FEWER THAN THE
FINAL 10 CANFIS QuTPUT UNITS, ACCORDING TOCOLORISTS K NOWLEDGE
Surtsce Specusi Surface Spectral Colorent
Reflectance Reflectance Proportions
Five Color Training | Checking
Fig. 8. Knowledge-embedded structure of the local expert NN (or MLP) for Consequents Model Size Data Data
the yellow color region; the colorist's knowledge makes the yellow expert MLP M LPreg 16 x 16 x 16 x 8 650 138
have no connections to complementary colorant outputs: “blue and violet” MLPyeiiow | 16 x 16 x 17 x 8 707 200
outputs, although the 16 inputs remain the same as in the other local expert MLPGreen 16 x 21 x 7 521 105
MLP’s. Note that this yellow expert MLP corresponds to the yellow rule’s ML Pgi.. 16 x15 % 8 363 65
consequent of CANFIS, denoted by “Yellow MLP” in Fig. 7. MILPyioer 16 x 17 x 6 209 18

A. Color Simulator Neural Networks
Target Color

The aforementioned MLP’s and CANFIS built up only the measure Surface 5
color recipe prediction system shown in Fig. 1 that does not u: —_— Spectral == gat
any feedback information concernimglor differenceexplic- Reflectance b}

itly. Yet, it is of great importance to consider perceived colo
difference during the recipe prediction process (see Table | a
Fig. 3). Basically, our ultimate objective is to decrease color dil -

ference rather than colorant errors (see Fig. 2). In other worc}  cojorant _3 predict Color | feed Color
proportion error measure might lead to rapid approach to neaii proporions | pf;ﬁﬁon back  piterence
optimal recipe results, but color difference measure might t ;

more important to fine-tune the recipe results. Practically, th !

color difference between pairs of presented colors should || .
smaller than about 1.0; human eyes can hardly distinguish k 1:
tween smaller color differences. If the predicted color recip! L
causes color difference greater than 1.0, then it may be neci|  Color Simulator NN v Produced Color 2"
sary to readjust the color recipe. }L b'i

The bird’s-eye view of the paint production pictured in Fig. 3
gives us a hint about how to feed back the color differen¢gy. 9. important role ofNNy ., (in the paint manufacturing process) as
information to the recipe prediction system in order to improwecolor simulator to predict what the produced color will look liRENY. ..,
prediction accuracy. In particular, we have constructed (rﬁ{)laces the time-consuming part of paint manufacturing (compare Fig. 3).
MLP, NNt .;,, specially designed to cope with the third critical
problem (P3) in Table I. Th&Ny,;, plays an important role In the evolutionary phase, the system tries to improve
as a color simulator in estimating color difference so that ttmmlorant proportions encoded into chromosomes in conjunction
entire system can mimic the whole paint production process,wgh three functions, NNs and a KB, which form the fithess
depicted in Fig. 9. This manufacturing process can be expressaiction. Genes’ colorant concentrations are passed to the three
within an evolutionary framework, as illustrated in Fig. 10functions which calculate fithess values individually, and then
We shall explain the evolutionary mechanism in subsequeht three values are combined into the final fithess value. This

sections. evolutionary phase corresponds to the second step of the col-
orist's operation described in Fig. 2. In the following, we shed
B. Overlook of Manufacturing Intelligence light on more details of each component in the evolutionary

In the initial stage [left side of Fig. 10], the first—generatior?yStem'

population, or starting points for a GA search are set by a fuz .

. . . . Colorist's Knowledge Base
population generator and a multi-elite generator using results
from the CANFIS and NN approaches. Those results must al-Performing the color recipe prediction task requires special
ready be somewhat close to the range of ideal colorant conckfowledge, thus, a KB is constructed that has the following four
trations. This initial stage corresponds to the first step of tigain rules:
colorist’s operation described in Fig. 2. The difference is that « Rule 1
the human colorists use their reference file of the stocked recipe keep total proportions of colorants 100%;
records, which can be viewed as a sort of look-up table method. « Rule 2
On the other hand, the manufacturing intelligence employs NN keep the number of necessary colorants around the ideal
function approximators. number;
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Fig. 10. Architecture of color paint manufacturing intelligence.

two sample color recipes obtained by the aforementioned NN

avoid use of complementary colorants, e.g., Red amgbproaches. Again, it is important to keep the number of col-

Green;
* Rule 4

orants used at a practical level.
The following table shows a sample of initial multiple elites

avoid use of the same type of colorants at the same tinpgroduced by the multi-elite generator, and their associated color

e.0.,Red; andReds.

difference predicted b Ny ,y,:

Note that we have ten colorants (ten outputs) that include three

pairs of the same kind of colorants: green, yellow, and red on

(see Fig. 1); each pair, such Red; andRed,, has different

characteristics. In the color recipe prediction task, the 100% ry

(Rule 1) was also emphasized in [20].

Knowledge may be useful in reinforcing some favorable asg-
pects of genetic searches [8]. Thus, the KB might play an im
portant role in helping the hybrid system evolve to recogniz

specific features of a target color.

D. Multi-Elites Generator

The resultant color recipes obtained¥¥ 0,1, NN,0q, and
CANFIS are encoded into the initial population as elite mentd this example, four new elites are generated by modifying the
bers. Then, a multi-elite generator produces more elites by mé¥Nnorm 'S recipe vector. The four newly generated elites (Elites
ifying those results according to Rule 4 in the KB. That is, th& through 4) have different fitness values, which are higher than
concentrations of the same type of colorants are summed iftdnorm’s fitness value, because knowledge has been applied to

one or another of them, e.g.,

Red; 4+ Red> = Red;, oOr
Rﬁdl + Redg = Redg.

g

Colorant Color difference Fitness

le error byNNr.1, value
CANFIS 0.000 748 1.405 0.816 236
NNiod 0.008070 1.706 0.836 720
" NNporm 0.006 765 7.121 0.435954
B Elite1l 0.005 266 5.833 0.800402
Elite 2 0.029944 7.072 0.734058
Elite 3 0.030417 9.961 0.689 702
Elite 4 0.007 502 8.660 0.733 926

improve the recipe vector obtained BN ;...

Multiple elite colorant vectors offer several different good
starting points for GA searches. The number of encoded elites
depends on the quality of the CANFIS/NN results; we take the
results of three approacheSN o, NNyoa, CANFIS), and
so at least three elite members always exist at the initial stage.

This is derived from the fact (in Table 1ll) that the simple backThe combination of several solutions may be effective in finding
propagation MLPNN,,....,, tends to specify use of more thaman optimal solution [6]. The other members are initialized by a
six colorants although the desired number of colorants to prfoizzy population generator. This seeding procedure is shown in
duce any color in our data sets is fewer than five. Table V showe left side of Fig. 10.
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TABLE V where two membership values, and}{,, signify to what ex-
Two SAMPLE COLOR RECIPES COMPARED WITH THE RECIPESOBTAINED BY
NN, NNos. AND CANFIS: THOSE ARE ENCODED INTO tentthe targgt color belongs to the yellow category.and the green
THE INITIAL POPULATION one, respectllvell).Popml denotes thg total population number,
andPopyy signifies the number of elite chromosomes from the
Sample 1 CANFIS/NN results including the chromosomes generated by

Colorant | target || NNporm | NNmoa | CANFIS
White 0.9561 || 0.9518 0.9545 | 0.9580
Black 0.0121 {| 0.013 0.0134 | 0.0119

the multi-elite generator.

Green; |0 0.009 0 0 F. Fitness Function

Red; 0 0.0011 |0 0 The fitness function consists of three functions; two neural
Greeny | 0.0317 || 0.0233 | 0.0321 | 0.0275 fitness functions (Function 1 and Function 3), and the KB-based
Kg:t g g 8 g fitness function (Function 2). Its form can be expressed as
Yellow; | 0.0001 {{ 0.0008 0 0.0023

Yellow, | 0 0.0004 0 0.0003 fithess= « - fitness + 3 - fithess + ~ - fitnesg  (5)

Blue 0 0 0 0

Sample 2 . )
Colorant [ targel | N Voo T W Wosa T CANFIS yahlﬁgeg, Sﬁc,a?ggzoaieoscahng factors such that the total fithess
White 0.0933 |; 0.0887 0.0939 | 0.0936 . L .

Black 0.0352 || 0.0332 1| 0.0410 |0.0363 1) Function 1: The first function evaluates genes’ colorant
Green; | 0 0 0 0 concentration vectors according to the use of colorants speci-
Red; 0.2673 || 0.2643 0.2608 | 0.2664 fied by NNpis. TheNN,;, (16 x 18 x 21 x 10 neurons) maps
Green, |0 0.0051 |0 0 surface spectral reflectance to a list of required colorants (see
ch:il:t’ g 8.0003 g 8 Fig. 11). It gives just ON/OFF values to each output unit o pre-
Yellow, | 0.6042 || 0.5988 | 0.6043 | 0.6037 dict which colorants should be used to produce the same color
Yellows | 0 0.0097 0 0 as the target color, where ON means “colorant needed” and OFF
Blue 0 0 0 0 means “not needed.” Function 1 evaluates each chromosome by

calculating the Euclidean distance in binary space (ON/OFF)
after each chromosome’s representation has been transformed
E. Fuzzy Popu|ati0n Generator into the ON/OFF format as follows:

The CANFIS concept in Fig. 7 is adapted to initialization
process [see the left side of Fig. 10]. The idea is to generate
the initial population according to the fuzzy classification of a
target color, which serves to determine colorant selection. First,
we classify the target color into one of five color categories (reghhere(t,  t,, ..., t10) and(by, bs, . .. , byo) are ten-dimensional
yellow, green, blue, and violet) on the' — * plane, which pinary vectors ofNN,,;, output and of an evolving color chro-
shows hue and chroma [see (2)], and decide to what extent gfigsome, respectively. The calculated fitnessplugged into
desired color belongs to each color category using fuzzy MFs,@;.

discussed in Section IV-B. We then generate initial color chro- Fig. 11 describes this procedure. Table VI shows the capa-
mosomes by modifying chromosomes generated by a randgyliy of this trainedNN ;.

number generator according to rules in the KB. For example,2) Function 2: The second function calculates a fitness
when a target color looks greenish yellow, green chromosomggue based on the KB described in Section V-C. The fitness
and yellow ones are generated; Green chromosomes have z@f@e depends on the extent to which genes’ colorant concen-
values in eitheiGreen; or Green, colorant concentration andtration vector obeys the rules in the KB. To keep the GA search
in red colorant concentrations because of the red-green cafibving in a consistent direction, the KB is used in both the

plementary color relationship (see Rule 3 and Rule 4 in Sqgitial stage and in the calculation of fitness values as illustrated
tion V-C). It is effective to inactivate some genes which havigy Fig. 10. Function 2 computes the following:

information on the same type of colorants and complementary

10

>t —bi)? (6)

i=1

fitness = 10.0 —

colorants in order to eliminate redundant colorants at the initial 10
stage. fitness = | k; — ||1.0 — Z 0;
The number of green chromosom@Sumg,e.,) and that i=1
of yellow ones(Numvyenw) are decided according to the fol- 10
lowing calculations: + | k2 —||3:95 - Z bi
=1
+ (ks — # of complementary colorants
Pop,es; = PoPioial — POPNNs + (k4 — # of the same type of colorants
M (7)
Numcreen = ————Pop,eq
reen My + Mg rest?
N _ v_p where vector(oy,02,...,010) IS @ ten-dimensional colorant
Hityellow = M, + M, OPrest proportion vector encoded in an evolving color chromosome;
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Fig. 11. Component of the fitness function based\t¥,,;; [see (6)].

TABLE VI
CAPABILITIES OF DIFFERENTNN APPROACHES INSPECIFYING NECESSARY
COLORANTS. NN, o IS THE SIMPLE BACKPROPAGATIONMLP, AND NN, o
IS THEIMPROVED NN, 6, AS DISCUSSED INSECTION IlI; CANFIS I's THE
NEURO-FUzZY MODEL DESCRIBED INSECTION IV. NN,,;, IS THE SPECIAL NN
THAT PREDICTSNECESSARYCOLORANTS ASSHOWN IN FIG. 11

[ NNrorm | NNmod | CANFIS | NNpwg

where £ denotes the color difference calculated by (2). Other
decreasing functions can be employed alternatively. The calcu-
lated fithess goes to (5).

G. Genetic Strategies
GA search is controlled by genetic operations, which might

# of unmatched s . :
patterns in 302 299 74 7 97 have a S|gn|f|can.t effect on .the quality of solu'tlons. We havg
test patterns embodied some ideas special to the color recipe prediction in
# of unmatched both mutation and crossover operations.
““;ts " 37,030 911 106 98 48 1) Mutation Strategy:Usual mutation operation as in a
e P simple GA [3], [21] is applied to all members with a changeable
redicted avg. - ) ) g
# of required 6.66 3.90 3.89 3.96 mutation rate scheme such that a fixed mutation rate (0.01) is
colorants adopted with a probability of 0.4, and otherwise, a mutation
rate ranging from 0.09 to 0.69, is decided using a random
] ) _ number. Moreover, the following modified operations are also
vector (b, bz, . .., bio) is a corresponding transformed binary.,nsidered.

(ON/OFF) vector; and:y, ko, k3, k4 are some positive coef-
ficients that make the four parenthesized valpesitive. The
computed fitnessis used in (5).

3) Function 3: The third function, based aNNp,3,, gener-
ates a fitness value with respect to color difference between a
target color and each member’s color whose colorant concentra-
tions are predicted by the system. Because it is time-consuming
to manufacture actual color paint by mixing colorants specified
by genes’ values, theNp ., plays a crucial role as a color sim-
ulator to predict what color will be produced (see Fig. 9). The
NN (10 x 11 x 14 x 3 neurons) maps colorant concentrations
to L*,a*, andd*; that is, by plugging each member’s colorant
proportions intaN Ny ,3,, we can obtairl*, «*, andb* to calcu- .
late the color difference between a target color and an individual
color (see Fig. 12).

The calculated color difference shows how satisfactorily the
predicted color matches the reference color. Recall that human
eyes can hardly distinguish two color samples if their color dif-
ference is smaller than 1.0. The useNify,,;, provides a way
to calculate color differences numerically, and thus to take into
account human visual sensitivity to color differences. Table VII
shows the potential of the color simulatSNTy,,.

Function 3 determines the fitness val(féness) of each
chromosome based on

fitnessg = exp(—F) (8)

Chromosome Template:

To avoid specifying use of more colorants than neces-
sary, we set out to inactivate some genes using the fuzzy
population generator as described in Section V.E. This has
made it possible to use a chromosome itself as a template
to do the mutation operation. That is, before the mutation
operation, it is decided whether to mutate an inactivated
gene or not; the mutation is applied with low probability
(0.1) to inactivated genes, which have zero values of con-
centrations. If the mutation is applied to an inactivated
gene, this leads to an increase in the number of necessary
colorants.

Local Search and Preservation of Multi-elites:

Multi-elites, i.e., chromosomes from the results of
CANFIS/NN approaches, are mutated only at the lower
bits of each gene to keep traits similar to the NN results.
Those mutant copies of the multi-elites may stay in the
vicinity of the original multi-elites. In this way, local
search of the NN results is realized. In addition, the
offspring of multi-elites always advance to the next gen-
eration. The mutant copies of multi-elites are preserved
throughout the entire evolution. Note that this manipula-
tion of low-order bits is applied only to multi-elites.
Exchanging Mutation:

After the usual mutation, with low probability, mem-
bers are subjected to another mutation: exchanging genes
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Fig. 12. Component of the fitness function based\o¥..;,. TheNNy,.;, predicts what color will be produced after genes’ specified colorant proportions are
mixed.

TABLE VII White Red 1 Red 2
AVERAGE COLOR DIFFERENCEPREDICTED BY NNy, .1, USING THE IDEAL
COLORANT CONCENTRATIONS AND THE RESULTS OFTHREE NN APPROACHES I 06117 | ‘1 0.2951 | oo l 0.0 | sees J
NNiorms NNmod, AND CANFIS. THIS TABLE SHOWS THE POTENTIAL
CAPABILITY OF NN, ,;, FOR 302 CHECKING DATA ON OFF

Colorant vectors || Ideal | NNnorm | NNpog | CANFIS \/
Color difference || 0.567 5.921 2.847 1.976 1

White Red 1 Red 2

06117 [«+]| 00 [--] 02081 [ ...

that have the same type of colorant information. This mu-
tation is illustrated in Fig. 13. Among ten output colorant
proportions, we have three pairs of the same types of ceb 13.  Exchanging mutation.

orants (e.g.Red; andRed,); so, we must decide which

one to use. This exchanging mutation allows us to explore . .

such colorant choices. This may lead to an escape frdHfh high fitness most likely has small color difference due to
local optima in the initial CANFIS/NN andiN,;, results; (8) With NNy,p,. In this GA search, it is desirable to find a di-
their choices may not match the final choice determindgction that minimizes both color difference and colorant er-
by the system. Later in Table IX, we will show the agre©s: The problem is that we cannot calculate colorant errors
ment withNN,;,; namely, how much the resultant choicdirectly; however, the CANFIS/NN results provide a clue as to

of colorants optimized by the system matched the colorapftter colorant concentrations since they must already be within
choices specified b N;,. some range of the ideal colorant concentrations. Thatis why mu-
tant copies from the CANFIS/NN results, including ones origi-

o . ] : . nally generated by the multi-elite generator, should be involved
nai)/ xv%?ggg t i;[)nspslg\);ercrrr?:tsho(;/deH'Cvsgeearip?;y;jlgi?@:lredxl in guiding the search toward better colorant proportion vectors
crossover method, detailed in [1j. We have modified the™ in procedure 2). Anq then prqcedure 3) completes the sim-
selection method of the original simplex crossover, resulting PAeX crossover, as depicted n F’|g. .14' These three procgdures
the following three procedures: were motivated by the colorists’ skillful procedures described

) _ in Fig. 2.
1) selectone good chromosome with respect to fithess value;

2) pick, with high probability, a multi-elite, i.e., one of the
mutant copies from the initial CANFIS/NN results, as a  VI- EXPERIMENTS OFMANUFACTURING INTELLIGENCE

good chromosome; The performance of the evolutionary color paint “manufac-
3) choose one bad chromosome with respect to fitness valiiging intelligence” was evaluated by actually manufacturing
The procedures share an idea of edder-Mead downhill sim- color paint samples according to the experimental results. Due
plex method18], based on a reflection away from a bad chrao the time constraints in the usual production schedule and lim-
mosome, as illustrated in Fig. 14. Procedure 1) lights a direited manufacturing capacity, 111 checking data were randomly
tion toward minimizing color difference since a chromosomselected for the performance evaluation.

OFF ON
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Fitness Increase TABLE VI

g |Good chromosome RESULTS OFCOMPUTATIONAL PREDICTION IN COLORANT ERROR (X 1072)
8 e AND THE CORRESPONDINGCOLOR DIFFERENCEPREDICTED BY NNy, ,;, USING
8 111 GHECKING DATA. NNyorm 1S A SIMPLE BACKPROPAGATION MLP,
Q AND NN, 0q IS AN IMPROVED NN, o1, AS DISCUSSED INSECTION

8 III; CANFIS Is A NEURO-FUzZY MODEL DESCRIBED INSECTION |V,

g GNF Is A GENETIC NEURO-FUZZY MODEL

™Y

QO

E Tdeal || NNnorm | NNpod | CANFIS | GNFA11
5 (TI111] COI(OT‘;"(;‘ :m’ 0 2.312 1543 | 1.139 0643

2 %10~

-] Mutant copy Slor dif

° (11T Color difference 1 g | 6661 3165 | 2019 0.267

from NN results

predicted by NNy 1

Bad chromosome

Colorant Error Decrease
VIl. DISCUSSION

Fig. 14. GA search control by the modified simplex crossover. Two selected : s e : -
chromosomes are called “good” or “bad” according to their fithess value, andln reality, it is very difficult to obtain the perfect fitness

the third chromosome is a mutant copy from the CANFIS/NN results. function to evaluate a complicated industrial process, especially
when its precise mathematical model is not available. To over-
come the limitation, we employed NN function approxmators,
NN.ie and NN, as components of the fitness function.
Although those NN’s were not perfect, as shown in Tables VI

The configuration of the GA was as follows:

Population size 80 members

Mutation rate flexible
Crossover method simplex crossoydr
Simplex crossover rate0.85
Maximum generations 10000.

and VII, they helped direct the GA search to a better region of
the search space; consequently, the performandeNif o1y,
was still better than those of other approaches (see Tables VIII
and IX).

WhenNNy,), solely acted as the fitness function@NF .,

the system tended to go too far toward minimizing color dif-
Table VIII shows the comparison of the evolutionary systeffierence, and therefore the average number of required colorants
GNF 411, and the aforementioned CANFIS/NN approachesvas larger. In addition, the specified colorants did not match
GNF 415, with all three components of the fitness functionwell those designated byN,,;, as indicated in the low per-
employed the results of three approach¥,o;m, NNimod,  Centage of agreement williN ;. in Table IX.
and CANFIS in generating the initial population. According to Intriguingly enoughGNF p andGNF ¢k have comparable
the corresponding color difference predicted ¥¥..., only NNyi,-agreements, anNF 411, were still better than those
the result ofGNF 411, was good enough to reach a satisfactortwo in theNN,,i.-agreement. This indicates that the KB surely
level of color difference where human eyes could not tefielped the system evolve to recognize important aspects in col-
the difference between presented colors. (Again note that trant selections, compensating for the lack of accuradigf;,
desired color difference should be smaller than about 1.0.) (Table VI). Here, itis emphasized that they functioned synergis-
To exhibit how indispensable CANFIS/NN results are at thtcally.
initial seeding stage, we examind@NFS , which had no  GNF had no multi-elites but had all three components of
multi-elites from CANFIS/NN results, but had the same fitnedbe fithess function, starting from the randomly initialized col-
function asGNF 41 1.. It started the GA search from the ran-orant concentration vectors. Its poor performance in Table 1X
domly initialized colorant proportion vectors. Note in Table IXplaces emphasis on the existence of the multi-elites (i.e., mutant
that the parenthesized values show the best performance witipies from the CANFIS/NN approach results); without them,
respect to colorant errors regardless of fitness; those were e cannot draw any advantage from the search direction pre-
results when the minimal colorant errors were obtained. sented in Fig. 14. In other words, seedings from CANFIS or
Furthermore, to demonstrate the validity of each of the thre¢her NN approaches are indispensable in enabling “manufac-
components in the fitness function, we tes@F ., GNF¢p, turing intelligence” to function efficiently. ThiSNFYS{ case
andGNF ¢k : GNF~ hadNNp,;, as the only component of thecorresponds to a situation where professional colorists have no
fitness function;GNFcp had bothNN1,, and NNy, as two access to their own file of previous color recipes, leading to very
components of the fitness functicBNF ¢k had the KB as well time-consuming efforts to generate near-optimal recipes.
asNNr ,;, as two components. (Note thaiNy ;, played anim-  As shown in the parenthesized values in Table 1X, the system
portant role as a color simulator; hence, it always had to staydid not put the highest fitness on the ‘best’ chromosome in terms
the fitness function.) Table IX summerizes the results, showiiog colorant errors (see Table X also). In this simulation, we did
how each component contributed to the prediction, and how thegt use the elitist selection method since the fithess function
complemented each other. could not calculate colorant errors, which may suggest that even
Fig. 15 shows a sample evolutionary proces$0fF arr. if a better child chromosome in terms of colorant error appears,
The system selects a chromosome with the highest fitnesstlas elitist strategy may jeopardize its chance of advancement to
the final solution over a preset number of generations (10 00@)e next generation. In fact, when the elitist selection strategy
For instance, in a sample evolution process in Fig. 15, the finahs used, the system had a tendency to go too far toward mini-
outcome is obtained at generation 4468, as shown in Table Xnizing color difference [10], [13].
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TABLE X
PERFORMANCE EVALUATION OF “M ANUFACTURING INTELLIGENCE" SYSTEMS FOR111 CHECKING DATA. GNF A1, SHOWS THEMAXIMAL ABILITY OF THE
MANUFACTURING INTELLIGENCE IN THE PREDICTION TASK. PARENTHESIZED VALUES SHOW POTENTIAL CAPABILITIES WITH RESPECT TOCOLORANT ERRORS
THEY WERE OBTAINED WHEN COLORANT ERRORSWERE MINIMIZED . A COLUMN, “AVG. # OF GENERATION" SHOWS WHEN MAXIMAL FITNESSIS REACHED. A
CoLUMN, “ERROR’ DENOTES THEAVERAGE COLORANT ERROR A COLUMN, “AGREEMENTWITH NN ;" IMPLIES HOW MUCH THE PREDICTED CHOICE OF
COLORANTS OPTIMIZED BY THE SYSTEM MATCHES THE COLORANT CHOICE SPECIFIED BY NN ;. , AND THE LAST COLUMN, “COLOR DIF. BY NNy,,,”
SIGNIFIES COLOR DIFFERENCEPREDICTED BY THE COLOR SIMULATOR, NN, 41,

Fitness Function Avg. # of | Error | Avg. # of | Agreement | Color dif.
NNpap | NNpig ] KB | generation | x10~2 colorants | with NNy | by NNpgs
5058.7 0.643 3.90 79.28% 0.267
GNPau | O O | O o5 | 023 | (388 (79.28%) | (0.809)
41344 72.209 3.94 50.45% 48.800
GNFee | O O | O (30828 | (36.165) | (4.89) (21.62%) | (34.637)
4915.4 1.190 4.02 78.38% 0.121
enrFer | O O | x| (43588 | (0.206) | (4.02) (14.77%) | (0.659)
4559.3 1.695 3.88 74.77% 0.202
GnFex | O < 1O uesss) | (0215 | (3.89) (77.48%) | (0.656)
4604.3 2.802 5.35 28.83% 0.060
GNFe O % 1 (a742.4) | (0.191) | (4.36) (55.86%) (0.567)
20 TABLE X
SAMPLE OF EVOLVED COLOR RECIPESTHAT WERE SORTED ACCORDING TO
'1 'v B THE FITNESS VALUES. THE RECIPE WITH THE HIGHEST FITNESS AT
18 i GENERATION 4468 WAS SELECTED AS THEFINAL OUTCOME. NOTE THAT THE
2 M CoLOR DIFFERENCEWAS PREDICTED BY NNy,.;, (SEE FIG. 15)
3
g 1o Generation | Colorant | Color difference | Fitness
f number error by NNpab value
3 4468 0.000416 0.147402 0.972258
0§ 173 0.002407 0.260854 0.950668
16 0.002416 0.269533 0.948915
3000 0.002440 0.282920 0.947709
T e ) 9000 | 0.000211 0.349964 | 0.940885
T T 27 0.000481 0.368336 0.938377
o.008t} v 157 0.000444 0.455951 0.924514
W 251 0.000431 0.468585 0.922556
751 0.000272 0.500607 0.920708
_ 0008 532 0.000408 0.491637 0.92007
g 7500 0.002426 0.546673 0.915025
_— 9800 | 0.000724 0.510859 0.914321
[
8
o.002* i
although the colorant errors of the final solutions of the system
000 are quite different. Actually, only 71 patterns among the 111
o mw  wn o w0 1000 checking patterns were improved in terms of colorant error. This
10 ’ may be partly because the CANFIS models worked well in pre-
diction, so their results may be hard to improve upon, but partly
also because the system may happen to find another colorant
o composition solution. In other words, the presented “manufac-
3 turing intelligence” can potentially handle it if the color simu-
2 o lator, NNp_.1,, learns much of the mapping from colorant com-
g positions to perceptual attributes of coldr( a*, andb*).
W i | Fig. 16 shows an interesting fact that the real perceived color
A A difference did not exactly correspond to the magnitude of col-
ok 1 - orant errors. Such complicated relationships between colorant

[ 2000 4000 6000 8000
Generation

10000

errors and actual color differences may imply that the mapping
from surface spectral reflectance to a list of colorants may not

Fig. 15. Sample evolutionary process without the elitist selection strategy (68 a gne-to-one correspondence. (AS stated in Table I, we may

Table X).

need to take care of the (P4) and (P5) problems; different col-

The parenthesized colorant errors in Table IX show almostant compositions may produce the same or almost the same

the same error levéD.2 x 10~2) except for that ofaNF

void

ALL>

color to human perception.)
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Fig. 16. Complicated relationships of 32 color samples between actual color
difference and colorant proportion errors; these 32 sample color paints were ®
actually manufactured and their color differences were actually measured.

Neural networks
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Color ___ | theory-based Color
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Fig. 17. Kubelka-Munk theory-based NN system; neural networks (or (1]
neuro-fuzzy) models compensate for the conventional Kubelka-Munk
theory-based system.

(2]

Also, the smallest colorant error calculated by (1) may not 3]
be the best solution for human color perception. We may nee
weighted colorant error calculations in place of (1); in a bright [4]
color, for instance, black colorant error would be considered[s]
more important than white colorant error, and therefore, larger
weight may be assigned to the black colorant error.

This section concludes with one notice of accuracy of “color
difference” formula defined in (2); the adopted CIE 1976
(L*,a*, b*)-space may not be perfect. In color science, it is still [7]
important to characterize the nature of human color perception[B]

(6]

VIIl. CONCLUDING REMARKS AND FUTURE DIRECTIONS [9]

In Section IV, we have demonstrated the strength of a knowl-
edge-embedded neuro-fuzzy model, CANFIS. By constructiné]]0
MF’s in the color attribute space, this neuro-fuzzy approac
allows us to express and realize meaningful representations of
colorists’ knowledge. This concept was further incorporated[ll]
into “manufacturing intelligence,” highlighted in Section V,

a unique blend of principal components of soft computing
where a GA with a KB plays a leading role in pursuit of [12]
predictions, linking an FS and NNs; they function complemen113]
tarily as an evolutionary system. The resultant “manufacturing
intelligence” system has a mechanism for checking predicted
perceptual color difference in conjunction with an embeddeqm
color simulatorNNp ,;, by simulating the manufacturing cycle
of color paint. Therefore, the system realized a higher degree of
- L . S 15]
prediction precision, improving the results of other individual
approaches, although its disadvantage is that it was fairly

549

time-consuming to construct the entire architecture (shown in
Fig. 10) using soft-computing function approximators.
Our immediate future work includes the following:

« employ CANFIS/NN’'s to compensate for the conven-
tional Kubelka-Munk-theory-based system, as illustrated

in Fig. 17;
improve CANFIS and NN performances by using ad-

vanced nonlinear least squares techniques, i.e., a direct

dogleg trust-region algorithm [14], [15] for a small-scale
problem, or an iterative Krylov-dogleg algorithm [16],
[17] for a large-scale problem;

develop systematic and faster implementations of the com-
putational intelligence for further improvements.

ACKNOWLEDGMENT

The authors are deeply grateful to anonymous reviewers for
detailed comments on our early manuscript. Also, we would like
to thank T. Hirayama (Kansai Paint Co., Ltd.), K. Nishio (Sony
Corp.), and Dr. M. A. Lee for their valuable suggestions.

REFERENCES

H. Bersini and G. Seront, “In search of a good evolution-optimization
crossover,Parallel Problem Solving from Nature 2ol. 2, pp. 479-488,
1992.

J. M. Bishop, M. J. Bushnell, and S. Westland, “Application of neural
networks to computer recipe predictioiGblor Res. Applicat., vol. 16,
no. 1, pp. 3-9, 1991.

D. E. GoldbergGenetic Algorithms in Search, Optimization, and Ma-
chine Learning Reading, MA: Addison-Wesley, 1989.

R. W. G. Hunt,Measuring Color 2nd ed. London, U.K.: Ellis Hor-
wood, 1991.

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tems,” IEEE Trans. Syst., Man, Cybernol. 23, pp. 665-685, May
1993.

T. Kido, H. Kitano, and M. Nakanishi, “A hybrid search for genetic al-
gorithms: Combining genetic algorithms, tabu search, and simulated an-
nealing,” inProc. 5th Int. Conf. Genetic Algorithms, July 1993, p. 640.
D. L. MacAdam,Color Measurement: Theme and Variationserlin,
Germany: Springer-Verlag, 1981.

N. Mansour and G. C. Fox, “A hybrid genetic algorithm for task allo-
cation in multicomputers,” ifProc. 4th Int. Conf. Genetic Algorithms,
July 1991, pp. 466-473.

E. Mizutani, J.-S. R. Jang, K. Nishio, H. Takagi, and D. M. Auslander,
“Coactive neural networks with adjustable fuzzy membership functions
and their applications,” iRroc. Int. Conf. Fuzzy Logic Neural Networks,
lizuka, Japan, Aug. 1994, pp. 581-582.

] E. Mizutani, H. Takagi, and D. A. Auslander, “A cooperative system of

neural networks and genetic algorithm with fuzzy population generator
for computer color recipe prediction,” iRroc. Int. Conf. Fuzzy Logic
Neural Networks, lizuka, Japan, Aug. 1994, pp. 83-84.

E. Mizutani, J.-S. R. Jang, K. Nishio, H. Takagi, and D. M. Auslander,
“Coactive neuro-fuzzy modelings for color recipe prediction,Piroc.
IEEE Int. Conf. Neural Network&Nov. 1995, pp. 2252-2257.

E. Mizutani and J.-S. R. Jang, “Coactive neural fuzzy modelings,” in
Proc. IEEE Int. Conf. Neural Network8lov. 1995, pp. 760-765.

E. Mizutani, H. Takagi, and D. M. Auslander, “A cooperative system
based on soft computing methods to realize higher precision of computer
color recipe prediction,” ifProc. Applications Science Artificial Neural
Networks, Apr. 1995, pp. 303-314.

E. Mizutani, “Powell’s dogleg trust-region steps with the quasi-Newton
Hessian for neural nonlinear least-squares learning?tac. IEEE Int.
Conf. Neural Networks, Washington, DC, July 1999.

——, “Computing Powell’s dogleg steps for solving adaptive networks
nonlinear least-squares problemByoc. 8th Int. Fuzzy Systems Assoc.
World Congr., vol. 2, pp. 959-963, Aug. 1999.

Authorized licensed use limited to: Kyushu University. Downloaded on August 12,2020 at 05:00:54 UTC from IEEE Xplore. Restrictions apply.



550 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 4, NOVEMBER 2000

[16] E.MizutaniandJ. W. Demmel, “On iterative Krylov-dogleg trust-regio
steps for solving neural networks nonlinear least squares problems,’
Proc. Advances Neural Information Processing Systems (NIPS 200
Dec. 2000, to be published.

[17] ——, “On generalized dogleg trust-region steps using the Krylov sul
space for solving neural networks nonlinear least squares proble
Dept. Comput. Sci., Univ. Calif., Berkeley, Tech. Rep., 2000.

[18] J. A. Nelder and R. Mead, “A simplex method for function minimiza
tion,” Comput. J., vol. 7, pp. 308-313, 1965.

[19] E. Polak,Computational Methods in OptimizationNew York: Aca-
demic, 1971.

David M. Auslander received the B.S.M.E. degree
from Cooper Union, New York, NY, and the S.M.
and Sc.D. degrees from the Massachusetts Institute
of Technology, Cambridge, all in mechanical engi-
neering.

He is Professor of mechanical engineering and
Associate Dean for Student Affairs and Research at
the University of California, Berkeley. He has inter-
ests in dynamic systems and control. His research
and teaching interests include mechatronics and
real time software, bioengineering, and mechanical

[20] J. Spehl, M. Wolker, and J. Pelzl, “Application of backpropagation netntrol. Current projects in these areas are design methodology for real-time
for color recipe prediction as a nonlinear approximation problem,” igontrol software for mechanical systems, control of regenerative life-support

Proc. Int. Conf. Neural Networks, June 1994, pp. 3336-3341.
[21] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,1HEE
Comput., June 1994, pp. 17-26.

systems, satellite control and engineering curriculum development. He consults
in industrial servo control systems and other control and computer applications.
He is Cofounder and Senior Technical Consultant for Berkeley Process Control,

[22] T.Takagi and M. Sugeno, “Fuzzy identification of systems and its applinc., Berkeley, a company specializing in industrial machine control.

cation to modeling and control|EEE Trans. Syst., Man, Cyberwol.
SMC-15, pp. 116-132, 1985.

[23] W. D. Wright, The Measurement of Colodth ed.
Hilger, 1969.

[24] G. Wyszecki and W. S. Stile§olor Science: Concepts and Methods ASME.
Quantitative Data and Formula@nd ed. New York: Wiley, 1982.

London, U.K.:

Eiji Mizutani (S'00) was born in Evanston, IL,
in 1965. He received the B.S. degree in electrica
engineering from Ritsumeikan University, Japan
in 1989, and the M.S. degrees in mechanica
engineering in 1994 and in industrial engineerinc
and operations research in 1999, both from the
University of California, Berkeley.

He was an Atrtificial Intelligence Research Engi-
neer with Kansai Paint Co., Ltd., Osaka, Japan, fror F A

1989 to 1996, and has been a Consultant with Sor,
Electronics, Inc., San Jose, CA, since 1998. His cur
rent research interests are in the fields of operations research and nume
linear algebra. He is a coauthor (with J.-S. R. Jang and C.-T. SuNkofo-

Fuzzy and Soft Computing: A Computational Approach to Learning and ME-
chine IntelligencéEnglewood Cliffs, NJ: Prentice-Hall, 1997).

Hideyuki Takagi (M'91) was born in Japan in 1956.
He received the B.S. and M.S. degrees from Kyushu
Institute of Design, Japan, in 1979 and 1981, and the
Dr.E. degree in 1991 from Toyohashi University of
Technology, Japan, in 1991.
He was with Central Research Labs, Matsushita
Electric Industrial Co., Ltd., from 1981 to 1995.
He was a Visiting Researcher with the Computer
Science Division, University of California, Berkeley,
1 from 1991 to 1993. He has been with Kyushu
Institute of Design, Fukuoka, Japan, as an Associate
Professor since April 1995. His research interests include NN, FL, GA, and
other soft computing technologies; he is especially interested in fusing these
techniques and interactive evolutionary computation and human capability
such as interactive evolutionary computation.
He is a member of the Institute of the Electronics, Information, and Commu-
nication Engineers, the Acoustic Society of Japan, Japan Society of Atrtificial
Intelligence, and the Japan Society for Fuzzy Theory and Systems.

~

BB%'ks:Neuro-Fuzzy and
1997) andMATLAB Programming and Applicatio€hina: CWeb, 2000, in

Dr. Auslander was twice awarded the Levy Medal from the Franklin Institute,
Education Awards from the Dynamic Systems and Control Division of ASME
and the American Automatic Control Council. He is a Fellow of ASME. He has
a longstanding association with the Dynamic Systems and Control Division of

Jyh-Shing Roger Jang(S'89-M'93) was born in
Taiwan, R.O.C., in 1962. He received the B.S. de-
gree in electrical engineering from National Taiwan
University, Taipei, in 1984 and the Ph.D. degree in
Electrical Engineering and Computer Science from
the University of California, Berkeley, in 1992.

He was with The MathWorks, Inc., Natick, MA,
from 1993 to 1995, and coauthored the Fuzzy Logic
Toolbox. Since 1995, he has been with the Depart-
ment of Computer Science, National Tsing Hua
University, Hsinchu, Taiwan. He has published two
Soft Compuititignglewood Cliffs, NJ: Prentice-Hall,

hinese). His research interests include melody/music recognition, biometric
identification, web technologies, neural networks, and fuzzy logic.

Authorized licensed use limited to: Kyushu University. Downloaded on August 12,2020 at 05:00:54 UTC from IEEE Xplore. Restrictions apply.



