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Flood Forecasting Using Radial Basis Function
Neural Networks

Fi-John Chang, Jin-Ming Liang, and Yen-Chang Chen

Abstract—A radial basis function (RBF) neural network (NN) is
proposed to develop a rainfall–runoff model for three-hour-ahead
flood forecasting. For faster training speed, the RBF NN employs
a hybrid two-stage learning scheme. During the first stage, unsu-
pervised learning, fuzzymin–max clustering is introduced to de-
termine the characteristics of the nonlinear RBFs. In the second
stage, supervised learning, multivariate linear regression is used
to determine the weights between the hidden and output layers.
The rainfall–runoff relation can be considered as a linear combi-
nation of some nonlinear RBFs. Rainfall and runoff events of the
Lanyoung River collected during typhoons are used to train, vali-
date,and test the network. The results show that the RBF NN can
be considered as a suitable technique for predicting flood flow.

Index Terms—Flood flow, hydrological processes, nonlinear, ra-
dial basis function neural network (RBF NN), rainfall–runoff.

I. INTRODUCTION

I NCREASED public awareness has made flooding a promi-
nent focus of hydrological studies; however, for decades

we have not coped well with floods. Part of the reason lies in
the complex nature of floods and the varied responses to them.
Flood forecasting undoubtedly is the most challenging and
important task of operational hydrology. Conventional methods
for establishing the relationship between rainfall and runoff
need to understand the behavior of hydrological cycles and
processes; however, the relation is complex and notoriously
nonlinear. Many hydrographic and physiographic factors
associated with the changing of both space and time may affect
the relationship of rainfall and runoff. Some sophisticated
hydrological models, which usually include a great number
of parameters and observed variables, have been developed to
describe complicated hydrological processes. Unfortunately,
such models are difficult to use and are impractical in Taiwan,
which has a subtropical climate, high mountains, and steep
upstream channels of all watersheds on the island.

To provide an alternative approach for accurate flood fore-
casting, an artificial neural network (ANN), which is capable
for modeling and control of nonlinear and complex systems, is
presented. One of the important characteristics of ANNs is their
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adaptive nature: learning by examples (input–output pairs). The
ability of NNs to extract dependencies from measured data and
complement the existing analytic knowledge of the underlining
phenomena makes them a valuable tool in a wide range of appli-
cations [1], [2]. In a hydrological context, ANNs have recently
been used for streamflow prediction [3]–[5], rainfall estimation
[6], [7], and groundwater modeling [8]. In this study, a modi-
fied radial basis function (RBF) NN with fuzzy – clus-
tering is proposed to construct a rainfall–runoff model for fore-
casting one-hour-ahead, two-hour-ahead, and three-hour-ahead
flood flows during typhoon periods. Fuzzy – clustering
is used to determine the center and the number of RBFs, and the
method of least squares is used to determine the weights of the
network. The results show that the modified RBF NN can be ap-
plied successfully to build a rainfall–runoff model and provide
high accuracy of flood flow prediction.

II. DESCRIPTION OF THESTUDY CATCHMENT AND DATA

The RBF NN is applied to the Lanyoung River catchment,
as shown in Fig. 1, for predicting flood flows during high flow
periods. The Lanyoung River, the most important river in north-
eastern Taiwan, is a mountainous river with a steep slope and a
catchment area covered by mature forests. The catchment area,
which extends from the mountains (elevation 3535 m) to the sea
level, drains an area of 821 kmto the Pacific Ocean. Within
this area, the river is 67 km long and the average slope is 5.3%.
Due to its subtropical location, the catchment receives an av-
erage of 3173 mm of rainfall each year; however, the rainfall
is uneven. Typhoons accompanied by torrential rainfall, which
usually occur in the summer, are principally responsible for
the floods. Consequently, flood forecasting becomes one of the
most important tasks of hydrologists and engineers.

Four rain and one stream gaging stations operated by Taiwan
Water Conservancy Agency hourly record precipitation totals
and stage. The streamflow is generated from the stage-dis-
charge rating curve. Seventeen typhoon events with rainfall and
streamflow data during typhoons are available for the period
of 1980–1997. The data set is split into three independent
subsets: the training, validation, and testing subsets. The
training subset, the first 11 typhoon events with 371 set data,
is used for parameter estimation and model development. The
validation subset, which consists of the data of Typhoons Tim,
Doug, and Yanni with 101 set data, is applied to choose the best
model from the candidate ones. The testing subset, the latest
three typhoon events with 103 set data, is devoted to show the
performance of the selected model.

The travel times of the flow from the rain gage stations to
the stream gaging station are less than 3 h because of the steep
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Fig. 1. Map of the study watershed and locations of rain gauge and streamflow
gaging stations.

slope and small watershed. Since the lag time of the drainage
catchment relates to the antecedent rainfalls and streamflows,
the inputs of the model include the rainfall and the stream-
flow information between adjacent values for up to 3 h before
the study. The outputs of the model are the one-hour-ahead,
two-hour-ahead, and three-hour-ahead streamflows. The inputs,
outputs, and structure of the rainfall–runoff model using the
RBF NN are shown in Fig. 2 and the established model can be
expressed as

(1)

where is the predicted streamflow of the Lanyoung River
at the Lanyoung Bridge at time and will be 0, 1, and 2.

is the observed streamflow at time; , ,
, and are the rainfall of Nanshan, Liumaoan,

Tuchang, and Fanfan at time , , , and ,
respectively.

III. RADIAL BASIS FUNCTION NEURAL NETWORK

The RBF NN, which is capable of universal approximation,
may be traced back to an earlier work of Hardy [9]. The present
RBF NN, which always consists of three layers, is motivated
by Moody and Darken [10], Hush and Horne [11], Pogg and
Girosi [12], and others. An important property of the RBF NN
is that multidimensional space nonlinearity, such as the relation
of rainfall and runoff, can be taken to be a linear combination
of the nonlinear RBF [2], [13], [14]. For the purpose of faster
training speed, the RBF NN with hybrid learning scheme sug-
gested by Moody and Darken [10] is applied herein. A common
feature of the RBF NN is its fast training as compared with the
backpropagation networks [13]. Fig. 2 illustrates the architec-
ture of an RBF NN. Three layers are involved in RBF NN ar-
chitecture and each layer is made up of several nodes. The input

Fig. 2. Structure of rainfall–runoff model in the Lanyoung River using RBF
NN.

layer introduces the outside information into the network. The
only hidden layer, which has nodes, processes the input in-
formation with a nonlinear transformation. The transformation
associated with each node of hidden layer implemented herein
is a Gaussian function defined as

(2)

(3)

where is the output of theth hidden node and bias node,
, is fixed at 1; is the input with -dimension; is

the width of the receptive field of theth hidden node; is
the center of theth hidden node; and is the Euclidean dis-
tance between and . The third layer, the output layer with

nodes, fully interconnects to each hidden node. The output of
the network is a linear combination of the nonlinear radial basis
functions

(4)

where is the th output node and is the weight of the
connection between theth hidden node and theth output node.

Fig. 3 illustrates the nonlinear relation of rainfall and runoff,
constructed by two-dimensional (2-D) inputs (rainfall and

) and one-dimensional (1-D) output [runoff , ]. The
cones are the Gaussian functions for some hidden nodes. Many
RBFs can be chosen to cover the entire region of the rainfall and
runoff data. The irregular surface , that is a nonlinear
relation of rainfall and runoff, is taken to be the sum of linear
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weighted nonlinear RBFs , , and is a linear combina-
tion of finite RBFs. Thus, (1) can then be written as

(5)

IV. L EARNING IN RBF NEURAL NETWORK

Training a RBF NN occurs in two stages. In the first stage,
the unsupervised training scheme is employed to determine the
parameters of the RBFs ( and ). The method for finding the
characteristics of the RBFs is always of concern. The-means
clustering algorithm, which minimizes the sum of squares error
(SSE) between the inputs and hidden node centers, is commonly
used to locate a set of RBF centers. However, there is no
formal method for specifying the number of hidden nodes. The
numbers and have to be determined in advance. The fuzzy

– clustering algorithm [15], which can determine the
number of nodes dynamically and automatically, is used to ef-
fectively locate and of every RBF. Compared to-means
clustering that minimizes an objective function resulting in the
mean for each of theclusters, fuzzy – clustering does
not minimize any objective function [15]. Thus, the greatest
advantage of fuzzy – clustering is that it is not nec-
essary to predetermine the number and characteristics of the
RBF. The entire training work, including unsupervised and su-
pervised training, has to be done repeatedly when-mean clus-
tering is used. By using fuzzy – clustering, however, the
iterant training work will be executed during the unsupervised
training stage and the work or supervised training is executed
only once. Clearly, fuzzy – clustering can save training
work and time. During network training, many-dimensional
hyperboxes, which can be viewed as hidden nodes, will be gen-
erated. The boundaries of a hyperbox are defined by the max-
imum and minimum points. The degree of membership, which
measures the degree of the input falling within the hyperbox,
will be calculated when an input is present. The membership
function is defined by

(6)

if (7)

where
degree of membership setting to [0,1];
th dimension of input;

and th dimension of maximum and minimum points
of the th hyperbox, respectively;
either or .

The fuzzy – clustering algorithm involves three phases:
expansion of a hyperbox, overlap test, and contraction of a hy-

Fig. 3. Schematic example of a nonlinear runoff functionQ(P , P )
approximated by RBF NN with inputsP andP .

perbox. At the beginning, the maximum and minimum points
of the first hyperbox are set to be the first input data. The de-
gree of membership values will be calculated for every new
input. During expansion of the hyperbox, the hyperbox with the
highest degree of membership will be tested for hyperbox ex-
pansion according to

(8)

in which is the only one user-defined value and . A
small means more hyperboxes will be created. If the hyperbox
can be expanded, the old minimum and maximum points of the
hyperbox will be replaced with the new minimum and maximum
values. If no hyperbox can be expanded, a new hyperbox con-
taining the new input data will be generated. After the hyperbox
is expanded, the hyperbox overlap test will be used to deter-
mine whether hyperboxes overlap or not. If overlapping is found
between hyperboxes, the maximum and/or minimum points of
each dimension of the hyperbox could be contained within an-
other hyperbox. Thus, the hyperboxes will be contracted with
the minimal disturbance principle, and only one dimension that
has the minimum overlap is adjusted. The entire training data
will be presented for clustering again and again until no hy-
perbox needs to be adjusted. The parameteris set to be half
the distance between the maximum and minimum points of the
th hidden node.
Once the receptive field widths and centers of hidden nodes

are found, the RBFs are kept fixed. During the second stage,
supervised training is used to determine the weights between
hidden and output layers to let the output of the network approx-
imate to the target. The multivariate linear regression method is
used to optimize the weights by minimization of SSE. This con-
sumes less time for model training when compared with that of
the other three-layer NNs, e.g., the backpropagation NNs.
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Fig. 4. Relation of� to NRMSE with hidden nodes is 145.

Only one parameter,, is needed to be set in this study.de-
termines the number and characteristics of RBFs, and the per-
formance of the model. The other parameters such as, ,
and will be automatically adjusted during the training pro-
cesses. Choosing aproperly becomes the key to constructing
a satisfactory flood-forecasting model.

V. RESULTS

The performance of the hydrological models is usually eval-
uated by the correlation coefficient, given by

(9)

which measures how well the predicted streamflows correlate
with the observed streamflows. is the number of data sets
and , , , and denote the observed, predicted, mean
of observed, and mean of predicted streamflows, respectively.

A simple test, which is a widely used measure of forecast
error, is the error rate of peak flow, having the form

(10)

in which and are the forecasted and observed peak
flows, respectively. is a measure of peak flow error, that
is, the difference between the peak flow forecasted and the value
that actually occurs. It provides an indication of the performance
of the model.

The criterion to choose the best model from the validation
subset data is normalized root-mean-square error (NRMSE),
given by

(11)

in which standard deviation of measured flood flow. NRMSE
indicates the closeness of the prediction to the observation and
is used to measure the forecast error. A perfect forecast that all
forecasted values are identical to the observations exists only if

. Since the Lanyoung River is a mountain river

(a)

(b)

(c)

Fig. 5. Training of RBF NN on input and output data with� = 0:2:
(a) one-hour-ahead flood flow forecasting; (b) two-hour-ahead flood flow
forecasting; and (c) three-hour-ahead flood flow forecasting.

with a steep channel, floods resulting from typhoons dropping
large amounts of rain within a brief period move at very fast
speed. The time of concentration, which is the time of flow from
the farthest point in the watershed to the outlet of the water-
shed, is very short. The peak flows usually arrive the gaging sta-
tion within hours, whereas the accuracy of flood forecasting de-
creases when forecasting time increases. One-hour-ahead flood
forecasting hence becomes the most important information for
the government to issue a flood warning. In order to choose a
model providing the most accurate prediction for the next three
hours, the NRMSEs of one-hour-ahead, two-hour-ahead, and
three-hour-ahead are weighted by 0.6, 0.3, and 0.1. Fig. 4 shows
the relation between and NRMSE. The minimum weighted

is obtained when and the number
of hidden nodes is 145. The performance of training from the
11 training subset data with is shown in Fig. 5. In all
cases, the runoff hydrographs are well simulated. Fig. 6 demon-
strates the best performance of validation subset data. Fig. 7 il-
lustrates the performance of the flood flow forecasting of the
three testing typhoon events with . The hyetographs,
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(a)

(b)

(c)

Fig. 6. Accuracy of training of RBF NN on rainfall and runoff with� = 0:2;
(a) one-hour-ahead flood flow forecasting; and (b) two-hour-ahead flood flow
forecasting; (c) three-hour-ahead flood flow forecasting.

which are charts showing rainfall depth as a function of time,
and the observed and predicted hydrographs are presented in
Fig. 7. The peaks are captured but delay is somewhat found
for three-hour-ahead flood flow forecasting. The results are also
presented in Table I. The correlation coefficients are very high,
and the error rates of peak flow and NRMSEs are low. Both
Fig. 7 and Table I indicate the accuracy and reliability of the
rainfall–runoff model using the RBF NN presented herein. The
forecasted flood flows agree quite well with the observed flood
flows. In addition, only a few seconds are required to train the
flood forecasting models by a personal computer with a Pen-
tium III 500 CPU. Thus, hydrologists and engineers can rely
the one-hour-ahead and two-hour-ahead flood flow predictions
and refer to the three-hour-ahead predicted streamflow.

VI. CONCLUSIONS

A simple but reliable rainfall–runoff model is established to
predict flood flows during typhoons. Particularly pertinent to
this paper are results that show the modified RBF NN is capable
of providing arbitrarily good prediction of flood flow up to
three hours ahead. Despite the fact that the nonlinear relation
between rainfall and runoff is extremely difficult to explore,
this relation, which could not be well clarified and simulated by
conventional hydrological models, can be taken to be a linear

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 7. Verification of RBF NN on rainfall and runoff with� = 0:2: (a), (b),
(c), and (d) are rainfalls; (e), (f), and (g) are one-hour-ahead, two-hour-ahead,
and three-hour-ahead flood flow forecasting.

combination of some nonlinear RBFs. The modified RBF NN,
which is a model-free estimator, can be used successfully for
constructing rainfall–runoff models and provide valuable flood
flow predictions. The modified RBF NN employs a hybrid
two-stage learning scheme, unsupervised and supervised
training. During the unsupervised training, fuzzy –
clustering is introduced to determine the width and center of
the receptive fields and the number of the RBFs. The advantage
of using fuzzy – clustering is that the characteristics of
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TABLE I
SUMMARY RESULTS OF THERBF NEURAL NETWORK APPLIED DURING THE STUDY

RBFs are determined dynamically and automatically and only
one parameter, , is needed when the rainfall–runoff model
is constructed. During the supervised training, multivariate
linear regression, which consumes less training time, is used
to determine the weights between layers. The optimal rain-
fall–runoff model using the validation subset data is chosen
from the candidate model with minimum weighted NRMSE.
The rainfall and runoff data of the Lanyoung River collected
during typhoons are used to construct the rainfall–runoff model.
The results show that the modified RBF NNs can be applied
successfully to building rainfall–runoff models and offer high
accuracy of flood forecasting.
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