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Abstract

Logic controllers for machining systems typically have three control modes: auto, hand, and

manual. In this paper, a uni�ed formal representation of logic controllers with three control

modes is provided using Petri nets. A modular logic controller structure is introduced and

formalized for high-volume transfer lines. The modular logic controller consists of a control

module for mode decision and control modules for station logic controllers. Each station control

module is represented by connecting operation modules which are designed with respect to

the fault recovery processes of operations; their connection algorithm is also provided. In our

formal representation, each control module is represented by a live, safe, and reversible Petri

net. A condition for the modular logic controller to generate a correct control logic is provided:

operation causality condition. Using the modular structure of a logic controller, the control

logic can be easily recon�gured and automatic code generation is possible.
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1 Introduction

Automatic machining systems are designed for mass production of machined parts. These machin-

ing systems are controlled to automatically produce parts in repetitive cycles. In current industrial

practice, this automation is achieved by sophisticated control systems involving logic control as well

as servo control. The logic controller manages the sequencing of various processes to ensure that the

desired operations are carried out. In addition to this automation control logic, the logic controller

of a machining system is required to also handle exceptions such as fault stop/fault diagnosis and

fault recovery because faults can happen in any operation for various reasons. In fact, industry

folklore suggests that approximately 90% of the overall control logic is used for exception handling.

Although the control logic for exception handling is important in a logic controller, there is no

uni�ed modeling method to represent the exception handling control logic with the automation

control logic. As a result, it is not possible to conduct formal analysis and systematic design of the

logic controller.

This work is partly motivated by the needs of the emerging class of machining systems called

recon�gurable machining systems [1, 2]. In this context, machining systems and their logic con-

trollers often need to be modi�ed due to product part changes or process changes. It is important

to be able to rapidly redesign and implement such logic controllers in response to mechanical recon-

�guration of the machining system. Generally, the recon�gurability of the system results from the

mechanical recon�gurability of the component machines. For a recon�gurable machining system,

the logic controller for the system also should be recon�gurable. This is facilitated by having a

modular representation for the component machines. A decentralized or a distributed logic con-

troller has been considered for recon�gurable logic controllers and its hardware architecture and

necessary functionality are introduced in [3, 4, 5].

Since logic controllers are event-driven supervisory systems, Petri nets are considered an ap-

propriate tool for the analysis of the event-based behavior of logic controllers. A Petri net is a

mathematical formalism and is also a graphical tool which consists of places, transitions, arrows,

and tokens. By assigning physical meanings to each graphical component, Petri nets can model

many systems which are characterized as being concurrent, asynchronous, distributed, and paral-

lel. A major strength of Petri nets is their capability for analysis of important properties such as

liveness, safeness, and reversibility associated with such systems. The general ideas of Petri net

models and their application areas can be found in [6, 7, 8, 9]. For the details of Petri net models

for logic controllers, see [10]. Frequently, the complexity of a real-world system requires a large

Petri net having many places and transitions; the analysis of such a net system is limited by avail-

able computational resources. To overcome this complexity, simple reduction rules are developed

and introduced in [6, 11]. Another way to overcome the complexity is to build a Petri net using
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top-down or bottom-up approaches. The top-down approach is based on a step-by-step re�nement

and the bottom-up approach relies on the aggregation of subnets sharing common places or tran-

sitions; a simple and e�ective synthesis method is applied for modeling of manufacturing systems

[12, 13, 14].

Many authors have investigated supervisory controllers in automated manufacturing systems

using Petri net formalisms [15, 16, 17, 18]. One of the main issues in supervisory controllers is to

build a Petri net model which realizes a given control logic while satisfying the required structural

properties such as liveness, boundedness, and reversibility. In [19, 14], a CAD/CAE environment for

this hierarchical design methodology was introduced. However, it seems that this approach is not

yet much utilized in the machining industry. This is due in part to the facts that the methodologies

are not simple (they require specialized formalisms about Petri nets) and the given control logic

is too restricted to apply in real manufacturing systems. Most importantly, this method cannot

be used directly in logic controllers for machining systems. In machining systems, logic controllers

typically have three control modes: auto, hand, and manual. The control logic for hand and manual

modes are designed for various fault recovery in machining systems. Even though fault recovery in

automated manufacturing systems has been investigated in various ways [20, 21, 22, 16, 23], the

control logic for the three control modes has not been considered at the same time.

The main contribution of this paper is to develop a logic control design methodology which

includes the exception handling control logic along with the normal operation cycle in a modular

structure. In our methodology, each operation in a logic controller is modeled �rst using Petri

net formalism. Then, two types of operation modules are designed with respect to fault recov-

ery characteristics of operations. To overcome control logic complexity due to di�erent control

modes, a superposition methodology is developed; the control logic for each control mode can be

designed separately. Using internal variable conditions to account for the synchronization between

stations, the control logic for each station in a machining system can be also designed separately.

A modular logic controller is introduced; it consists of mode decision control module and station

control modules. The correctness of control logic for a modular logic controller is veri�ed using the

properties of Petri nets and the operation causality condition. In most cases, logic controllers are

implemented on PLC's (Programmable Logic Controllers). The designed modular logic controller

can be implemented on PLC's directly by using SFC (Sequential Function Chart) via automatic

code generation. Finally, we show that the modular logic controller can be easily recon�gured due

to its modular structure.

The paper organized as follows. Section 2 describes the main characteristics of logic controllers

for automatic machining systems. In Section 3, some basic de�nitions and notations for Petri nets

are brie
y introduced. The key ideas in modeling of logic controllers with three control modes are

presented in Section 4. A modular logic controller and its condition to generate correct control logic
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is developed in Section 5 and its application with an illustrative example is explained in Section 6.

Finally, in Section 7, the results are summarized.

2 Logic Controllers for Automatic Machining Systems

Logic controllers for automatic machining systems control the operation sequences to achieve the

goal of the machining system. Automatic machining systems are designed to produce a machined

part automatically in every repetitive cycle; a number of machines are linked together to provide

complete processing of a part. The automatic machining systems considered in this paper are high-

volume transfer lines; the main characteristics of these machining systems and their logic controllers

will be introduced in this section.

2.1 High-Volume Transfer Lines

Generally, high-volume transfer lines are composed of several machining stations together with

mechanisms for part transferring and �xturing. A high-volume transfer line consists of a transfer

mechanism, a number of machining stations, and �xturing mechanisms for the machining stations.

A part is presented to each machining station by a transfer mechanism, and it is clamped by

a �xturing mechanism. A number of asynchronous machining stations are synchronized by part


ow. Each mechanism and machining station is simply called a station. Each station performs a

particular process necessary to the overall production of the part using simple and fast motions.

Each motion is called an operation and a sequence of operations is associated with each station.

The schematic diagram of a high volume transfer line is shown in Figure 1. In this transfer line,

all machining stations are milling stations and the motions in each machining station are provided

by two or three single axis sliding mechanisms (vertical axes are not shown in the �gure).

2.2 Controls in Machining Systems

In automatic machining systems, two distinct types of controllers coexist: sequence control and

motion control. The logic controller of a machining system handles the sequencing operations

such as part transfer, �xturing operations and coordination of machining stations. It also provides

system status information and interacts with the operator for \manual" manipulation. In addition

to this sequence control, some operations (such as the metal-removal operations) require motion

control for precise feed rates and positioning. This motion control can be achieved by various

feedback control algorithms for servomechanisms; these control algorithms are well developed and

some of them can be found in [24, 25].

In high-volume transfer lines, motion control can be achieved by a network of computerized

motion controllers (CMC's) [26]. These controllers are programmed using motion blocks in the EIA-
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Figure 1: A high-volume transfer line for engine block surface milling

RS 274 format, which is similar to the G-code part program used in CNC (Computer Numerical

Control) machines. A motion block or a sequence of motion blocks is considered as an operation in

the logic controller. Some of these operations are causally related to operations in other stations.

Typically, a motion block or a sequence of motion blocks is initiated by the logic controller, while

the precise feed rates and positioning are achieved by the motion controller.

2.3 Control Modes in a Logic Controller

One of the main characteristics of a logic controller for an automatic machining system is its

distinct control modes. Each control mode has its own control logic which is designed to achieve

the functions for that particular control mode. The control logic for each mode is combined to form

the system logic controller. Generally, a high volume transfer line has three control modes: auto,

hand, and manual. The primary functions in each control mode will be described in this section.

2.3.1 Auto Mode

Operations are executed automatically in the auto mode. Only the logic controller is involved;

operator commands are necessary only to initiate and stop this control mode. The main functions

of auto mode are normal operation cycle, fault stop/fault diagnosis, and auto mode start/stop.

In a high-volume transfer line, the normal cyclic operation consists of the following sequential

steps:

1. return clamp (Unclamp parts and clear �xturing mechanisms from the transfer bar path.)

2. raise transfer (Raise parts.)

3. advance transfer (Move parts to the next position.)
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4. lower transfer (Lower parts.)

5. advance clamp (Clamp parts by �xturing mechanisms.)

6. cycle machining stations (Advance tool heads into parts and carry out machining operations

at prescribed feed rates and spindle speed.)

7. return transfer (Return transfer bar to starting position.)

The time required to complete one cycle, called the cycle time, determines the number of parts

that can be produced on a system, and thus is an important issue in high-volume transfer lines

[27]. To reduce the cycle time, the sequential steps are overlapped in the sense that a new step

may begin before the previous one has �nished. This e�cient cyclic operation is achieved by the

control logic for the normal operation cycle. In current industrial practice, the normal operation

cycle speci�cation is given by a timing bar chart. A part of the timing bar chart for the system

in Figure 1 is shown in Figure 2. The dotted arrows show causal dependencies between operations

in di�erent stations. The operations which are necessary for the normal operation cycle are called

normal operations.

A fault can occur in any operation of an automatic machining system. Therefore each operation

must have associated control logic for fault stop/fault diagnosis. The faults in operations can be

detected by \watch-dog timers" in the logic controller or additional monitoring devices for tool

breakage or belt breakage, etc. If a fault is detected during an operation, the logic controller

stops the operation and announces the fault to the operator; this announcement is called fault

diagnosis. A logic controller points out the fault exactly so an operator can easily �nd the cause.

For this reason, a logic controller needs to trace the state of every operation. Because of the causal

dependencies in the operations of a machining system, the entire machining system is stopped by

any fault. If a fault happens in one station, the other stations are stopped just after �nishing

their current operations; new operations cannot be initiated. The system must wait for a re-start

command from the operator to begin again. Another type of fault stop in an automatic machining

system is E-stop (Emergency stop) which is initiated by the operator. In this case, the entire

machining system is stopped immediately for safety.

The home position is the state of a machining system where the system stops when the system

stop command is given by the operator. Each station has its own home position where its mecha-

nisms are mechanically stable; the state where all stations are in their home positions is the home

position of a machining system. For each station, the normal operation which moves the station to

its home position is called the home operation; the home operations for each station are indicated

in the timing bar chart by a �. The auto mode control logic can start the machining system either

from the home position or after a fault recovery. Auto mode start is a transient control process

before a machining system begins its normal operation cycle. The auto mode stop control logic
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Figure 2: A section of the timing bar chart for the high-volume transfer line in Figure 1. The

modules are listed in the left-most column. Each operation is listed, and the the time taken by

each operation is indicated by a solid black bar. Operations which carry over to the next cycle time

are indicated by a white bar. Causal relationships between operations are indicated by dotted lines

and the home operation in each station is indicated by a �.
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brings the machining system to the home position after the normal operation cycle is complete.

Auto mode stop is another transient control process which must be included in the auto mode

control logic.

2.3.2 Hand Mode

When an automatic machining system is running, the operator often needs to coordinate multiple

stations or validate the automatic process step by step. Hand mode is used for these functions.

In hand mode, the logic controller carries out the sequential steps introduced in Section 2.3.1

without the overlapping that is present in the normal operation cycle; one entire operation cycle

is completed semi-automatically by a sequence of operator commands. An operation, a sequence

of operations, or sequences of operations are assigned to each step; they are initiated when the

corresponding operator command is received. Moreover, some steps are designed to be repeatable;

operations which are initiated by one operator command can be reversed to the initial state by

another operator command.

Generally, hand mode consists of seven to ten steps depending on the complexity in causal de-

pendency of operations between stations. The input device for the hand mode operator commands

is located in the main console of a machining system and will be discussed in more detail in Section

6 (see Figure 23).

2.3.3 Manual Mode

The main functions of the manual control mode are fault recovery and single station �ne operation

control (such as jog motions). If a fault (or faults) occurs in an operation (or operations), the

entire machining system is stopped by the fault stop control logic. Faults in a machining system

can only be recovered by the operator manually; automatic fault recovery is not possible in current

industrial practice. After removing the cause for the fault, the operator re-starts the auto mode.

The input devices for manual manipulation by the operator are located at each station. Generally,

the manual control mode for fault recovery is executed by the operator commands advance and

return (see Figure 18 (a)).

Sometimes, a station needs to �nish its cycle manually or the station must go to a certain position

to resume the automatic process properly. For this purpose, a sequence of operations in a station

is designed to be run by the input device in each station. The manual advance operation follows

the order of the sequence in the normal operation cycle for each station and the manual return

operation follows the inverse order of the sequence.
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2.4 Mode Switching of Automatic Machining Systems

Automatic machining systems are operated by the control logic for each control mode; each control

mode can be initiated by the operator. A typical mode switching of automatic machining systems

is shown in Figure 3. A machining system has stopped at its home position from the end of the

previous operation. For machining systems, this state can be changed slightly due to leakages

in stop valves of hydraulic mechanisms. Therefore, when the operator �rst starts the system,

the machining system should be checked whether it is in the proper state. If not, the operator

recovers the system using the jog motion of the manual control mode. If the system is ready,

the operator can start the auto mode operation. If no faults occur, the manual and hand control

modes are not needed. If a fault does occur, the machining system is stopped by the control logic

for fault stop/fault diagnosis. The operator must recover the fault in the manual control mode. The

machining system then goes back the auto mode either directly or after checking the other normal

operations using hand mode. In hand mode operation, faults can also occur; the machining system

is stopped again by the fault stop control logic. When the system stop command is received, the

auto mode stop control logic stops the machining system at its home position. Thus, in addition

to the individual mode control logic, the system logic controller must ensure that mode-switching

is handled appropriately.

2.5 Con�guration of a Logic Controller

Generally, logic controllers are implemented on PLC's (Programmable Logic Controllers), which

are hardware devices with a CPU and memory. The CPU executes the control program; the

memory is allocated for input, output, and internal variables. Input variables are assigned to sensors

and operator commands; output variables are assigned to actuators and display devices for fault

diagnosis. The logic controller we are considering in this paper has three di�erent control modes;

operations are executed in a di�erent way in each control mode. To handle three control modes

properly at the same time, a logic controller needs to keep track of the states of a machining system;

internal variables are used for this. An internal variable is assigned to each normal operation; its

value is changed by the control logic when the corresponding operation is completed. The details

about the usage of internal variables will be explained in Section 4.3.

The operations of automatic machining systems are accomplished by actuators, mechanisms, and

sensors. An actuator generates motion of a mechanism; both servo and hydraulic actuators are

commonly used in machining systems. The position and the fault of a mechanism are detected by

sensors. Limit switches, proximity switches, or encoders are used for position sensors; various fault

sensors or watch-dog timers are used for the fault detection.

Operator commands are inputs to the logic controller for a machining system. The control
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mode of a logic controller is determined by operator commands. Operator commands also initiate

operations in hand and manual control modes. Because operator commands come from input

devices such as push buttons, it is possible an operator may request a command which is not

allowed given the current state of a machining system. In this case, the logic controller must ignore

the illegal command. The operator commands considered in this paper are control mode selection,

the commands for each step in hand mode, and the advance/return commands in manual mode.

Normally, the input devices for auto and hand modes are located at the main console of a machining

system; the input device for manual mode is located at each station for fault recovery (see Figure

18 (a)). A boolean variable is assigned to each sensor or operator command input; it has 0 and 1

value. Therefore, three events can be generated from each input variable: positive rising transition,

negative falling transition, and active (value equals 1). These three events are illustrated in Figure

4.

A con�guration of a logic controller for an automatic machining system is shown in Figure 5. A

logic controller consists of its control logic, input variables, output variables, and internal variables;

it determines the values of output variables (normally, 0 or 1) with respect to the values of input

and internal variables by its control logic.

2.6 Problem Statement

Mechanical engineers who design a machining system generate a timing bar chart which has the

required cycle time and avoids mechanical con
icts. As mentioned above, a timing bar chart is

the speci�cation used in industry for the normal operation cycle of a machining system. However,
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the normal operation control logic is only a small fraction of the total logic controller. There are

no formal speci�cations concerning the control logic for exception handling such as fault recovery.

Thus, most of the control logic is programmed without any formal speci�cations; a logic controller

strongly depends on the experience and knowledge of a programmer. This paper addresses the

problem of developing a logic controller for a high-volume transfer line machining system using

formal models of the control system, and incorporating all three control modes (auto, hand, and

manual) as well as fault diagnosis and exception handling.

Even though the functions of logic controllers are very similar in high-volume transfer lines,

programming the control logic approximately takes 50% of the total construction time for each

machining system. Moreover, the control logic can be only veri�ed in the \cycle and debug" stage,

after the mechanism has been built. Although each machining system manufacturer has its own

standard program generation techniques, the resulting logic controller program is very complicated

and too large to be understood in a short time. One of main reasons for this complexity is that the

control logic is programmed in an unstructured programming language known as ladder diagram.

Ladder diagram has been the most popular programming language since the advent of PLCs due to

its similarity to simple electrical relay circuit diagrams. Even though it is well known that ladder

diagram is a very cumbersome way to represent sequence control, it is still widely used in most

logic controllers for machining systems for historical reasons. Logic control programmers draw on

their experience to program exception handling in ladder diagram; this experience does not exist
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for other PLC languages. Although SFC (Sequential Function Chart) can be used for exception

handling, its application is limited.

A formal modular representation of control logic using the Petri net formalism was proposed in

[27]. However, only the control of normal operation cycle was addressed. The correctness of the

control logic was veri�ed using the properties of the Petri net model. In this paper, we show how

the previously-proposed formal representation can be expanded to include control logic for all three

control modes together with mode-switching logic. Again using the Petri net model, we show how

key properties of the resulting control logic can be formally veri�ed. We also introduce a modular

design methodology for systematic control logic generation and implementation. In addition, we

show how our design methodology can be a solution for logic controllers of recon�gurable machining

systems.

3 Petri Nets

Logic controllers are event driven systems, and Petri nets are well known as a concise and rigorous

formalism to model and analyze such systems. Moreover, the asynchronous and concurrent control

behavior characteristics of logic controllers for machining systems can be easily represented by the

Petri net formalism; the correctness of control logic can be also veri�ed using Petri net properties.

Some basic ideas of Petri net models for logic controllers are explained in [10, 28]. Petri nets

have four graphical components: places (circles), transitions (bars), arcs (arrows), and tokens.

The dynamic behavior of Petri nets can be achieved by tokens and the token �ring rule. In this

section, we present some background on Petri net formalism which will be used in this paper. More

information on Petri nets can be found in [6, 7, 29, 11].

3.1 Petri Net Formalism

A marked Petri net is de�ned as a �ve-tuple N = fP; T; Pre; Post;Mg where P is the set of

places, P = fp1; p2; : : : ; png, jP j = n, T is the set of transitions, T = ft1; t2; : : : ; tmg, jT j = m with

P [ T 6= � and P \ T = �, Pre(Post) is the pre-(post-) incidence function representing the input

(output) arcs, Pre : P �T ! f0; 1g (Post : T �P ! f0; 1g), and M is the n-dimensional marking

of the system,M : P ! f0; 1; 2; : : :g; M(p) is the token count of place p. There is an arc going from

the place pi to the transition tj i� Pre(pi; tj) = 1. Similarly, there is an arc going from transition

tk to place pi i� Post(tk ; pi) = 1. The input and output sets of a transition t 2 T are represented

by �t = fp jPre(p; t) = 1g and t� = fp jPost(t; p) = 1g respectively. The input and output sets of

a place p 2 P are represented by �p = ft jPre(p; t) = 1g and p� = ft jPost(t; p) = 1g respectively.

A marked Petri net with the given initial marking M0 is denoted by <N;M0>.

A marking in a net system evolves according to the following �ring rules: (1) A transition t 2 T
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is enabled i� for all p such that Pre(p; t) = 1, M(p) > 0 and (2) The �ring of an enabled transition

t is an instantaneous operation that removes a token from each input place p of t, and adds a token

to each output place p of t. (3) Enabled transitions are never forced to �re. The �ring rule (3)

implies a form of nondeterminism. In practical modeling, this nondeterminism is resolved by the

interpretation of a transition (e.g. a transition can be �red on the occurrence of an external event).

The interpretation of transition �ring for logic controllers will be addressed in Section 4.2. The

notation M1[tiM2 denotes that transition t is enabled at the marking M1 and the marking M2 is

reached from M1 by �ring t. A sequence of transitions � = t1; t2; : : : ; tk is called a �ring sequence

of <N;M0> i� there exists a sequence of markings such that M0[t1iM1[t2iM2 � � � [tkiMk. The set

of all reachable markings from M0 in a net <N;M0> is denoted by R(N;M0).

For Petri net models for logic controllers, three important properties are typically considered:

liveness, safeness, and reversibility.

De�nition 1 A marked Petri net < N;M0 > is live i� 8t 2 T , 8M 2 R(N;M0), there exists a

sequence of transitions � such that a marking reachable from M by �ring �, enables t. A marked

Petri net < N;M0 > is safe i� 8p 2 P and M 2 R(N;M0), M(p) � 1. A marked Petri net

<N;M0> is reversible i� 8M 2 R(N;M0), M0 2 R(N;M).

The physical meaning of these three properties for a logic controller can be summarized as follows

[13]:

� Liveness as considered in this paper means the absence of deadlocks. This property guarantees

that all transitions are �rable and all the states of a logic controller which are modeled by

places can occur.

� Safeness guarantees that there is no attempt to request execution of ongoing process. Another

important implication of safeness is the Boolean representation of places; this enables a direct

conversion from Petri net to Sequential Function Chart [30] which is a programming language

for PLC's.

� Reversibility implies that the system will have a cyclic behavior and will perform its function

repeatedly. It also characterizes the recoverability of the initial state from any state (in the

controlled behavior) of the system.

We need following de�nitions to explain the structure of Petri nets.

De�nition 2 In Petri nets, a sequence of places and transitions, p1t1p2t2 � � � tn�1pn (t1p1t2p2 � � �pn�1tn)

is a directed path from p1 to pn (t1 to tn) if ti 2 p�
i
and ti 2

�pi+1 for 1 � i � n � 1 (if pi 2 t�
i

and pi 2
�ti+1 for 1 � i � n � 1). Moreover, if there are no repeated places or transitions in the

sequence, a directed path is called simple.
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Figure 6: Basic modeling features of Petri nets: (a) causal dependence, (b) con
ict, (c) concurrency,

(d) synchronization

De�nition 3 In Petri nets, a directed path p1t1p2t2 � � � tn�1pn (t1p1t2p2 � � �pn�1tn) in which p1 = pn

(t1 = tn), is a directed circuit. If the directed path is simple, the directed circuit is also called simple.

De�nition 4 A state machine is a Petri net such that every transition has exactly 1 input and 1

output place, j
�t j= jt�j = 1; 8t 2 T .

De�nition 5 A Petri net is said to be strongly connected if there exists a directed path from every

transition (or place) to every other transition (or place).

Using graphical representations, Petri nets can easily model causal dependencies (sequences),

con
ict (decision, choice), concurrency, and synchronization, which are the main features of control

logic for automatic machining systems. These modeling features are illustrated in Figure 6. Figure

6(a) shows the causal dependence between p1 and p2. The transitions in Figure 6(b), t1 and t2,

are simultaneously enabled. If t1 �res, t2 is not enabled and vice versa (simultaneous �ring is not

allowed). This Petri net structure is called a con
ict or choice. Figure 6(c) shows the concurrent

behavior of p1 and p2. They are causally independent. Synchronizations in a distributed and

concurrent systems can be modeled as in Figure 6(d). The places, p1 and p2, are synchronized by

�ring the transition t1.

3.2 Petri Net Interpretation for Logic Controllers

A discrete event dynamic system can be modeled as a Petri net by assigning physical meanings

to the graphical elements: places, transitions, and tokens. All physical meanings assigned to a

transition will be simply called conditions of the transition. The mutually exclusive conditions

must be assigned to the con
ict transitions to ensure deterministic behavior [31, 32]. The state of

a system can be represented by the marking M of a Petri net; in a logic controller, the sequence of

control actions is generated by the dynamic evolution of Petri net model.

In the Petri net model for a logic controller, the �ring rule for transitions needs to be modi�ed

to resolve the nondeterminism of Petri nets.
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(An Event Generator)
Machining System with Finite States
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for the Desired State
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Logic Controller
(An Event Driven System)

Petri Net Representation of 
the Desired Behavior of 

Machining System 

Figure 7: The schematic diagram of the closed loop system for a machining system with its logic

controller

De�nition 6 (Firing rule of the Petri net model for a logic controller) Enabled transitions

are �red instantaneously as soon as the conditions assigned for transitions are satis�ed.

4 Modeling of Logic Controllers using Petri Net Formalism

A logic controller controls the on/o� actions of all the operations in its machining system; the

control logic should be designed to generate proper control actions for operations with respect to

given inputs from sensors or operator commands. In this section, key ideas in modeling of logic

controllers for automatic machining systems will be introduced.

4.1 A Supervisory Controller

The schematic diagram of the closed loop system with a machining system and its logic controller

is shown in Figure 7. The logic controller is an event-driven system. It can generate the control

actions from the desired states information provided by the Petri net model. The desired behavior

of a machining system is represented by the Petri net model; a logic controller which has the desired

behavior of the controlled system is called a supervisory controller [33]. By assigning proper control

actions to the states (i.e. places) of the Petri net model, a logic controller can generate control actions

whenever the places are activated by tokens (as in Moore-Automata [34]). The machining system

is driven by the control actions and generates events; it can be considered an event generator.

This paper introduces a Petri net based model of the logic controller represented by the bold

lined box in Figure 7. The logic controller Petri net models the desired closed-loop behavior of

the machining system; the properties of the closed-loop system will be determined by analyzing
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this model. As mentioned in Section 3.1, the properties required in closed loop systems with logic

controllers are liveness, safeness, and reversibility. The control actions of a logic controller are

generated by the state evolution of the Petri net model. Therefore, the correctness of the control

logic can be veri�ed by analyzing the properties of the Petri net model.

4.2 Petri Net Block for an Operation

A machining system must perform a variety of operations. Within the logic controller, each oper-

ation must have a Petri net representation. In machining systems, an operation has the following

characteristics:

� an operation can only be initiated by the logic controller.

� faults can occur during the execution of an operation.

� an operation can be stopped in either a completed or incomplete state.

An internal variable is assigned to each operation to keep track of its proper completion. The

control actions necessary for an operation are activate/deactivate the corresponding actuator, fault

diagnosis, and internal variable manipulation.

Any controlled operation in a machining system can be represented by three states: operating,

completed stop, and incomplete stop. In Petri nets, each state can be modeled by a place. Therefore,

each operation can be represented by three places in the Petri net model for a logic controller, i.e.,

P (O) = fpO
O
; pO

IC
; pO

C
g (1)

where P (O) is the set of places for the operation O and the subscripts O, IC, and C represent the

operating, incomplete stop, and completed stop states respectively. By assigning the appropriate

control actions to each state (place), and linking the states using transitions and arrows, an opera-

tion can be formally represented by a Petri net. Control actions for the operating state, completed

state, and incomplete state are activate the corresponding actuator, deactivate the corresponding

actuator and set the corresponding internal variable 0 to 1, and deactivate the corresponding actu-

ator and fault announcement of the operation respectively. A Petri net block for an operation with

the corresponding control actions is shown in Figure 8.

4.3 Internal Variable Conditions

In machining systems, the operations in each station are executed concurrently and for the most

part asynchronously. However, to prevent mechanical con
icts or reduce cycle time, there may

be causal relationships between operations in di�erent stations. These causal relationships in the

normal operation cycle are represented by dotted arrows in the timing bar chart (see Figure 2).
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O

C

Events

Events

IC

Operation States Control Actions

O (operating) activate the corresponding actuator

C (completed) deactivate the corresponding actuator and

set the corresponding internal variable 0 to 1

IC (incomplete) deactivate the corresponding actuator and

fault announcement of the operation

Figure 8: A Petri net block for an operation with the corresponding control actions : O, C, and IC

represent operating, completed, and incomplete state of an operation respectively.

In [27], we represented these causal relationships using synchronized transitions. However, these

causal relationships depend on the control mode, and cannot be used if all three control modes are

considered at the same time. Instead of synchronized transitions, we use internal variables to rep-

resent the completion of operations, and share this internal variable information between stations.

By including internal variables in transition conditions, the causal relationships of operations in

di�erent concurrent sequences can be achieved. Consequently, the control logic for each station in

a machining system can be represented separately.

As mentioned in Section 2.5, the control logic generates the control outputs (on/o� actions)

using the event information of input variables and internal variables. The transition conditions in

Petri nets represent this information. In our model, the internal variable conditions are represented

by a separate arrow to distinguish them from input variable conditions. Figure 9 shows how these

conditions are represented in a transition.

Some causal relations which are commonly found in machining systems are illustrated in Figure

10 with their internal variable condition representations. Figure 10 (a) shows a causal dependence

between operations A1 and B2; operation B2 can start after completing operations B1 and A1. The

representation with the internal variable condition IV C A1 is also shown; IV C A1 implies that the

internal variable assigned to the operation A1 is set to 1 (completed). These two representations are

equivalent. Figure 10 (b) represents a synchronization of the operations A2 and B2. Using internal

variable conditions, two concurrent and synchronized sequences can be represented separately.
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Figure 10: The representations of causal relations of operations in concurrent operation sequences
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Figure 11: The superposition design methodology: Ct = (auto^Ct1)_ (hand^Ct2)_ (manual^Ct3)

4.4 Superposition

A logic controller must handle all three control modes for an automatic machining system. Although

each mode o�ers di�erent functionality, they control the same set of operations. Thus the Petri

net for each control mode is constructed by connecting the same set of places using transitions and

arrows in such a manner that the speci�cations for that mode are met. The transitions may be

di�erent in each mode, or a common transition may have di�erent conditions in di�erent modes.

The complete control logic can be obtained by combining the Petri nets for di�erent control modes

using superposition. Because the places are the same, they are superposed directly. The transitions

for each control mode are superposed in the following way. Let m1 and m2 represent the di�erent

control modes mode 1 and 2. The transitions for the corresponding control mode are tm1
i

and tm2
j

respectively. If �tm1
i

= �tm2
j

and tm1
i

�

= tm2
j

�

, the transitions tm1
i

and tm2
j

are common transitions.

These common transitions are combined into one transition, t, with the conditions Ct:

Ct = (mode1^ Ctm1
i

) _ (mode2^ Ctm2
j

) (2)

where Ctm1
i

and Ctm2
j

are the transition conditions for mode 1 and mode 2 respectively and ^ and _

mean logical and and or respectively. This transition superposition is a well-known reduction rule:

fusion of parallel transitions; Petri net properties such as liveness, safeness, and reversibility are

preserved after this superposition. A proof of this property can be found in [35].

The superposition method is illustrated in Figure 11; Ct1 , Ct2 , and Ct3 represent conditions in

auto, hand, and manual control mode for a common transition respectively. By superposition, a

logic controller can be simply represented by Petri nets using the same set of places which can

realize the control logic of three control modes.
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4.5 Operation Modules

An advantage of the modular structure for a system is that the system can easily be built by

connecting its modules. Moreover, the system can be easily modi�ed partially without a�ecting

the overall structure. In recon�gurable machining systems, machining stations can be recon�gured

by changing their component mechanisms [36, 37]. In this case, some operations are added or

replaced in the existing sequence of operations of a station. Therefore, a modular structure for

control logic is necessary to handle the operation modi�cations; two modular representations for

operations will be introduced here.

4.5.1 Types of Operation Modules

Because faults can happen at any time in a machining system, a logic controller should have fault

recovery control logic for every operation. A fault stop in an operation can be recovered by one of

three methods.

1. re-start the operation from the fault stop position directly.

2. return the mechanism to the initial position of the operation then re-start the operation.

3. return the mechanism to the home position of the station then resume the normal operation

cycle of the station.

Operations in automatic machining systems can be categorized by their fault recovery methods.

A normal operation whose faults can be recovered by method 1 or method 2 is de�ned as a re-

versible operation; a normal operation whose faults can be recovered by method is 1 or method 3

de�ned as an irreversible operation. Typically, motion-only operations such as \advance transfer"

and \advance clamp" operations are reversible operations. However, the metal-removal operations

can be reversible or irreversible depending on the nature of the metal-removal process. For ex-

ample, drilling operations are reversible operations; surface milling feed operations are irreversible

operations (moving the mill backwards over the machined surface could damage the part). There-

fore, two types of operation modules can be considered for the operations in machining systems:

reversible operation modules and irreversible operation modules. The operations used for fault

recovery of normal operations are called fault recovery operations. Because the normal operations

in each station constitute a cyclic behavior, fault recovery operations are typically the same as

normal operations. However, we consider the fault recovery operations to be di�erent operations

because they are frequently executed with di�erent feed rates than their corresponding normal op-

erations. Each reversible operation has a corresponding fault recovery operation. Generally, faults

in irreversible operations are recovered by a sequence of other reversible operations.
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4.5.2 Petri Net Representation

Here we show how the reversible operation module (R-module) and the irreversible operation

module (I-module) can be represented using Petri nets. Because faults can only be recovered in

manual mode, the Petri net representations are developed using manual mode events, namely the

advance and return operator command inputs. An R-module consists of two Petri net blocks: one

for the normal operation and the other for its fault recovery operation. An I-module is represented

by a Petri net block for a normal operation; no corresponding single fault recovery operation exists.

Let MO

R
and MO

I
represent an R-module and an I-module respectively. Then, the Petri nets for

two operation modules consist of the following sets of places.

P (MO

R
) = P (ON )[ P (OF ) = fpO

N

O
; pO

N

IC
; pO

N

C
; pO

F

O
; pO

F

IC
; pO

F

C
g (3)

P (MO

I
) = P (ON ) = fpO

N

O
; pO

N

IC
; pO

N

C
g (4)

where P (MO

R
) and P (MO

I
) are the sets of places for an R-module and an I-module. The superscript

N and F represent the normal operation block and the fault recovery operation block of the

operation O respectively. The places in each operation module are connected by fault recovery

control logic for the operation. Figure 12 shows the representation of an R-module with the

transition conditions for the operator commands in manual control mode; the initial marking

represents the fault stop state of the operation O. The variables a and r represent the input

variables which are assigned to the operator commands in manual control mode: advance and

return. As mentioned in Section 2.5, each operator command generates three events for its logic

controller: positive rising transition, negative falling transition, and active (value equals 1). The

Petri net structure is symmetric because faults can happen even in the fault recovery operation. In

a fault recovery operation, the control action for completed state should be changed into deactivate

the corresponding actuator and re-set the corresponding internal variable 1 to 0 to indicate that its

normal operation is initialized. The transitions t3 and t8 need the events from sensors in addition to

operator command input for completion of each operation; sN and sF represent the event signals.

The structure of an R-module can represent the control logic for fault recovery, jog motion, and

operation repeat in manual control mode. The simple directed path pO
N

IC
t2 p

O
N

O
represents a fault

recovery process: re-start the operation from the fault stop position directly. The simple directed

path pO
N

IC
t5 p

O
F

O
t8 p

O
F

C
t9 p

O
N

O
represents another fault recovery process: return the mechanism to the

initial position of the operation then re-start the operation. Moreover, jog motion and operation

repeat can be also achieved in this Petri net structure.

The I-module is shown in Figure 13 with its transition conditions for the operator commands in

manual mode; the initial marking represents the fault stop state of an irreversible operation ON .

As in the R-module, the transition t3 needs the event sN from the sensor to indicate a completion
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Figure 12: The Petri net representation of the R-module with the transition events from the

operator commands in manual control mode. The variables a and r represent the advance and

return operator commands in manual mode; their rising or falling transitions are indicated by

arrows. SN and SF represent the sensor signals for the completion of the normal and fault recovery

operations respectively. Logical and and logical or are indicated by ^ and _ respectively.
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Figure 13: The Petri net representation of the I-module with its transition events from the operator

commands in manual mode. The variable a represents the manual advance command (there is no

manual return for an irreversible operation); rising and falling transitions are indicated by arrows.

SN represents the event signal for the completion of the normal operation; ^ represents logical and.

of the operation in addition to the operator command input. Because faults of the operation ON

can be only recovered by executing a sequence of operations which returns the machining station

to its home position, this operation module does not have its own fault recovery operation. One

directional jog motion is possible in this module by the simple directed path, t2 p
O
N

O
t1 p

O
N

IC
.

5 Formal Representation of Modular Logic Controller

The control logic for each station in an automatic machining system station is considered to be a

control module for the logic controller. The control logic which realizes the functions of all three

control modes for a station is de�ned as a station logic controller. The control mode of a machining

system is determined from the operator commands. Therefore, a logic controller with three control

modes needs an additional control module for mode decision logic. In this section, a modular Petri

net representation for the logic controller with three control modes will be developed.

5.1 Modular Logic Controller

The logic controller for a machining system consists of the mode decision control logic together

with the station logic controllers. Causal relations with operations in other stations are handled

by internal variable conditions. No explicit connections exist between these Petri nets; the control

logic is modular. Each Petri net is called a control module of a logic controller; the control module

23



O
utput V

ariable M
em

ory Display
Device

��������

Sensor
Events

Operator
Commands

Mode
Decision
Control
Logic

Actuator

Internal  Variable  Memory

Input  Variable  Memory

Station
Logic
Controller

Station
Logic
Controller

Station
Logic
Controller

Figure 14: The con�guration of the modular logic controller

for a station logic controller is represented by the operation modules and their connections. This

modular representation can be de�ned as follows.

De�nition 7 (Modular Logic Controller) A modular logic controller is a formal Petri net rep-

resentation of the logic controller for an automatic machining system which consists of one control

module for the mode decision control logic and a station logic control module for each station. A

system with n stations has n+1 control modules. In the control module for a station logic controller,

the initial place marked with a token represents the home position of the station. Likewise, in the

mode decision control module, the initial place marked with a token represents the home position of

the machining system.

The con�guration of the modular logic controller is shown in Figure 14; the correlations between

control modules are achieved through the internal variable shared memory. In this section, a formal

method to construct the Petri net model for each control module along with analysis of its structural

properties will be introduced. Moreover, a condition for the modular logic controller to generate

correct control logic will be presented.

5.2 Station Logic Controllers

Each station logic controller must control the sequential behavior of the operations in that station

in all three control modes, and keep track of its internal variables. It can be represented by a

separate Petri net with internal variable conditions encoding the dependencies between stations.

The operation sequences in a station logic controller are represented by appropriately connecting

the operation modules described in the previous section.
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5.2.1 Connection Algorithm for Operation Sequences

In each station, three types of operation sequences are possible: normal sequence, reverse sequence,

and fault recovery sequence. Some normal sequences of reversible operations need to be reversed

to their initial state for the repeatable steps in hand mode; the reverse sequence is necessary for

this. If each operation is represented by its operation module, only the fault recovery sequences for

irreversible operations (which are represented by I-modules) need to be considered because the fault

recovery sequences for reversible operations are considered in the operation modules (R-modules).

Some reversible operations in a station are initiated concurrently; they can be modeled by an

R-module with a hierarchical structure. The hierarchical Petri net representation for concurrent

operations is given in the Appendix.

A station can be considered an ordered sequence of operations; the ordering is derived from the

timing bar chart and starts with the home operation, which may not be the �rst operation listed.

Sj = O1;j;O2;j; : : : ;Onj;j
(5)

where Sj and Oi;j are the jth station and the ith operation of jth station, respectively. The number

of normal operations in the jth station is nj and O1;j is the home operation. Each operation in

a station can be represented by its operation module, MO

R
or MO

I
, depending if the operation is

reversible or irreversible. The set of places for each module is described by Equations 3 and 4.

Next we present a systematic procedure to construct the complete station logic control structure.

Step 1 Assign an operation module for each operation listed in the timing bar chart.

Use R-modules for reversible operations and I-modules for irreversible operations. The set of places

in the Petri net for the station Sj is the union of the places in each module

P (MSj ) =

nj[

i=1

P (MOi;j)

where P (MOi;j ) is the set of places in the ith operation module, which is either MO

R
or MO

I
.

Step 2 Create the normal operation cycle.

Connect p
O
N

i;j

C
and p

O
N

i+1;j

O
with a transition for i = 1 to nj , nj + 1 = 1. This connection creates a

simple directed circuit whose places consist of the operating and completed states of the normal

operation blocks (p
O
N

i;j

O
and p

O
N

i;j

C
) for all operation modules. The control logic for the normal

operation cycle is represented by this simple directed circuit.

Step 3 Create the reverse sequences for the repeatable steps in hand mode.
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O
N
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O
,p
O
N

i;j

C
,p
O
N

i+1;j

O
,p
O
N

i+1;j

C
,p
O
N

i+2;j

O
,p
O
N

i+2;j

C
,p
O
F

i+2;j

O
,p
O
F

i+2;j

C
,p
O
F

i+1;j

O
,p
O
F

i+1;j

C
, p

O
F

i;j

O
,p
O
F

i;j

C
.

When a single operator command in hand mode initiates a sequence of reversible operations,

and there exists another single operator command which brings this sequence of reversible opera-

tions to its initial position, a reverse sequence must be implemented. For every normal sequence,

Oi;j;Oi+1;j; : : : ;Oi+�;j, 1 � � � nj � i, for which a reverse sequence is necessary, connect p
O
F

i+��k;j

C

and p
O
F

i+��k�1;j

O
with a transition for k = 0 to � � 1. By connecting the completed and operating

states in the fault recovery operation blocks (p
O
F

i;j

C
and p

O
F

i;j

O
) of the corresponding operation mod-

ules, the control logic for a reverse sequence can be represented. With its normal sequence, the

control logic for a repeatable step in hand mode can be achieved by a simple directed circuit. This

connection is illustrated in Figure 15.

Step 4 Create the fault recovery sequence for irreversible operations.

For each I-moduleMOi;j , construct a directed path from the incomplete stop state of the irreversible

operation p
O
N

i;j

IC
to the home operation of the station Sj (p

O
N

1;j

O
) via the operating and complete states

(pO and pC) of the fault recovery operation block(s) in some of the previous operation modules

M
O�;j , for some �, 1 < � < i. In general, not all operations must be reversed to get back to the

home state. The sequence of the simple directed path is as follows:

p
O
N

i;j

IC
; : : :p

O
F

�;j

O
; p

O
F

�;j

C
; : : :| {z }

for some �;1<�<i

; p
O
N

1;j

O
; p

O
N

1;j

C

A typical operation sequence of a machining station is positioning, machining for metal-removal,
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and re-positioning to the home position. The positioning process is accomplished by a sequence

of reversible operations; the recovery sequences of I-modules can be achieved using some fault

recovery operations of the positioning operations. Generally, all I-modules in a machining station

are recovered by the same operation sequence.

Each station logic controller is constructed by connecting its operation modules according to

the above steps. If a station has j reversible operations and k irreversible operations, its logic

control module has 6j + 3k places. All the necessary sequences in a station are achievable in the

manual mode. Moreover, every transition in the operation modules has a manual mode condition.

Therefore, all the transitions in the Petri net for a station logic controller should have conditions

for manual control mode.

5.2.2 Hierarchical Representations for Station Logic Controllers

In our formal representation, the Petri net structure for a station logic controller is determined by

the operation modules in a station and their connections as outlined in Section 5.2.1. Because the

structure of an operation module is not changed when it is connected to other operation modules,

each operation module can be represented as a single place with a hierarchical structure. This

hierarchical place is denoted by a double circle; the hierarchical structures for an R-module and

an I-module are illustrated in Figure 16. From the connection algorithm in the previous section,

each R-module is connected to other operation modules from the completed places of its operation

blocks (p
O
N

i;j

C
and p

O
F

i;j

C
) as described by the operation sequence speci�cations, and each I-module is

connected from its completed place (p
O
N

i;j

C
) and incomplete place (p

O
N

i;j

IC
). A dashed arrow is used

in the R-module because the reverse sequence and fault recovery sequence in R-modules do not

always occur.

Typically, two types of station logic controllers occur in automatic machining systems: station

logic controllers with R-modules only and station logic controllers with R-modules and I-modules.

Those types of station logic controllers are de�ned as R-stations and I-stations, respectively. The

Petri nets for station logic controllers can be represented simply by using the hierarchical structures

of operation modules. Two typical Petri net models for station logic controllers are shown in

Figure 17. Figure 17 (a) shows the hierarchical Petri net representation of an R-station. The

normal operation cycle is represented by the directed circuit, R1t1R2t2R3t4R4t5R5t6R6t8R1 and

two reverse sequence are represented by the directed paths R3t3R2 and R6t7R5. The hierarchical

Petri net representation of an I-station is shown in Figure 17 (b). The fault recovery sequences for

the two I-modules are represented by the directed paths, I4t5R2t2R1 and I5t7R2t2R1. The directed

circuit R1t1R2t3R3t4I4t6I5t8R6t9R1 represents the normal operation cycle of the station.

From the hierarchical representations for station logic controllers, the Petri net structure of a
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Figure 16: The hierarchical representations for the operation modules
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(a) The hierarchical Petri net representation of an R-station
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R2 R3 I4 I5 R6

t1 t2 t3 t4 t5 t6 t7 t8 t9

(b) The hierarchical Petri net representation of a I-station

Figure 17: The hierarchical Petri net representations for station logic controllers

station logic controller can be characterized by the following proposition.

Proposition 1 The Petri net representation of a station logic controller constructed according to

the algorithm in Section 5.2.1 is a strongly connected state machine.

Proof Let Tm be the set of all transitions within R- and Tc be I-modules and the set of transitions

between modules. As shown in Figures 12 and 13, the Petri net structures of both the R-module

and I-module are state machines, i.e. j�tij = jt�
i
j = 1 for ti 2 Tm. Direct inspection shows that

the R-module is a strongly connected state machine. The connection algorithm for operation

sequences generates a simple directed path; only one place can be activated from the �ring of each

transition for operation module connection, i.e. jt�
i
j = 1 for ti 2 Tc. Moreover, no synchronization

exists in the operation sequences, i.e. j�tij = 1 for ti 2 Tc. Therefore, each transition in the

Petri net representation of a station logic controller has one input place and one output place, i.e.

j
�tij = jt�

i
j = 1 for ti 2 T where T = Tm

S
Tc. Thus the Petri nets for station logic controllers

are state machines. An R-station which consists of R-modules is strongly connected by the simple

directed circuit for normal operation cycle and an I-station which consists of R- and I-modules is

strongly connected by the simple directed circuit for normal operation cycle and the simple directed

path(s) for fault recovery for irreversible operation(s). Therefore, the Petri net representation of a

station logic controller is a strongly connected state machine. 2
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As shown in the Appendix, the concurrent operations in a station can be reduced to a place

hierarchically. Therefore, the Petri net representation for the station logic controller with concurrent

operations can be also considered a strongly connected state machine.

5.3 Internal Variables Re-set for Repetitive Cycles

Internal variable information is stored and updated within the operation modules. If a normal

operation is completed, the value of the internal variable assigned for that operation is changed

from 0 to 1; if its fault recovery operation is completed, the value is re-set from 1 to 0. This

internal variable information can be utilized in other station logic controllers. For repetitive cyclic

operation, all the internal variables in each station must be re-set from 1 to 0 whenever the cycle

is �nished. Unless this re-set is done properly, the operation causality between stations cannot be

maintained correctly between cycles.

In our previous work [27], the initial state of a system was de�ned as the beginning moment

of its timing bar chart. For each station, the moment when the �rst operation in the timing bar

chart is initiated is used for the re-set of internal variables. In Petri nets, the input transition

of the operating place (p
O
N

i;j

O
) in the �rst normal operation block of each station is considered the

beginning of new cycle of the station; this transition is called the initial transition. The internal

variables re-set control action for each station is assigned to the operating place (p
O
N

i;j

O
) of the normal

operation block of the �rst operation listed in the timing bar chart. Note that this is not related

to the home operation O1;j .

Internal variables are also used to encode the auto-start control logic. All the possible states in

the normal operation cycle of a machining system are determined by the initial state; all reachable

markings for the normal operation cycle, R(N;MO;NO) whereNO represents the normal operation

cycle, can be determined from the given initial marking for the normal operation cycle, (MO;NO)

[27]. Because the home position for each station is chosen based on mechanical stability, the state

for the home positions of all stations is normally not a reachable state of the normal operation cycle.

Moreover, the state after fault recovery may not be a reachable state of the normal operation cycle.

The control logic for auto-start from such states can be achieved without further considerations

by the internal variable manipulation in a station logic controller. Because internal variables keep

their information until the initial transition is �red, the auto mode can be re-started from any fault

stop or the home position. On the other hand, the control logic for auto-stop can be achieved by

assigning the input variable condition which implies the master stop is not activated to the output

transition of the home place of each station. In other words, if the master stop is activated, the

output transition of the home place cannot be �red, i.e. the station stops at its home place.
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5.4 Mode Decision Control Logic

Operator commands are used to determine the control mode. The mode decision control logic takes

these operator commands as inputs, and based on the state of the machining system determines

the control mode. For example, a push button style input device is shown in Figure 18 (a). At

the main console, �ve control inputs are considered: master-start, master-stop, auto, hand, and

E-stop whereas at each station, the mode selection switch for station-auto and station-manual is

considered. The master-start and master-stop push buttons generate operator commands for system

initiation and system stop. After the station-auto is selected in all stations, the auto control mode

of a system can be started by the auto push button in the main console. The control logic for the

mode switchings shown in Figure 18 (b) depends on operator commands and fault signals. The

initial marking represents the home position of a machining system.

The mode decision control logic provides the station logic controllers information about the

control mode of a system. Let \mode" in Figure 18 be an internal variable name for the system

control mode; this internal variable information (the value of \mode") is used in the conditions of

transitions of each station logic controller. The control logic for mode decision generates the value

of \mode" with respect to operator commands or sensor signals. The control mode of a system is

determined by the value of \mode". We assume that the values 1, 2, and 3 represent auto, hand,

and manual mode respectively. If the token enters the \auto mode" place, control logic generates

control action which is assigned to the place mode=1. If any fault occurs in the system at this

state, the token moves to the \stand-by" place; control logic re-sets the value of mode to 0. In

this stand-by state, the entire system is stopped and waits for an operator command deciding the

next control mode. The transitions between the operation modules in the station logic controllers

can be �red only in one of the three control modes. If the system stops by the E-stop operator

command, the value of \mode" is also changed to 0; in this case, the system can only be recovered

using the manual mode. From hand mode, the control mode can be changed to either the auto

mode directly or to the stand-by state if a fault occurs.

5.5 Formal Analysis of Modular Logic Controller

The modular logic controller consists of Petri nets for mode decision control logic and station logic

controllers. Each Petri net structure and its properties are considered �rst, then a condition for

the modular logic controller to generate a correct control logic is investigated.

5.5.1 Properties of Each Control Module

By Proposition 1, we know that the control module for each station logic controller is a strongly

connected state machine; its properties can be determined by the following well known theorems
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Figure 18: Control logic representation for control mode decision; the boxes represent the assigned

control actions for places
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of state machines.

Theorem 1 ([6]) A state machine (N;M0) is live if and only if N is strongly connected and M0

has at least one token; a state machine (N;M0) is safe if and only if M0 has at most one token. A

live state machine (N;M0) is safe if and only if M0 has exactly one token.

Theorem 2 ([11]) A live state machine is reversible.

Therefore, the following proposition is straightforward to prove.

Proposition 2 A station logic controller constructed according to the algorithm in Section 5.2.1

is live, safe, and reversible.

Proof By De�nition 7, the control module for each station logic controller in the modular logic

controller has one token in the home position place. Therefore, it is a strongly connected state

machine with a token in its initial marking, M0. By Theorem 1 and 2, the control module for each

station logic controller is live, safe, and reversible. 2

In the Petri net model for mode decision control logic, as shown in Figure 18, the possible states

of a machining system are represented by places: home position, stand-by, auto mode, hand mode,

manual mode, and E-stop. Each state of the system is represented by a place and the initial

marking is represented by a token in the home position place. The state of a machining system

can be changed by an operator command or incoming sensor information (any fault); either of

them is considered an input variable condition for a transition. The properties of this Petri net are

determined by the following proposition.

Proposition 3 The control module for mode decision control logic is a strongly connected state

machine and is live, safe, and reversible.

Proof Some states in the mode decision control logic can be changed to other states by the mutually

exclusive conditions assigned to the output transitions: choice (decision or con
ict) is allowed. The

state of a machining system at any moment is represented by one of the possible states. Therefore,

the input and output place of each transition must be always unique, j�tj = jt�j = 1; no

synchronization is allowed. Moreover, all states of a system can be reached by operator commands

or sensor events; there exists a directed path from every place to every other place. By the above

reasoning, the control module for mode decision control logic is a strongly connected state machine

which has one token in its initial marking. Moreover, it is live, safe, and reversible by Theorem 1

and 2. 2
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5.5.2 Operation Causality Condition

As mentioned in Section 3.1, a necessary condition for a Petri net representation to generate

correct control logic for a logic controller is that its marked Petri net, < N;M0 >, is live, safe, and

reversible. In our formal representation, the control logic for a machining system was modeled by

a set of Petri nets; each Petri net is live, safe, and reversible. However, the Petri nets for station

logic controllers are implicitly connected by internal variable conditions to encode the operation

dependencies between stations. Improper internal variable conditions can lead to deadlocks in

station logic controllers (for example, operation B cannot start until operation A has �nished,

but A cannot start until B has �nished). To prohibit these deadlocks, we introduce the operation

causality condition.

In each control mode, operations are executed di�erently and the operation causality between

stations is also di�erent. Therefore, di�erent internal variable conditions are necessary for each

control mode. Because the control mode can change at any time, the internal variable conditions

for all control modes must be considered simultaneously. Operation causality between stations is

necessary for the following reasons.

Auto mode : prevent mechanical con
icts and reduce cycle time

Hand mode : coordinate multiple stations

Manual mode : prevent mechanical con
icts

Because some internal variable conditions in manual mode are replaced with other internal variable

conditions in auto mode to reduce cycle time, and because the steps for the sequence of operator

commands in hand mode are designed to satisfy the internal variable conditions for both auto

mode and manual mode, only auto mode and manual mode internal variable conditions need to be

considered for the operation causality condition. That is,

IV Cocc = IV Cauto [ IV Cmanual

where IV Cauto and IV Cmanual are the set of internal variable conditions for auto and manual mode

respectively and IV Cocc is the set of internal variable conditions which should be considered for

the operation causality condition.

Within each station, the operations are totally ordered according to the timing bar chart. Com-

bining the station operations with the operations whose internal variable conditions appear in that

station results in a partially ordered set. This partial ordering is de�ned as the operation ordering

for the station. The operation ordering for a station logic controller which has three normal oper-

ations and two internal variable conditions is illustrated in Figure 19; only the transitions in the

normal operation cycle are shown for simplicity. In this station logic controller, there are two inter-

nal variable conditions, IV C P and IV C Q, which represent the completion of operations P and
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Figure 19: The operation ordering of a station logic controller: fA<B<C; P <B; Q<Ag

Q in other stations. Then, the operation ordering for this station is fA<B<C; P <B; Q<Ag.

Using the operations ordering, we formalize the operation causality condition as follows.

De�nition 8 (Operation Causality Condition) A logic controller is said to satisfy the opera-

tion causality condition if the operations orderings in station logic controllers do not con
ict with

each other.

The modular logic controller is a set of Petri nets which represents mode decision control logic

and station logic controllers. Each Petri net is a strongly connected state machine; the liveness

property is equivalent to the reversibility property (by Theorem 2). Using the operation causality

condition, we can develop the following theorem for the properties of the modular logic controller.

Theorem 3 The modular logic controller is live, safe and reversible if and only if each control

module is live, safe, reversible, and the operation causality condition is satis�ed.

Proof (only if) Suppose that the modular logic controller is live, then all the Petri nets in the

modular logic controller are live. If the control modules for station logic controllers do not satisfy

the operation causality condition, they are deadlocked i.e. the Petri nets for station logic controllers

are not live. This contradicts the assumption.

(if) If each control module is live, safe, and the operation causality condition is satis�ed, then the

Petri nets for station logic controllers and the Petri net for mode decision control logic are live

and safe. This implies the modular logic controller is live and safe. Moreover, each Petri net is a

strongly connected state machine; the liveness property is equivalent to the reversibility property

(by Theorem 2). Therefore, if each control module is live, safe, reversible, and the control modules

for station logic controllers satisfy the operation causality condition, the modular logic controller

is live, safe and reversible. 2

Since the liveness, safeness, and reversibility properties of the Petri net model for each station

logic controller are guaranteed by following the connection algorithm in Section 5.2.1, the control
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logic for a modular logic controller can be easily veri�ed by checking the properties of the Petri net

for the mode decision control logic and the operation causality condition.

6 Application

We have shown that the logic controller for a machining system can be represented by the modular

logic controller which consists of live, safe, and reversible Petri nets. The correctness of its control

logic can be veri�ed by Theorem 3 using operation causality. Therefore, a logic controller can be

constructed systematically using the modular logic controller representation. Moreover, due to its

Petri net structure, the resulting modular logic controller can be easily implemented.

6.1 Automatic Code Generation

The machining systems which are considered in this paper, namely high volume transfer lines, have

similar structures and functions. However, programming is still a time consuming job and always

requires a \cycle and debug" stage to correct errors. This is due to the unstructured nature of

the control logic and the lack of a veri�cation method. If all or part of the logic can be generated

automatically and the correctness of control logic can be veri�ed before the mechanism has been

built, the e�ects would be tremendous in the machining system industry. Our formal and modular

representation of a logic controller can provide a way for this automatic code generation with veri�ed

control logic. The modular logic controller proposed in this paper has a formal Petri net structure

and its correctness has been veri�ed by the properties of Petri nets. Moreover, the control module

for each station consists of operation modules. The control logic for each operation module is a

function of input and output variables for the corresponding sensors and actuators; each operation

module can be repeatedly generated by replacing the names of those variables.

6.1.1 Control Logic Generation from Operation Modules

The control program of a logic controller can be generated systematically using the Petri net

representations for the operation modules. As mentioned in Section 2.5, a logic controller generates

the control actions for a machining system with respect to sensor or operator command inputs.

Input and internal variables are used for transition conditions, and output variables are used for

control actions; all the inputs and outputs of a logic controller are assigned variable names. Internal

variables are also assigned names. Therefore, each operation module can be considered a function

of the corresponding variables. In other words, the control logic for similar operations can be

repeatedly generated from the same Petri net structure by reassigning its variable names. The

necessary variables for an R-module and their physical meanings are shown in Table 1.
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Table 1: The necessary variables and their physical meanings for an R-module

Variable Name Physical Meaning

( N : normal operation, F : recovery operation)

sN , sF signals for operation completion

fN , fF signals for fault detection

Input h a, h b, h c possible operator commands for normal

sequence and reverse sequence in hand mode

m a, m r operator commands for manual mode

(manual advance and manual return)

Output aN , aF actuators for operations

dN , dF display outputs for faults

Internal IV CN operation completion

Table 2: The necessary variables and their physical meanings for an I-module

Variable Name Physical Meaning

sN signal for operation completion

fN signal for fault detection

Input h a operator command for normal sequence

in hand mode

m a, m r operator commands for manual mode

(manual advance and manual return)

Output aN actuator for the operation

dN display output for faults

Internal IV CN operation completion

The control logic for an R-module is shown in Figure 20; it depends on the operation sequence

assigned to each operator command. For example, some reversible operations do not require a

reverse sequence in hand mode; the fault recovery operation is su�cient. In this case, the transition

t12 is not necessary in manual and hand modes. The possible transition conditions in the hand

mode control logic for an R-module are illustrated in Figure 21; each case is considered a hand

mode type. Because the types of manual mode can be determined by the hand mode type, the

control logic for each R-module can be generated by assigning its variables to the appropriate hand

mode type. The brackets in the �rst table in Figure 20 represent conditions which may occur in the

di�erent hand mode types. Because no condition is necessary for the transition t11 in auto mode,

it is represented by \N.C.". Table 2 and Figure 22 show the necessary variables and the control

logic for an I-module, respectively. Typically, the irreversible operations in a machining station are

initiated by one operator command in hand mode such as \cycle all machining stations."
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Conditions

Transitions auto mode hand mode manual mode

t1 fN " fN " ^h a m a#

t2 m a"

t3 sN " sN " ^h a sN " ^ (m a _m r)

t4 [h b"] m r"

t5 m r"

t6 [fF " ^ h b] m r#

t7 m r"

t8 [sF " ^ h b] sF " ^ (m r _m a)

t9 [h a"] m a"

t10 m a"

t11 N.C. h a [h c"] m a"

t12 [h b] [m r"]

places control actions places control actions

p1 aN = 1 p4 aF = 1

p2 aN = 0 & dN = 1 p5 aF = 0 & dF = 1

p3 aN = 0 & IV CN=1 p6 aF = 0 & IV CN=0

Figure 20: The control logic for an R-module
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Figure 21: The transition conditions for each hand mode type. Type 1 is used for the �rst and

intermediate operations in a sequence of normal operations (no reverse sequence); Type 2 is for

the last operation in a sequence of normal operations (no reverse sequence); Type 3 is for the �rst

operation in a sequence of normal operation with a reverse sequence; Type 4 is for intermediate

operations in a sequence of normal operation with a reverse sequence; Type 5 is for the last operation

in a sequence of normal operation with a reverse sequence; Type 6 is for an operation which is started

by one operator command and reversed by another. The variables h a, h b, and h c indicate the

possible operator commands for normal and reverse sequences.
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6.1.2 Illustrative Example

As a simple illustrative example, the control logic for three stations from the transfer line in Figure

2 will be considered here. The three stations are the transfer bar, clamp 1, and mill 1. The operator

commands for hand mode will be needed in the control logic; the input device for the whole system

hand mode is shown in Figure 23.

The ordered sequences of operations for three stations are obtained from the timing bar chart

in Figure 2. The transfer bar, clamp 1, and mill 1 stations are named as stations 1, 2, and

3 respectively. Then the ordered sequence for each station can be represented by the following

equations.

S1 = O1;1;O1;2;O1;3;O1;4;O1;5;O1;6;O1;7;O1;8;O1;9;O1;10

S2 = O2;1;O2;2

S3 = O3;1;O3;2;O3;3;O3;4;O3;5

The home operations (O1;j's) for the station are \return transfer", \return clamp", and \reset main

slide" respectively and the details for each operation are shown in Table 3. The hand mode type

in the table is determined by the operation sequence speci�cations for hand mode. The operator

commands in hand mode are assigned to the input variables representing their push buttons PB i,

i= 1 to 8. The normal operation sequences, O1;2;O1;3;O1;4;O1;5 and O1;7;O1;8;O1;9;O1;10 need

reverse sequences for the repeatable steps in hand mode: \raise transfer" and \lower transfer".

The irreversible operation in the mill 1 station is represented by an I-module and its fault recovery

can be achieved by the fault recovery operation of the \rapid advance positioning slide" operation

(\rapid return positioning slide") and the \reset main slide" operation.

The control logic for three stations is completed by assigning the internal variable conditions for

each control mode. The hierarchical representation for the control logic of three stations are shown
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Table 3: The details of operations in the system

Operations Operation Hand Mode Type & Input Variables

Module (h a, h b, h c)

Return Transfer (O1;1) R1;1 type 6 (PB 7, PB 3, PB 2)

1st Lift (O2;1) R2;1 type 3 (PB 2, PB 4, |)

2nd Lift (O3;1) R3;1 type 4 (PB 2, PB 4, |)

3rd Lift (O4;1) R4;1 type 4 (PB 2, PB 4, |)

4th Lift (O5;1) R5;1 type 5 (PB 2, PB 4, PB 3)

Advance Transfer (O6;1) R6;1 type 6 (PB 3, PB 7, PB 4)

1st Lower (O7;1) R7;1 type 3 (PB 4, PB 2, |)

2nd Lower (O8;1) R8;1 type 4 (PB 4, PB 2, |)

3rd Lower (O9;1) R9;1 type 4 (PB 4, PB 2, |)

4th Lower (O10;1) R10;1 type 5 (PB 4, PB 2, PB 7)

Return Clamp (O1;2) R1;2 type 6 (PB 3, PB 7, PB 7)

Advance Clamp (O2;2) R2;2 type 6 (PB 7, PB 3, PB 3)

Reset Main Slide (O1;3) R1;3 type 2 (PB 8, |, PB 8)

Rapid Adv. Pos. Slide (O2;3) R2;3 type 1 (PB 8, |, |)

Decel (O3;3) R3;3 type 1 (PB 8, |, |)

Feed Main Slide (O4;3) I4;3 type 1 (PB 8, |, |)

Rapid Ret. Pos. Slide (O5;3) R5;3 type 1 (PB 8, |, |)

in Figure 24 with the internal variable conditions for auto mode.

6.2 Implementation

Once a logic controller has been represented by Petri nets in the form of a modular logic controller,

and veri�ed using Theorem 3, the next step is to implement the logic controller.

6.2.1 Implementation by SFC

Currently, PLCs are the most popular devices for implementing logic controllers. As an interna-

tional standard, the IEC 1131-3 programming languages were developed for PLCs [38]. Since the

�rst revision of the IEC 1131-3 standard published in 1993, the PLCs from major PLC manufac-

turers can be programmed using some of the programming languages provided from IEC 1131-3

standard. One of the IEC 1131-3 standard languages is SFC (Sequential Function Chart). It is

based on Grafcet which was inspired from Petri nets and in fact, the structures of SFC and Grafcet

are almost the same. The comparison of Grafcet and Petri nets along with SFC can be found in

[30].

A live, safe, and reversible Petri net which has mutually exclusive transitions can be implemented

directly in SFC [30]. The modular logic controller developed in this paper consists of live, safe, and
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R 2,1 R 3,1 R 4,1 R 5,1R 1,1

R 7,1 R 8,1 R 9,1 R 10,1R 6,1

IVC 1

(a) Transfer bar station control logic

R 1,2 R 2,2

IVC 2

(b) Clamp 1 station control logic

R 1,3 R 2,3 R 3,3 4,3 R 5,3I

IVC 3

(c) Mill 1 station control logic

Figure 24: The control logic for three stations with their internal variable conditions for auto mode

(IV C 1: O1;2=1, IV C 2: O10;1=1, IV C 3: O2;2=1)
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Exclusive
Transition
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Synchronized
Transition

Synchronized
Transition

Petri Net SFC

Initial Step

Simple Place Simple Step

Figure 25: The conversion rules between Petri net and SFC

reversible Petri nets with mutually exclusive transitions. Therefore, it can be directly implemented

in SFC; the graphical conversion rule is shown in Figure 25.

6.2.2 Other Implementations

Petri net-based control logic can be also implemented directly by software or hardware using

microprocessor-based controllers; the implementation using high-level concurrent programming lan-

guages was introduced in [39, 40] and hardware-based implementation was considered in [41, 42, 43].

In fact, Petri net-based logic controllers have been applied directly to some manufacturing systems

[44, 45]. However, these Petri net based logic controllers were not employed broadly in industry.

Because the Petri net formalisms were modi�ed to �t their speci�c manufacturing systems, the

methodologies were di�cult to implement in existing PLC's and they lacked veri�cation in the

design stage. Perhaps more importantly, however, the logic controllers were developed only for

the normal operation cycle. As mentioned in Section 2, exception handling is important in logic

controllers, especially for machining systems, and may represent 90% of the required control logic.

In this paper, we developed a modular Petri net structure for station logic controllers which

includes the speci�cations for fault stop/fault diagnosis and fault recovery. Each modular structure

is simple and does not require any special Petri net formalism. Therefore, it can easily be imple-

mented in PLC's using SFC and other PLC programming languages. Any speci�cations can be
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added using the superposition design methodology. Moreover, the correctness of the control logic

can be guaranteed by the structure of the modular station logic controller.

6.3 Recon�gurable Logic Controllers

High volume transfer lines have traditionally been designed as dedicated manufacturing systems.

However, they need a certain degree of recon�guration due to shorter product life cycles and

increasing product variety in the automotive industry. Modularity is one of the key characteristics

of recon�gurability [1, 2]. In fact, modular standards have been developed by machining system

builders for maximal re-use of machine components. Each component is designed to be easily

and quickly changed to reduce machine set-up and ramp-up time when recon�guration is required.

A modular design methodology for machine tools was introduced in [37]. However, the modular

design concept for the control logic is not well-developed enough to realize recon�gurable machining

systems. In fact, decentralized logic controllers are used in industry as modular logic controllers.

In a decentralized logic controller, a PLC is assigned to a station or stations (normally two or three

depending on the complexity of the mechanical stations). These PLC's communicate with each

other over a network. However, we have found that while the hardware is modularized, the control

logic is not.

In [28], a modular logic controller for the normal operation cycle was introduced as a causal

Petri net representation of a timing bar chart. The control logic for each station was considered

as a module. With this modular structure, a logic controller in the normal operation cycle can be

recon�gured e�ciently when some stations in the system need to be replaced with new ones or new

stations are added to the system. In this paper, a modular logic controller is developed for other

speci�cations such as exception handling, and two di�erent modular structures are introduced for

operations. With this type of modular structure, any recon�guration of the operations in a station

can be achieved with maximum re-use of the old algorithm by changing the control actions and the

transition conditions. Any level of recon�guration in a logic controller can be achieved using these

modular structures.

7 Conclusion

In this paper, a new representation method for a logic controller with three control modes is

introduced using the Petri net formalism. Two operation modules are developed with respect to

the characteristics of fault recovery processes of operations in machining systems. The connection

algorithm for operation modules to represent various operation sequences in station logic controllers

are provided. Using internal variable conditions and superposition, the control logic with three

control modes can be simply represented. The control logic for a machining system is represented

45



by a modular logic controller which consists of a control module for mode decision and control

modules for station logic controllers; we have shown that each control module is represented by

a live, safe, and reversible Petri net. A condition for the modular logic controller to generate a

correct control logic is considered. In our formal representation, the control logic is modularized.

A logic controller can be easily recon�gured and its control logic can be generated automatically

by its modular structure. Moreover, our modeling methodology starts from the basic control unit

for an operation, which can be applied to other types of manufacturing system controllers.

A Connection Rules for Concurrent Operations

Frequently, a machining station has some concurrent operations in its operations sequence. If we

only consider the normal operation cycle, these concurrent operations can be simply represented by

parallel places [27]. However, if the fault recovery process with two operator commands (advance

and return) in the manual control mode is considered, the operation modules should be connected

in such a way that:

� if a reverse sequence is necessary for the concurrent operations, the operations should be

reversed concurrently.

� each concurrent operation can be recovered independently from its fault stop.

We assume that the concurrent operations are only used with reversible operations because irre-

versible operations in machining stations are typically executed consecutively. Therefore, concur-

rent operations are represented by R-modules. The connection for two concurrent operations is

shown in Figure 26. Concurrency in the normal sequence is achieved by the transitions t1 and t2;

concurrency in the reverse sequence can be achieved by the transitions t3 and t4. The four internal

variable conditions (IVC A, IV C A0, IV C B, and IV C B0) allow the fault recovery functions

to be executed independently. The initial marking in the �gure represents the state in which the

operation A is in fault stop and the operation B is completed. Because of the internal variable

condition IV C A, only the transition tr is activated by the token, allowing the fault in A to be

recovered independently of B.

Because concurrent operations are executed the same way in their normal and reverse sequence,

all the operation modules for concurrent operations can be represented by a single place. This

hierarchical structure is illustrated in Figure 27.
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