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Flood Forecasting Using Radial Basis Function
Neural Networks

Fi-John Chang, Jin-Ming Liang, and Yen-Chang Chen

Abstract—A radial basis function (RBF) neural network (NN) is ~ adaptive nature: learning by examples (input-output pairs). The
proposed to develop a rainfall-runoff model for three-hour-ahead  apility of NNs to extract dependencies from measured data and
flood forecasting. For faster training speed, the RBF NN employs o mplement the existing analytic knowledge of the underlining

a hybrid two-stage learning scheme. During the first stage, unsu- h kes th luable tool | id f i
pervised learning, fuzzymin—max clustering is introduced to de- phenomena maxes them a valuable ool in a wide range ot appli-

termine the characteristics of the nonlinear RBFs. In the second cations [1], [2]. In a hydrological context, ANNs have recently
stage, supervised learning, multivariate linear regression is used been used for streamflow prediction [3]-[5], rainfall estimation
to determine the weights between the hidden and output layers. [6], [7], and groundwater modeling [8]. In this study, a modi-
The rainfall-runoff relation can be considered as a linear combi-  fiaq radial basis function (RBF) NN with fuzayin—max clus-
nation of some nonlinear RBFs. Rainfall and runoff events of the . .
Lanyoung River collected during typhoons are used to train, vali- terln_g is proposed to construct a rainfall-runoff model for fore-
date,and test the network. The results show that the RBF NN can casting one-hour-ahead, two-hour-ahead, and three-hour-ahead
be considered as a suitable technique for predicting flood flow. flood flows during typhoon periods. Fuzayin—max clustering

Index Terms—Flood flow, hydrological processes, nonlinear, ra- is used to determine the ‘?e”ter and the number of RB,FS' and the
dial basis function neural network (RBF NN), rainfall-runoff. method of least squares is used to determine the weights of the
network. The results show that the modified RBF NN can be ap-
plied successfully to build a rainfall-runoff model and provide
high accuracy of flood flow prediction.
NCREASED public awareness has made flooding a promi-
nent focus of hydrological studies; however, for decades |l. DESCRIPTION OF THESTUDY CATCHMENT AND DATA

we have not coped well with floods. Part of the reason lies in tha RBE NN is applied to the Lanyoung River catchment
the complex na_ture of floods and_ the varied responses to the@-shown in Fig. 1, for predicting flood flows during high flow
Flood forecasting undoubtedly is the most challenging andisqs. The Lanyoung River, the mostimportant river in north-
important task of operational hydrology. Conventional methods,gtern Tajwan, is a mountainous river with a steep slope and a
for establishing the relationship between rainfall and runoffyichment area covered by mature forests. The catchment area,
need to understand the behavior of hydrological cycles apghich extends from the mountains (elevation 3535 m) to the sea
processes; however, the relation is complex and notoriougly,a| drains an area of 821 Rnio the Pacific Ocean. Within
nonlinear. Many hydrographic and physiographic factofgis areqa the river is 67 km long and the average slope is 5.3%.
associated with the changing of both space and time may affggla 15 its subtropical location, the catchment receives an av-
the relationship of rainfall and runoff. Some sophisticategrage of 3173 mm of rainfall each year; however, the rainfall
hydrological models, which usually include a great numbeL ,neven. Typhoons accompanied by torrential rainfall, which
of parameters and observed variables, have been developegs%||y occur in the summer, are principally responsible for

describe complicated hydrological processes. Unfortunatelye fi50ds. Consequently, flood forecasting becomes one of the

such models are difficult to use and are impractical in Taiwap,ost important tasks of hydrologists and engineers.

which has a subtropical climate, high mountains, and steeprqr rain and one stream gaging stations operated by Taiwan

upstream channels of all watersheds on the island. Water Conservancy Agency hourly record precipitation totals
To provide an alternative approach for accurate flood forgyy siage. The streamflow is generated from the stage-dis-

casting, an artificial neural network (ANN), which is capablgparge rating curve. Seventeen typhoon events with rainfall and

for modeling and control of nonlinear and complex systems, {geamflow data during typhoons are available for the period
presented. One of the important characteristics of ANNs is theif 19801997, The data set is split into three independent

subsets: the training, validation, and testing subsets. The

_ _ _ _ training subset, the first 11 typhoon events with 371 set data,
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Fig. 1. Map of the study watershed and locations of rain gauge and streamflc
gaging stations.

slope and small watershed. Since the lag time of the drainag Input Hidden Output
catchment relates to the antecedent rainfalls and streamflow _, layer layer layer
the inputs of the model include the rainfall and the stream- _ _ _ _
. . . Fig. 2. Structure of rainfall-runoff model in the Lanyoung River using RBF

flow information between adjacent values for up to 3 h beforg

the study. The outputs of the model are the one-hour-ahead,

two-hour-ahead, and three-hour-ahead streamflows. The inputs, o o

outputs, and structure of the rainfall—runoff model using tHayer introduces the outside information into the network. The

RBF NN are shown in Fig. 2 and the established model can 8ly hidden layer, which hag nodes, processes the input in-

expressed as formation with a nonlinear transformation. The transformation
associated with each node of hidden layer implemented herein
Q, = F(Qt—1), Q(t — 2), Q(t — 3), Px(t — 1) is a Gaussian function defined as

Py(t—2), Pn(t—3), Pr(t—1), Pr(t — 2) ,
d?

Pyt = 3), Pr(t = 1), Pr(t —2), Pe(t—3) Zy(a) = exp<__aQ> @
Pr(t — 1), Pp(t —2), Pr(t — 3)) (1) 20;

dj =& =yl ®)

where @, is the predicted streamflow of the Lanyoung River

at the Lanyoung Bridge at time+ 7 and7 will be 0, 1, and 2. whereZ;(z) is the output of thgth hidden node and bias node,
Q(t) is the observed streamflow at timePy (¢ — 1), Pr(t=2),  z,(z), is fixed at 1;z is the input withn-dimension;o; is
Pr(t—3),andPp(¢—3) are the rainfall of Nanshan, Liumaoangne width of the receptive field of thgth hidden nodey; is
Tuchang, and Fanfan at timte— 1, ¢ — 2, ¢ — 3, and? — 3, the center of theth hidden node; and is the Euclidean dis-

respectively. tance between andy;. The third layer, the output layer with
L nodes, fully interconnects to each hidden node. The output of
[ll. RADIAL BAsIS FUNCTION NEURAL NETWORK the network is a linear combination of the nonlinear radial basis

The RBF NN, which is capable of universal approximatior{unCtIonS
may be traced back to an earlier work of Hardy [9]. The present 7
RBF NN, which always consists of three layers, is motivated (@) =Y wjiz(x) (4)
by Moody and Darken [10], Hush and Horne [11], Pogg and =0
Girosi [12], and others. An important property of the RBF NN
is that multidimensional space nonlinearity, such as the relatiaterey; is the ith output node andy;; is the weight of the
of rainfall and runoff, can be taken to be a linear combinatioconnection between thy¢h hidden node and thiéh output node.
of the nonlinear RBF [2], [13], [14]. For the purpose of faster Fig. 3 illustrates the nonlinear relation of rainfall and runoff,
training speed, the RBF NN with hybrid learning scheme sugenstructed by two-dimensional (2-D) inputs (rainf&ll and
gested by Moody and Darken [10] is applied herein. A comma#;) and one-dimensional (1-D) output [rund¥f 7, P)]. The
feature of the RBF NN is its fast training as compared with thebnes are the Gaussian functions for some hidden nodes. Many
backpropagation networks [13]. Fig. 2 illustrates the architeBBFs can be chosen to cover the entire region of the rainfall and
ture of an RBF NN. Three layers are involved in RBF NN arunoff data. The irregular surfacg( P, P-) that is a nonlinear
chitecture and each layer is made up of several nodes. The infliation of rainfall and runoff, is taken to be the sum of linear
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weighted nonlinear RBFS;;(P,, P»), and is a linear combina-
tion of finite RBFs. Thus, (1) can then be written as

J
Q, = Z wir Z;-(Q(t), Q(t — 1), Q(t — 2), Pn(t)

Py(t—1), Py(t —2), Pr(t) 4
Pr(t — 1), Pp(t—2), Pr(t)
Pr(t —1), Pr(t —2), Pp(t)
Pp(t —1), Pt - 2)). ®)

0 Q(P, P,)=Zw,Z,(P,.P))

IV. LEARNING IN RBF NEURAL NETWORK

Z,(P,P,)

Training a RBF NN occurs in two stages. In the first stags
the unsupervised training scheme is employed to determine
parameters of the RBFg{ ando ;). The method for finding the
characteristics of the RBFs is always of concern. Ftraeans
clustering algorithm, which minimizes the sum of squares err
(SSE) between the inputs and hidden node centers, is commc
used to locate a set df RBF centers. However, there is no
formal method for specifying the number of hidden nodes. TH#&. 3. Schematic example of a nonlinear runoff functiQ{F,, F-)
numbers/ ando; have to be determined in advance. The fuzZ3PProximated by RBF NN with inputs, and P,
min—max clustering algorithm [15], which can determine the
number of nodes dynamically and automatically, is used to gferbox. At the beginning, the maximum and minimum points
fectively locateu; ando; of every RBF. Compared to-means of the first hyperbox are set to be the first input data. The de-
clustering that minimizes an objective function resulting in thgree of membership values will be calculated for every new
mean for each of thk clusters, fuzzynin—max clustering does input. During expansion of the hyperbox, the hyperbox with the
not minimize any objective function [15]. Thus, the greatestighest degree of membership will be tested for hyperbox ex-
advantage of fuzzynin—max clustering is that it is not nec- pansion according to
essary to predetermine the number and characteristics of the N
RBF: The er_lti_re training work, including unsupervised and su- Z (max(us, @5) — min(vjs, 25)) < né ®)
pervised training, has to be done repeatedly whemean clus-
tering is used. By using fuzayin—max clustering, however, the
iterant training work will be executed during the unsupervisgtl which 6 is the only one user-defined value ahel 6 < 1. A
training stage and the work or supervised training is executgahallé means more hyperboxes will be created. If the hyperbox
only once. Clearly, fuzzynin—max clustering can save training can be expanded, the old minimum and maximum points of the
work and time. During network training, mamydimensional hyperbox will be replaced with the new minimum and maximum
hyperboxes, which can be viewed as hidden nodes, will be galues. If no hyperbox can be expanded, a new hyperbox con-
erated. The boundaries of a hyperbox are defined by the m&aining the new input data will be generated. After the hyperbox
imum and minimum points. The degree of membership, whi¢® expanded, the hyperbox overlap test will be used to deter-
measures the degree of the input falling within the hyperboxiine whether hyperboxes overlap or not. If overlapping is found
will be calculated when an input is present. The membersHigtween hyperboxes, the maximum and/or minimum points of
function is defined by each dimension of the hyperbox could be contained within an-

" other hyperbox. Thus, the hyperboxes will be contracted with
H(z, vj, u;) = 1 Z [1— fla; —uji) — f(vji — 23)] (6) the minimgl _disturbance pr?ncipl_e, and only one_dimens_ion that
n has the minimum overlap is adjusted. The entire training data

=1

= will be presented for clustering again and again until no hy-
L . §>1 perbox needs to be adjusted. The parametés set to be half
f)=q¢ f0<ée<1 @ the distance between the maximum and minimum points of the
0, £<0 jth hidden node.
where Once the receptive field widths and centers of hidden nodes
H; degree of membership setting to [0,1]; are found, the RBFs are kept fixed. During the second stage,
z; ith dimension of input; supervised training is used to determine the weights between
uy; andw,; ith dimension of maximum and minimum pointshidden and output layers to let the output of the network approx-
of the jth hyperbox, respectively; imate to the target. The multivariate linear regression method is
£ eithere; — uy; or vy — ;. used to optimize the weights by minimization of SSE. This con-

The fuzzymin—max clustering algorithm involves three phasessumes less time for model training when compared with that of
expansion of a hyperbox, overlap test, and contraction of a hie other three-layer NNs, e.g., the backpropagation NNs.
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Only one paramete#, is needed to be set in this studyde- . { .
termines the number and characteristics of RBFs, andthe p 14 ﬁ ] j 4

formance of the model. The other parameters such,asy;, _j . .

andg; will be automatically adjusted during the training pro- o 100 200 300 400
cesses. Choosingéaproperly becomes the key to constructing b)

a satisfactory flood-forecasting model.

Q(m's)

o Observed flood flow

V. RESULTS Three-hour-ahead flood flow forecasting o
The performance of the hydrological models is usually eva _
uated by the correlation coefficient, given by E
o
Z (QO - @o)(Qe - @e)
p= _ - ©9)
\/Z (QO - QO)QZ (Qﬁ - QE)Q | v: Y
which measures how well the predicted streamflows correla ° 100 y 20 ) 30 0
equence (hr,

with the observed streamflows\ is the number of data sets
and@,, Q., Q,, and@, denote the observed, predicted, mean ©
of observed, and mean of predicted streamflows, respectivellig. 5. Training of RBF NN on input and output data with = 0.2:
A S|mple test, which is a Wldely used measure of foreca@ one-hour-ahead flood flow forecasting; (b) two-hour-ahead flood flow
orecasting; and (c) three-hour-ahead flood flow forecasting.
error, is the error rate of peak flow, having the form

EQp = M (10) with a steep channel, floods resulting from typhoons dropping

Qro large amounts of rain within a brief period move at very fast

in which Qp. andQ p, are the forecasted and observed peapeed. The time of concentration, which is the time of flow from
flows, respectivelyEQ p is a measure of peak flow error, thathe farthest point in the watershed to the outlet of the water-
is, the difference between the peak flow forecasted and the vafiled, is very short. The peak flows usually arrive the gaging sta-
that actually occurs. It provides an indication of the performanden within hours, whereas the accuracy of flood forecasting de-

of the model. creases when forecasting time increases. One-hour-ahead flood

The criterion to choose the best model from the validatidarecasting hence becomes the most important information for

subset data is normalized root-mean-square error (NRMSH) government to issue a flood warning. In order to choose a
given by model providing the most accurate prediction for the next three

hours, the NRMSEs of one-hour-ahead, two-hour-ahead, and

Z (Qy — Q)2 L2 three-hour-ahead are weighted by 0.6, 0.3, and 0.1. Fig. 4 shows
NRMSE = L&l = el (11) the relation betweefl and NRMSE. The minimum weighted
4 N NRMSE = 0.291 is obtained whe® = 0.2 and the number

of hidden nodes is 145. The performance of training from the
in which ¢ standard deviation of measured flood flow. NRMSH.1 training subset data with = 0.2 is shown in Fig. 5. In all
indicates the closeness of the prediction to the observation arades, the runoff hydrographs are well simulated. Fig. 6 demon-
is used to measure the forecast error. A perfect forecast thatsathtes the best performance of validation subset data. Fig. 7 il-
forecasted values are identical to the observations exists onljutrates the performance of the flood flow forecasting of the
NRMSE = 0. Since the Lanyoung River is a mountain rivethree testing typhoon events with= 0.2. The hyetographs,
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Fig. 6. Accuracy of training of RBF NN on rainfall and runoff with= 0.2; < 2
(a) one-hour-ahead flood flow forecasting; and (b) two-hour-ahead flood flo 1000 +
forecasting; (c) three-hour-ahead flood flow forecasting. 0

which are charts showing rainfall depth as a function of time,
and the observed and predicted hydrographs are presente 4000 1
Fig. 7. The peaks are captured but delay is somewhat fou o] o Observed flood flow

for three-hour-ahead flood flow forecasting. The results are al = ——— Three-hour-ahead flood flow forecasting
presented in Table I. The correlation coefficients are very hig g 2000 |
and the error rates of peak flow and NRMSEs are low. Bo 1000 4 5

Fig. 7 and Table | indicate the accuracy and reliability of th j gﬁg

rainfall-runoff model using the RBF NN presented herein. Tt

| : 0 20 40 60 80 100 120
forecasted flood flows agree quite well with the observed floc Typhoon Gladys Typhoon Seth Typhoon Herb
flows. In addition, only a few seconds are required to train the o/1n9%4 107871994 73111996
flood forecasting models by a personal computer with a Pen- ()

tium 1l 500 CPU. Thus, hydrologists and engineers can reIFy e . . o

h -hour-ahead and two-hour-ahead flood flow predictio g. 7. \Vrification of RBF NN on rainfall and runoff with = 0.2: (a), (b),

the one-hou - p {E » and (d) are rainfalls; (e), (f), and (g) are one-hour-ahead, two-hour-ahead,
and refer to the three-hour-ahead predicted streamflow. and three-hour-ahead flood flow forecasting.

V1. CONCLUSIONS combination of some nonlinear RBFs. The modified RBF NN,

A simple but reliable rainfall-runoff model is established tavhich is a model-free estimator, can be used successfully for
predict flood flows during typhoons. Particularly pertinent t@onstructing rainfall-runoff models and provide valuable flood
this paper are results that show the modified RBF NN is capalflew predictions. The modified RBF NN employs a hybrid
of providing arbitrarily good prediction of flood flow up to two-stage learning scheme, unsupervised and supervised
three hours ahead. Despite the fact that the nonlinear relatteeining. During the unsupervised training, fuzayin—max
between rainfall and runoff is extremely difficult to exploreglustering is introduced to determine the width and center of
this relation, which could not be well clarified and simulated bthe receptive fields and the number of the RBFs. The advantage
conventional hydrological models, can be taken to be a lineafrusing fuzzymin—max clustering is that the characteristics of
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TABLE |
SUMMARY RESULTS OF THERBF NEURAL NETWORK APPLIED DURING THE STUDY

Subset Typhoon event  Peak flow EQp P NRMSE
m’/s %
t+1] t+2 +3 t+1 +2 t+3 t+1] t+2 t+3
Norris 1280 0 0 0 0999 0971 0945 0.056 0289  0.387
Ike 317 0 0 0 0997 0961 0738 0.123 0408 0922
June 1330 0 0 0 0999 0990 098 0.045 0.155 0.174
Andy 2916 091 0 535 0997 0992 0991 0.074 0.130 0.132
Nelson 409 0 20.65 0 0998 0939 0901 0.060 0480 0.435
Training Brenda 1230 0 7.21 -0.81 0993 0973 0942 0.1l6 0.253 0354
Alex 393 1.13 -4.63 0 0991 0923 0754 0208 0405 0.795
Gerald 1350 6.60 -8.65 0 0988 0940 0.817 0.156 0.632 0.667
Lynn 3060 0 0 0 0983 0980 0959 0.181 0211 0217
Sarah 3090 -2.73 1.87 -0.77 0997 0992 0983 0116 0.145 0.197
Dot 3640 -3.50 0 -2.87 0984 0979 0912 0111 0207 0434
Tim 3350 -3.47 -3.36 0.02 0978 0906 0.785 0207 0424 0.672
Validation Doug 1030 1.87 1713 3323 0983 0934 0727 0210 0435 1.012
Yanni 1880 -3.34 2.47 256 0984 0955 0.853 0.193 0326 0.538
Gladys 1470 -0.65 0.17 1050 0985 0953 0821 0.185 0.357 0.704
Testing Seth 1090 0.92 0.85 -2.86 0992 0973 0.856 0.150 0264 0.685
Herb 3020 -0.73 -3.88 929 0995 0978 0916 0.113 0236 0510

RBFs are determined dynamically and automatically and onlyis]
one parameterd, is needed when the rainfall-runoff model

is constructed. During the supervised training, multivariate 9]
linear regression, which consumes less training time, is usecg
to determine the weights between layers. The optimal raink0l
fall-runoff model using the validation subset data is chosef,
from the candidate model with minimum weighted NRMSE.
The rainfall and runoff data of the Lanyoung River collected(12]

C. C.Yang, S. O. Prasher, R. Lacroix, S. Sreekanth, N. K. Patni L., and
Masse, “Atrtificial neural network model for subsurface-drained farm-

land,” J. Irrig. Drain. Eng, vol. 123, pp. 285-292, 1997.
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|IEEE Signal Processing Magvol. 10, pp. 8-39, 1993.
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are equivalent to multiplayer networkstiencevol. 247, pp. 978-982,

during typhoons are used to construct the rainfall-runoff model.
The results show that the modified RBF NNs can be applied.3]
successfully to building rainfall-runoff models and offer high 4]
accuracy of flood forecasting.

(15]

1990.
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Networks Cambridge, MA: MIT Press, 1995.
L. H. Tsoukalas and R. E. Uhrigruzzy and Neural Approaches in En-
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