
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Online and Offline BIST in IP-Core Design / Benso, Alfredo; Chiusano, SILVIA ANNA; DI NATALE, Giorgio; Prinetto,
Paolo Ernesto; Lobetti Bodoni, M.. - In: IEEE DESIGN & TEST OF COMPUTERS. - ISSN 0740-7475. - STAMPA. -
18(5):(2001), pp. 92-99. [10.1109/54.953276]

Original

Online and Offline BIST in IP-Core Design

Publisher:

Published
DOI:10.1109/54.953276

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1398122 since:

IEEE

THE TELECOMMUNICATION systems market—

including digital communication systems and

real-time fragmented-data-structure applications

such as asynchronous-transfer-mode (ATM)

switches and video-related products—has grown

significantly in the past few years. To compete in

this market, industries must achieve high perfor-

mance, robustness, availability, and reliability in

their products, while keeping production costs as

low as possible. To guarantee high performance

and large data-processing capacities, system

designers have integrated digital, analog, and

radio-frequency devices. At the same time, strong

reliability constraints have contributed to the evo-

lution of highly reliable digital components.

Memories are key components in telecom-

munication systems, playing a crucial role in sys-

tem availability and serviceability. Memory

components come in a wide variety of sizes, tech-

nologies (such as static RAM, dynamic RAM, and

Rambus), and packaging (intellectual-property

[IP] cores, chips, and dedicated boards).

Regardless of their implementation, however,

memories are vulnerable to permanent and tran-

sient faults caused by environmental stress and

interference. This vulnerability stems from mem-

ory components’ small circuit elements, which

are subject to damage or unintended state

changes from small amounts of energy.

In telecommunication applications, strict

fault-latency requirements impose continuous

memory testing to minimize the time between

fault occurrence and detection and avoid inter-

ruption or degradation of system performance.

Designers usually reach this goal with coexist-

ing on- and offline built-in self-test techniques.

Online BIST continuously tests the system for

transient faults during its normal behavior.

Offline BIST aims at detecting faults left undis-

covered by online test, during dedicated time

frames when system behavior is suspended.

The most common online-testing techniques

rely on hardware redundancy (duplication or

triplication), time redundancy, information

redundancy (error-detecting and error-correct-

ing codes), and parametric testing (built-in cur-

rent sensors).1 Whereas offline BIST architectures

have been widely discussed in the literature,2 and

many standard offline solutions have been

defined and evaluated, defining a standard

online BIST approach is impossible. The design

of such an architecture must be based on an

analysis of the trade-offs between fault coverage

Online and Offline BIST in
IP-Core Design

International Test Conference

92

This article presents an online and offline built-in

self-test architecture implemented as an SRAM

intellectual-property core for telecommunication

applications. The architecture combines fault-

latency reduction, code-based fault detection,

and architecture-based fault avoidance to meet

reliability constraints.

Alfredo Benso, Silvia Chiusano, Giorgio Di Natale,
and Paolo Prinetto
Politecnico di Torino

Monica Lobetti Bodoni
Siemens Information and Communication Networks

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

and hardware or information redundancy over-

head, and between fault latency and the system

access rate.3

Whatever the detection mechanism, once a

fault is detected, the system can respond with

various strategies, depending on the reliability

constraints:

� Built-in self-repair (BISR). The memory archi-

tecture functionally removes the fault’s

effect. This is the solution needed for sys-

tems that cannot be physically repaired—for

example, in deep-space applications.4

� Graceful degradation. The system executes

its target application with some type of

degradation—for example, a decrease in

overall memory size.

� Isolation. The system signals detection of a

fault and isolates itself from the external logic.

� Detection only. The system signals detection

of an error but continues working. The exter-

nal environment must handle the faulty

condition.

At Politecnico di Torino, we have developed

an advanced on- and offline RAM BIST archi-

tecture and implemented it as an IP core for

Italtel, an Italian telecommunication system

manufacturer.5 Our approach combines four

strategies to meet strict fault detection, fault tol-

erance, overhead, and system performance

constraints: offline test, code-based fault detec-

tion, architecture-based fault avoidance, and

architecture-based fault-latency reduction. We

did not provide a full BISR capability because,

in this application, engineers can physically

repair the memory in a short time. However,

the architecture allows BISR of at least one

faulty cell, at the cost of test efficiency.

Design constraints
The target memory, a single-port static RAM

clocked at 10K × 80 bits, acts as the command

memory of an ATM switch-unit chip manufac-

tured in LSI Logic’s G11 technology. In addition

to the command memory, the chip (PSE40K)

contains approximately 700K random-logic gates

and a 2.4-Mbit RAM devoted to data storage.

The SRAM’s functional specifications

required a low average access rate (one access

every 200 cycles), thus allowing long idle inter-

vals that we could exploit for testing. The mem-

ory-access strategy depends on the required

operation. A write operation to the memory

can separately access four 20-bit subwords. A

read operation always accesses the entire 80-

bit data word in parallel. For this reason, the

memory has a write-enable signal for each

input bit.

The technology we adopted imposed no

power dissipation constraints. Finally, the area

introduced for testing had to be as small as pos-

sible; duplication of the entire memory was not

allowed.

Reliability constraints
The fault detection constraints required

detecting but not necessarily correcting both

permanent and transient faults in the memory

cells as well as the addressing logic. The tar-

geted permanent faults 2 included

� single and multiple stuck-at, where one or

more bits of the memory array are stuck at a

logic value;

� coupling (both intra- and interword), where

a memory cell value or a transition modifies

another cell’s content;

� n-bit burst, where the first and last bits in a

sequence of n faulty or correct bits are

faulty; and

� address faults, which are stuck-at and cou-

pling faults on address lines.

The targeted transient faults included

� single-event and double-event upsets, where

the value of one or two bits of the memory

array is flipped; and

� address transient faults, which are single-

event and double-event upsets on address

lines.

The fault tolerance constraints impose a

short fault latency; faults must be detected

within 100,000 cycles from their appearance

(that is, within 500 memory accesses, con-

sidering the average access rate). Moreover,

service should never be interrupted or

degraded.

93September–October 2001

Test strategies
To meet reliability, overhead, and memory

performance constraints, the architecture inte-

grates offline, concurrent online, and noncon-

current online BIST schemes, mixing various

customized local solutions, each tackling a dif-

ferent problem. We adopted four main test

strategies:

� To meet fault detection requirements and

monitor permanent and transient faults

online, we adopted code-based fault detec-

tion that applies information redundancy to

data and addresses.

� The memory layout is fully customizable, so

we implemented an architecture-based fault

avoidance technique. As a result, the hard-

ware implementation of the target memory

allows burst errors with sizes up to the max-

imum detectable by the code.

� At power-up, the memory is tested offline

with march tests.

� A fault latency reduction architecture lets

the BIST hardware exploit idle time to fur-

ther test the memory and meet strict fault tol-

erance requirements.

Code-based fault detection
The main fault detection feature of our archi-

tecture is implemented as a code-based solu-

tion that detects faults in the memory cells and

the addressing logic.

Detecting faults in memory cells. The relia-

bility constraints require the memory to output

correct data, or at least to assert a warning sig-

nal if the data is corrupted. Our strategy is to

check the correctness of the stored data when

a read operation is requested. This approach

relies on a backup copy of the memory con-

tent, updated with the memory and used as a

reference when the memory is read. Because

duplication of the entire memory would intro-

duce an unacceptable overhead, we devised a

code-based solution.

The data written into the memory is not the

original data, but a code word consisting of the

original data and a code computed on the data

itself. We used separable codes, which distin-

guish the data and the code within the code

word. We used the standard online memory-

BIST architecture sketched in Figure 1a.

In our approach, a write operation consists of

International Test Conference

94 IEEE Design & Test of Computers

Din

Dout

Encoder

Encoder

codedata

code1

data

error

error1

RAMAddress

=

=

Din

Dout

Encoder

Encoder

code

code code

data

code1

data

error

error1

RAMAddress

=

=

Concurrent online BIST logic

(a) (b)
Comparators Comparators

address

Figure 1. Online BIST architecture based on separable codes: code word including data

only (a) and code word including data and address (b).

an encode-and-write operation, and a read oper-

ation consists of a read-and-check. When writing

to memory, the encoder unit encodes the incom-

ing data and generates a code word (data,

code) that is stored in memory. When reading

memory, the system accesses the entire code

word. The data part of the code word is encoded

again, and the new code (code1) is compared

with the one stored in the code word. The data is

considered valid if and only if code and code1

are identical; otherwise, the data is treated as

faulty and an error signal is asserted.

The validation fails if either the comparator

or the encoder is faulty, or if the code masks the

faults in the addressed word. For this reason,

both units should always be duplicated. As

shown in Figure 1a, code and code1 are com-

puted by two different encoders and compared

by two comparators.

Detecting faults in addressing logic. An

address fault typically causes an unexpected

cell to be accessed by a given address during

both a read and a write operation.6 In other

words, because of an address fault, two differ-

ent addresses point to one memory cell, or, sim-

ilarly, a single address accesses two cells at the

same time.

For example, consider cell C0 accessed by

address A0, and C1 by A1. In the presence of an

address fault, assume that A0 addresses both C0

and C1, and thus C1 can be accessed by both

A0 and A1. As a fault effect, the memory gener-

ates an incorrect data output in the following

two cases.

Whenever C0 is read, C1 is also read, and the

resulting data is a logic combination of the con-

tent of C0 and C1. Thus, the output of the

sequence {write (C0, A0); write (C1,

A1); read (C0, A0)} is usually unpre-

dictable. In this case, the occurrence of an

address fault actually generates faulty data and

thus is detected by the architecture in Figure 1a.

The logical combination of the code words in C1

and C0 generates a code word in which data

and code likely do not match, and the archi-

tecture in Figure 1a recognizes the data as faulty.

In the second case, when C0 is updated,

C1 is overwritten with the same value. There-

fore, when the sequence {write(C1, A1);

read(C1, A1)} is interleaved by {write(C0,

A0)}, the data read from C1 corresponds to the

actual content of C0, and the data previously

written on C1 by A1 is lost. To handle this case,

the memory stores the address used to write the

cell, to verify its correspondence with the

address used to read the cell. To minimize over-

head, we extended the architecture in Figure 1a

to compute the code included in the code

word, starting from both the incoming data and

the address used for accessing the memory in

writing mode (Figure 1b).

Except for code computation, the architec-

tures in Figures 1a and 1b behave the same.

The code word is updated whenever new data

is written to the cell; when the memory is read,

the code is recomputed (code1) starting from

the data in the code word and the reading

address. The validation fails if code1 and

code in the code word are different because

of an address or data fault.

Code selection. The overhead incurred by this

approach mainly consists of the encoder’s com-

plexity and the spare memory bits used to store

the codes. We selected a suitable encoding

algorithm to trade off the reliability require-

ments with the introduced overhead. We used

Hamming error-correcting code,7 and to mini-

mize its size, we encoded the data and address

values together. The algorithm considers a sin-

gle 96-bit-wide data-bit string—80 bits for data

and 16 for the address—which can be encod-

ed with a 7-bit code. The selected code detects

burst errors of up to 7 bits in the memory cells.

Architecture-based fault avoidance
We structured the fully customizable mem-

ory layout to guarantee that the targeted per-

manent and transient faults, occurring in either

cells or addressing logic, generate burst errors

of at most 7 bits in the cells.

Designers usually implement a memory

array by replicating a basic memory block in

columns, rows, or both. We organized our

memory array by columns split into blocks

equal in width to the size of the maximum

detectable burst error. Thus, each block is 10K

× 7 bits wide, and 13 blocks implement the 10K

× 87-bit memory.

95September–October 2001

A faulty block causes a burst error of at most

the size of the block (7 bits) in the memory

cells and is therefore detectable by the code.

An address fault causes access to an incorrect

block, and thus the memory cells could have a

sequence of 7 bits different from the expected

ones. This case is also treated as a 7-bit burst

error and is detectable by the code. Larger

burst errors can appear only in the presence of

multiple-block failures. Our experience on pre-

vious designs showed that this type of fault is

unlikely to occur.

Offline testing
At power-up, the encoding mechanism is

disabled and the entire memory is tested offline

to detect the occurrence of permanent faults.

We implemented March Test C−, which has a

complexity of 10 n.6 It detects address, stuck-at,

transition, and coupling (both inversion and

idempotent) faults between cell pairs. We also

used background patterns (BGPs), in a march

test consisting of {⇑(Wbgp0, Rbgp0, Wbgp1,

Rbgp1)}, to detect intraword coupling faults—

coupling faults among bits of the same cell.8

An 87-bits-per-word memory usually requires

seven BGPs, but we shortened the test execu-

tion time significantly by taking into account

the actual memory layout as defined earlier. In

the column structure, intraword coupling faults

occur only between bits of the same block.

Therefore, each block can be considered a sep-

arate entity and its cells tested exhaustively with

the BGPs listed in Table 1. Moreover, in a mem-

ory cell access, 13 cells of different blocks are

accessed in parallel; applying the same BGP to

all of them lets them be tested concurrently.

Figure 2 shows the BIST logic added to the

architecture in Figure 1b to perform offline test-

ing. The BIST controller manages test execution,

the background pattern generator

provides the BGPs, and the address

generator provides the memory

addresses used during test execu-

tion. Memory inputs and outputs

have been multiplexed to disable

encoding during offline test execu-

tion. The BIST controller controls

the AG, the BGPG, and the multi-

plexers.

Fault latency reduction
architecture

We used two different ap-

proaches to meet the fault toler-

ance constraint and detect a fault,

either in the cells or the addressing

logic, within 500 memory accesses

from its appearance.

First, we artificially increased the

memory access rate to speed up the

detection of already activated

faults. The BIST controller uses

memory-idle time to access the

memory cells and verify the cor-

International Test Conference

96 IEEE Design & Test of Computers

Table 1. Adopted background pattern sequences

for two different patterns.

BGP0 BGP1

0000000 1111111

0000111 1111000

0011001 1100110

0101010 1010101

Din

Dout

Encoder

Encoder

error

RAM
Address

=

=

Offline BIST logic
Address generator
Background-pattern generator

AG
BGPG

BIST
controller

=

AG

BGPG

Addressing
logic

Comparator

Comparators

Figure 2. Concurrent online and offline BIST architecture.

rectness of the stored code words.

In the second approach, the

cells accessed during idle time are

not only read and verified, the con-

troller also tests them using a set of

suitable patterns. This operation

must take place without losing the

content of the memory cell under

test and without degrading system

performance—that is, neither inter-

rupting nor delaying normal system

behavior. Therefore, we extended

the architecture in Figure 2 by

inserting a shadow register (S-reg)

to functionally replace the cell

under test. We also gave the BIST

controller the capability of manag-

ing the nonconcurrent online test.

Figure 3 diagrams the final offline

and online BIST architecture.

The pseudocode in Figure 4

describes the nonconcurrent

online test process. The cells are

considered one at the time. First,

the BIST hardware reads the cell

and verifies its content using the

code-based approach described earlier. If the

cell is not faulty, its content is copied in S-reg;

then the encoding is disabled and the entire cell

is tested with the BGPs described in Table 1. To

shorten the fault latency, the cell is tested each

time using only one BGP; when it has been test-

ed four times, all the BGPs have been applied.

Whenever a read or write operation is

requested, the BIST controller suspends test exe-

cution and serves the request. If the operation is

requested on the cell under test, the BIST con-

troller transparently executes the operation using

S-reg instead of the actual memory cell. At test

completion, the content of S-reg is copied back

to the cell, and another cell is set under test.

In the case of a faulty memory, the BIST

controller asserts the error signal, and the sys-

tem waits for user intervention. The simple

BISR strategy replaces the faulty cell using S-

reg in the normal memory mode. The BISR

results in graceful degradation; it repairs the

faulty memory cell, but it stops the noncon-

current online BIST.

The BIST logic added to meet fault latency

requirements is not critical. The occurrence of

a fault in it would increase fault latency without

decreasing fault coverage. If the faulty BIST

97September–October 2001

Din

Dout

Encoder

Encoder

error

RAM
Address

=

=

Nonconcurrent online and offline BIST logic
Background-pattern generator
Shadow register

BGPG
S-reg

BIST
controller

=

AG

BGPG

S-regComparator

Comparators

Addressing
logic

Figure 3. Final offline and online BIST architecture.

foreach BackgroundPattern bgp {

foreach memory address i {

-—Read & verify the data

-—The symbol & represents the VHDL concatenation
operator

read DATA [i] &CODE [i]

if encoding (DATA [i]) ≠ CODE [i]

{ ERROR }

-—Save the data

S-REG = DATA [i] &CODE [i]

-—Write bgp0

DATA [i] &CODE [i] = BGPG (bgp, 0)

-—Read bgp0

if (DATA [i] &CODE [i] ≠ BGPG (bgp, 0))

{ ERROR }

-—Write bgp1

DATA [i] &CODE [i] = BGPG (bgp, 1)

-—Read bgp1

if (DATA [i] &CODE [i] ≠ BGPG (bgp, 1))

{ ERROR }

-—Restore the original data

DATA [i] &CODE [i] = S-REG

}
}

Figure 4. Nonconcurrent online test algorithm.

logic fails to detect faults via nonconcurrent

online testing, the same faults will be detected

by concurrent online testing. If the latency

degradation is unacceptable for an application,

the BIST logic must be made fail-safe.9 Our tar-

get application didn’t require fail-safeness.

Final implementation
We enhanced the final circuit to meet some

additional requirements. To guarantee acces-

sibility of all units during the end-of-production

test, we synthesized the circuit using full-scan

methodology. In addition, we designed a cus-

tom test access port controller10 to fully control

the BIST logic of the implemented testing strate-

gies. The TAP controller

� activates BIST;

� interrupts BIST when it detects an error (BIST

executes the test algorithm, and when a fault

is detected, an external tester can locate the

fault’s exact position through the scan

chains);

� restarts BIST after a fault detection; and

� disables BIST.

We synthesized the BIST architecture with LSI

Logic’s G11 technology. Table 2 describes the IP

core’s area in terms of equivalent gates and per-

centages of the original memory for the imple-

mented test strategies and the TAP controller.

ALTHOUGH DEVELOPED for a specific applica-

tion, this BIST architecture can be customized

for the requirements of other applications,

which often have less-constraining reliability

requirements. �

References
1. M. Nicolaidis and Y. Zorian, “Online Testing for

VLSI—A Compendium of Approaches,” J.

Electronic Testing, Theory and Applications, vol.

2, nos. 1/2, Feb.-Apr. 1998, pp. 7-20.

2. A.J. van de Goor, Testing Semiconductor Memo-

ries: Theory and Practice, John Wiley & Sons,

Chichester, UK, 1991.

3. H. Al-Asaad, B.T. Murray, and J.P. Hayes, “Online

BIST for Embedded Systems,” IEEE Design &

Test of Computers, vol. 15, no. 4, Oct.-Dec. 1998,

pp. 17-24.

4. A. Benso et al., “An On-line BISTed RAM Architec-

ture with Self-Repair Capabilities,” to be published

in IEEE Trans. Reliability, Sept.-Oct. 2001.

5. A. Benso et al., “An On-line BISTed SRAM IP-

Core,” Proc. IEEE Int’l Test Conf., IEEE CS Press,

Los Alamitos, Calif., 1999, pp. 993-1000.

6. A.J. van de Goor, “Using March Tests to Test

SRAMs,” IEEE Design & Test of Computers, vol.

10, no. 1, Mar. 1993, pp. 8-14.

7. F.J. Macwilliams and N.J.A. Sloane, The Theory

of Error-Correcting Codes II, North-Holland Math-

ematical Library, vol. 16, North-Holland, Amster-

dam, 1998.

8. A.J. van de Goor and I.B.S. Tilli, “March Tests for

Word-Oriented Memories,” Proc. IEEE Design

Automation and Test in Europe, IEEE CS Press,

Los Alamitos, Calif., 1998, pp. 501-508.

9. P.K. Lala, Self-Checking and Fault-Tolerant Digi-

tal Design, Morgan Kaufmann, San Mateo, Calif.,

2001.

10. IEEE Std 1149.1-1990, Test Access Port and

Boundary-Scan Architecture, IEEE Press, Piscat-

away, N.J., 1993.

Alfredo Benso is a
research assistant in the
Computer and Information
Sciences Department of the
Politecnico di Torino, Italy.
His research interests in-

clude design-for-testability techniques, BIST for
complex digital systems, dependability analysis
of computer-based systems, and software-
implemented hardware fault tolerance. Benso
has an MS in computer engineering and a PhD
in computer engineering, both from Politecnico
di Torino. He chairs the Web-Based Activities

International Test Conference

98 IEEE Design & Test of Computers

Table 2. IP core’s area overhead.

Equivalent Relative

Unit gates area (%)

Original memory 370,976 90.59

Extra memory bits for code storage 32,460 7.94

Concurrent online BIST logic 2,146 0.52

Nonconcurrent online BIST logic 1,814 0.44

Offline BIST logic 1,195 0.29

TAP controller 914 0.22

Group of the IEEE Computer Society’s Test
Technology Technical Council (TTTC).

Silvia Chiusano is a
research assistant in the
Computer and Information
Sciences Department of
Politecnico di Torino. Her
research interests include

high-level testing, design-for-testability tech-
niques, BIST, and dependability. Chiusano has
an MS and a PhD, both in computer engineering,
from Politecnico di Torino.

Giorgio Di Natale is pur-
suing a PhD in the Computer
and Information Sciences
Department of Politecnico di
Torino. His research interests
include design-for-testability

techniques, built-in self-repair, and FPGA test-
ing. Di Natale has an MS in computer engineer-
ing from Politecnico di Torino. He is an associate
Webmaster of the IEEE Computer Society’s Test
Technology Technical Council.

Paolo Prinetto is a full pro-
fessor of computer engineer-
ing at Politecnico di Torino
and an adjunct professor at
the University of Illinois at
Chicago. His research inter-

ests include testing, test generation, BIST, and
dependability. Prinetto has an MS in electronic
engineering from Politecnico di Torino. He is a
Golden Core member of the IEEE Computer Soci-
ety and the chair of the IEEE Computer Society’s
Test Technology Technical Council.

Monica Lobetti Bodoni is
a design-for-testability engi-
neer at Siemens Information
and Communication Networks
(formerly Italtel) in Milan, Italy.
Her research interests include

memories, logic BIST, automatic test-pattern gen-

eration methods for systems on chips, boundary
scan, and custom at-speed solutions for intercon-
nection testing. Bodoni has an MS in nuclear engi-
neering from Milan Polytechnic. She is an IEEE
member and chair of the TTTC Board Test Tech-
nical Activity Committee.

Direct questions or comments about this arti-
cle to Alfredo Benso, Politecnico di Torino,
Dipartimento di Automatica e Informatica, Corso
Duca degli Abruzzi 24, I-10129 Torino TO, Italy;
benso@polito.it.

For further information on this or any other com-

puting topic, please visit our Digital Library at

http://computer.org/publications/dlib.

99September–October 2001

computer.org/publications/

Transactions on

� Computers

� Knowledge and Data Engineering

� Multimedia

� Networking

� Parallel and Distributed Systems

� Pattern Analysis and Machine Intelligence

� Software Engineering

� Very Large Scale

Integration Systems

� Visualization and

Computer Graphics

Nine good reasons why

close to 100,000 computing

professionals join the

IEEE Computer Society

