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ABSTRACT
Trajectory-planning and an efficient control scheme play a crucial role in improving the performance of pick-

and-place robots. This paper introduces a novel method of trajectory-planning with cycle time and path constraints.
Assuming that a smooth trajectory is given, to be followed within a prescribed cycle time, the newly proposed
method of trajectory-planning removes the torque peaks of the actuators by a suitable scheduling of the velocity
of the moving plate. Since pick-and-place robots are usually expected to meet the end-poses in a certain time
span, while disregarding the intermediate poses, the velocity can be tuned properly around the critical points of the
trajectory by means of a time-scaling function. Moreover, the authors report the formulation of a linear quadratic
regulator (LQR) controller with normalized variables, to be used in conjunction with our trajectory-tracking control
scheme for an in-house-developed Schönflies-motion generator. This parallel robot offers a functionally symmetric,
single-loop architecture, with an isostatic kinematic chain, and virtually unlimited rotatability of its gripper. A
comparison between two actuation systems developed by the authors is conducted via simulation results.

1 Introduction
The unprecedented growth of automation in different industrial sectors calls upon a wide range of robots for special tasks.

Manipulation tasks fall into two major configuration categories: trajectory-tracking, as needed for additive or subtractive
manufacturing, and pick-and-place operations (PPO). A trajectory-tracking task requires the robot to follow a desired path
space with a given schedule. On the other hand, PPO refers to carrying a payload from the starting pose to the final pose,
regardless of the poses visited in-between, as long as the payload does not collide with the environment. Moreover, the
PPO speed over the trajectory is usually not crucial, as long as it meets the desired cycle time. Pick-and-place robots
have broad applications in industry, in operations such as moving parts between workstations. The focus of this paper
is on pick-and-place robots with four degrees of freedom (dof) producing Schönflies motions, namely, Schönflies-motion
generators (SMGs). These robots are capable of translation in three independent directions, and rotation about one axis of
fixed orientation (usually vertical) [1], similar to the motion of a waiter’s tray.

While serial architectures have a relatively large workspace, parallel architectures benefit from a higher load-carrying
capacity, operation precision and speed. These features led to more emphasis in recent years on parallel manipulators,
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a.k.a. Parallel-Kinematics Machines (PKMs). Several parallel architectures have been proposed to generate Schönflies-
motions [2–7].Current parallel SMGs are mostly designed based on either the three-limb Delta architecture [8] enhanced
with a telescopic Cardan shaft to transmit a rotation to the base plate (BP), or a four-limb architecture [9], also derived from
the Delta architecture. The well-known SMGs in the market are ABB Robotics’ IRB FlexPicker [10] and Adept Technology
Inc.’s Quattro s650H.

Recently, our team picked one of the four parallel SMG architectures proposed by Lee and Lee [11, 12] to develop a
novel SMG. In contrast to the popular above-mentioned parallel architectures, the two-limb architectures proposed by the
Lees benefit from overall simplicity, isostaticity, high rotatability of the “moving platform”1 (MP), and a fully symmetric
layout [13, 14]. The Isostatic Schönflies Motion Generator (ISMG) designed and fabricated at the Centre for Intelligent
Machines (CIM), McGill University, is termed the Peppermill Carrier (PMC) because of the formal and functional similarity
of its gripper-carrying rod2 to the familiar peppermill, seen in Italian restaurants3. The putative MP in our case consists of
two coaxial screw joints with identical pitches, but of opposite hands. Each limb of the PMC is run by one novel actuator,
dubbed the C-drive (cylindrical drive). This drive operates based on a cylindrical differential mechanism [15, 16], capable
of generating the two-dof cylindrical motion subgroup [1], i.e., independent translational and rotational motions, with the
former along a direction parallel to the axis of the latter.

Beyond the architecture and the kinematics of the PMC, another element that must be considered is the control strategy.
Indeed, high-speed operations make it necessary to have a carefully tuned controller. In order to achieve that goal, linear
quadratic control theory is an interesting avenue for systems with multiple inputs and multiple outputs (MIMO). The LQR is
one solution to minimize a cost function and obtain optimal feedback gains [17]. The formulation on which the LQR is based
was first proposed by Kalman [18]. While the LQR is intended for linear systems, it can also be applied to their non-linear
counterparts, such as the well-known inverted pendulum problem [19]. It can also be applied to trajectory tracking [20].

Several methods of trajectory-planning have been proposed to improve the performance of manipulators, each with
different constraints and objectives. Bourbonnais et al. used the spline stochastic approach to minimize the cycle time of a
pick-and-place robot [21], while others tried to keep the motion jerk continuous with kinematic constraints [22–25]. More-
over, having knowledge about the dynamic response of a robot plays an essential role in trajectory-planning; therefore, many
methods have been established based on the robot model [26, 27]. In addition, model-based trajectory-planning becomes a
crucial tool to find the optimum feasible path for cable robots [28–30].

The focus of this paper is the development of a new scheme for trajectory-planning with cycle time and path constraints.
The goal is to keep constant the cycle time and the desired path of the Peppermill, as imposed by the user, while scheduling
the velocity in such a way that the maximum torque of the motors is kept within given bounds. One of the main obstacles
to speed up a PPO is the required torque peaks, which exceed the nominal characteristics of the actuators and result in
deterioration of trajectory-tracking precision. Moreover, the removed torque peaks allow the user to increase the speed of
operation. The velocity scheduling introduced in this paper modifies the time step of the time array, which belongs to the
prescribed trajectory. This novel technique is applicable to any given trajectory upon identifying the critical points, in order
to improve the performance of pick-and-place robots.

2 Trajectory-Planning
The cycle time of operations plays a crucial role in the performance of a robot. While the cycle time is important in the

trajectory-tracking task, the precise motion schedule over the path is just as essential. For instance, a welding or soldering
robot needs to exactly follow a prescribed path at a given speed; otherwise, the weld could be oversized or weak at different
points along the path. This requirement leads the designer to construct a robust robot capable of performing any desired task
programmed by the user. Pick-and-place robots, however, are usually designed to meet the given end-poses within a certain
time, regardless of the motion schedule. This allows the user to modify the trajectory by, for example, minimizing the kinetic
energy of the system and removing the actuator torque peaks by synthesizing the trajectory with smooth blendings [31], to
prevent shaking. A second approach is the velocity-management of the trajectory to satisfy the required cycle time, as well
as to prevent unnecessary actuator torque peaks. Removing the actuator torque peaks enables the robot to operate faster.
In order to distribute a given cycle time properly, velocity scheduling needs to be implemented. The method proposed in
this paper focuses on modifying and optimizing any given prescribed trajectory vs. time. These trajectories are analyzed by
means of the kinematics and dynamics models of the SMG to find the torque required from each of the four motors. This
task can also be conducted on the robot by measuring the motor torques from current readouts. Whether simulating the
task or conducting an experiment, the highest torque-demanding points of the trajectory can be identified. After identifying
the critical instants in the cycle time, the speed of motion should be lowered around those instants. Instead of changing the
desired pose, the time step is manipulated to decrease the speed. By keeping the originally prescribed pose, only the time step
is enlarged by means of a time-step scaling function Ct . Consequently, the velocity and acceleration are decreased around

1The qoutation marks indicate the use of the generic term, while recognizing that the peppermill is far from being a “platform” stricto sensu
2which plays the role of the moving platform of PKMs
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the critical time. In order to better describe the desired relationship, the exponential function is chosen due to its continuous
and smooth profile:

Ct = 1+
n

∑
i=1

Aie−3(t−ti)2/B2
i (1)

where Ai and 2Bi are, respectively, the proportional magnitude and the length of the slowed (scheduled) region around the
ith critical point, which happens at time ti, as shown in Fig. 1(a). Since the width of the scheduled region does not have sharp
ends, 2Bi is defined when Ct settles down to 5% of the Ai value. Moreover, the total number of scheduled regions is assumed
to be n within the cycle time T .

As can be seen in Fig. 1(a), element-wise multiplication of the Ct array at sampled instants by the time step array results
in a longer cycle time than the original cycle time, since the integral of the scaling function is greater than T . In other words,
the extra time spent to slow down the critical parts of the trajectory, which is the area trapped between the Ct curve and the
horizontal line Ct = 1, results in not meeting the desired cycle time. Therefore, the overall speed of the operation should be
increased to compensate the added time due to the lowering of the velocity at certain points. The scaling function is thus
modified to:

Ct =
(

1+
n

∑
i=1

Aie−3(t−ti)2/B2
i

) T

T +∑
n
i=1

∫ T
0 Aie−3(t−ti)2/B2

i dt
(2)

where the integrals in the denominator are readily calculated numerically, using Romberg’s scheme [32]. As depicted in
Fig. 1(b), the modification scales down Ct , making the dark and the light gray areas equal (by making the integral value of
the modified Ct equal to T ). Once the Ct is properly modified, one can element-wise multiply it by the time step array of
the desired trajectory. After conducting the inverse kinematics analysis, the joint-space variables, namely, ψψψ, ψ̇ψψ, and ψ̈ψψ, are
modified accordingly.

(a) (b)
Fig. 1. Time-step scaling function for velocity scheduling: (a) original; (b) modified

One can fully automate the process of velocity-scheduling by determining Ai based on the ratio of the ith peak to the
root mean square (RMS) value of the acceleration or torque plot over one cycle of operation. Also, Bi can be assigned based
on the width of the peak evaluated at the RMS value.

3 The PMC Modeling
The PMC isostatic architecture shown in Fig. 2(a), a closed CRRHHRRC chain4, consists of two C-drives, two limbs,

and the peppermill [14]. The identical C-drives bear axes located in two horizontal planes, in such a way that the C-drive
axes are normal to the Z-axis. The C-drive works based on the synchronized rotation of two nuts, run by two parallel screws,
one right-, one left-hand, with the same pitch, as depicted in Fig. 2(b). This synchronization is achieved by means of a
belt-pulley transmission, which transfers the rotation and translation of the nuts to a strain-wave-gear (SWG) transmission,
a.k.a. Harmonic Drive, mounted on the third parallel axis. The SWG transmission offers high, compact, and self-locking
gear reduction. These features render the SWG-driven C-drive (for brevity, the C-drive) robust to changes of the external
load.

4R, H and C stand for revolute, helical (screw) and cylindrical joint, correspondingly, underlined characters denoting actuated joints
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Fig. 2. PMC schematic view: (a) CRRHHRRC architecture; (b) SWG-driven C-drive

The kinematic model of the PMC is established based on the geometric relations between the desired four-dof trajectory,
x ≡

[
xC yC zC φ

]T , and the angular displacement of the four motors implemented in the two C-drives; these displacements
are grouped in the four-dimensional array ψψψ. The formulation is developed in two steps: first, finding the pose of the C-drive
output (arm) in terms of x; second, using the 4× 4 Jacobian matrix JC of the two C-drives to map the collar pose into ψψψ,
namely,

ψψψ = JCd (3a)

with

ψψψ≡




ψ1L
ψ1R
ψ2L
ψ2R


 , JC ≡

1
p




2π p G 0 0
−2π p G 0 0

0 0 2π p G
0 0 −2π p G


 , d≡




u1
θ1
u2
θ2


=




xc
α1 +β1

yc
2π−α2−β2


 (3b)

where

α1 = arctan
(h1

yc

)
, α2 = arctan

(h2

xc

)
, βi = arccos

( r2− l2 + k2
i

2rki

)
(3c)

k1 =
√

y2
c +h2

1, k2 =
√

x2
c +h2

2, hi = zc +(−1)i qφ

2π
, i = 1,2 (3d)

in which, for i = 1 and 2, ψiR and ψiL are the angular displacements of the right-hand and left-hand screws of the ith C-drive,
respectively, while ui and θi, arrayed in vector d, denote the translation and the rotation of the ith C-drive output (arm). The
pitch of the right- and left-hand screws implemented in the C-drive are p and −p, respectively, while the pitch of the right-
and left-hand screws in the peppermill are q and −q. Furthermore, G is the total gear-reduction ratio due to the belt-pulley
transmission and the SWG. Also, r and l are the length of the arms and forearms, respectively.

The mathematical model of the PMC is established based on the concept of the natural orthogonal complement (NOC) [33]
in order to find the motor torques τττ based on the external load and the prescribed trajectory. By means of the NOC, the dy-
namics model becomes a reduced system of four equations in four unknowns. In total, the PMC has 11 rigid bodies: four
screws (two for each C-drive), two arms, two forearms, two nuts, and the peppermill. The mathematical model of interest is
derived as:
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τττ = Iψ̈ψψ+Cψ̇ψψ− γγγ−ηηη−δδδ (4a)

with the definitions

τττ≡
[
τ1L τ1R τ2L τ2R

]T
, I≡

11

∑
i=1

Ti
T MiTi, C≡

11

∑
i=1

(Ti
T MiṪiii +Ti

T WiMiTi) (4b)

γγγ+ηηη+δδδ≡
11

∑
i=1

Ti
T (wG

i +wE
i +wD

i ), Mi ≡
[

Ii O
O mi1

]
, Wi ≡

[
ΩΩΩi O
O O

]
, Ti ≡

∂ti

∂ψ̇ψψ
(4c)

where 1 and O denote the 3× 3 identity and zero matrices, respectively. The angular-velocity dyad Wi of the ith body is
defined based on the angular-velocity matrix ΩΩΩi of the ith body, the cross-product matrix (CPM)5 of the angular-velocity
vector ωωωi. Furthermore, Ii and Mi are the inertia tensor and the inertia dyad at the c.o.m. of the ith body, respectively, while
Ti is the twist-shaping matrix of the ith body, which maps the vector array of the motors speeds, ψ̇ψψ, into the twist vector ti
of the ith body. Moreover, wG

i , wE
i and wD

i are the gravitational, external and dissipative wrenches exerted on the ith body,
respectively; correspondingly, γγγ, ηηη and δδδ are the generalized-force vectors, stemming from the gravity, external loads, and
dissipation. The twist ti of and the wrench wi exerted on the ith body are evaluated at the body c.o.m.; these are defined
below:

ti ≡
[

ωωωi
vi

]
, wi ≡

[
ni
fi

]
(5)

where vi and ωωωi represent the velocity of the ith body c.o.m, and its angular velocity, respectively, while ni and fi are the
moment and the force acting on the ith body, the latter at the body c.o.m..

4 The PMC Trajectory-Planning
One of the well-known benchmark tasks for SMGs accepted by the robotics community is the Adept test cycle [34].

This cycle is described as: 1) a 25-mm upward vertical translation; 2) a 300-mm horizontal translation with a simultaneous
180◦ clockwise rotation; 3) a 25-mm downward vertical translation; 4) and following the same path in reverse. The time for
completing the industrial test cycle is used to rank pick-and-place robots in terms of speed. Currently, the record is three
cycles per second, held by Adept’s Quattro s650H. Similarly, the PMC is intended to perform the industrial test cycle. Since
the torque peaks along the trajectory beyond the maximum torque affordable by the motors deteriorate the performance of
the PMC, trajectory-planning by means of velocity scheduling is necessary. In order to schedule the MP velocity, the first
step is the identification of the critical points. Extensive examination of the kinematics and dynamics models reveals that
the torque peaks are located exactly at the same place where the maximum joint-space acceleration occurs. Therefore, the
four critical points, listed in Table 1, are determined based on the peaks of the joint acceleration, shown in Fig. 3. Since
the PMC has a symmetric architecture, the two motors of each C-drive have similar behavior to the other C-drive motors;
therefore, only the acceleration of two motors is plotted in Fig. 3. The time-step scaling function is constructed based on the
four acceleration peaks, plotted in Fig. 4. One can see that regions with Ct greater than unity are slowed down compared to
the original trajectory, and vice versa.

An efficient method of velocity scheduling reduces the acceleration peaks by 35%, as illustrated in Fig. 5(a) by the
dashed lines, compared to the original acceleration. Consequently, the motor torques are affected by velocity-scheduling,
and the peaks are smoothed by 30%. One should remember that the cycle time is still the same and the PPO takes place at
the same frequency.

5The CPM of ωωωi is defined as the partial derivative of ωωωi×y with respect to y, ∀y ∈ IR3.
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Table 1. The PMC critical points on the test cycle at 1 Hz

ti/T Ai Bi

0.15 0.5 0.15

0.31 0.3 0.12

0.69 0.3 0.12

0.85 0.5 0.15
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Fig. 5. Velocity scheduling effect on the PMC motors: (a) acceleration; (b) torque

5 LQR Controller
As explained by Friedlaender [35], one way to control the PMC is to track the translational and angular positions

of the C-drives directly. Indeed, the sensors required by feedback control are located at the actuators. Given that JC is
dimensionally inhomogeneous—u1 and u2 being translations, while θ1 and θ2 are rotations—one has to redefine it to obtain
a homogeneous Jacobian matrix. Furthermore, because of the pitch p of the C-drives, JC is also ill-conditioned. To obtain a
new well-conditioned homogeneous matrix, the states are normalized with respect to the cycle frequency f , the pitch of the
C-drive p, and the gear-reduction ratio G. Therefore, instead of d = J−1

C ψψψ, one has the new variables:

σσσp =




2π f u1
Gp f θ1
2π f u2
Gp f θ2


 (6)
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Thus, upon combining Eqns.(3b) and (6), one obtains

σσσp = Jpψψψ =
p f
2




1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1







ψ1L
ψ1R
ψ2L
ψ2R


 (7)

in which Jp is dimensionally homogeneous, with unit of m/s, its condition number, based on the weighted matrix Frobenius
norm, being unity. Thereafter, in order to improve the performance of the controller, state variables proportional to the time
derivative of σσσp need to be added. To keep the same units, these four additional state variables are divided by 2π f . The state
vector obtained is

σσσ =
[
σσσT

p σσσT
v
]T (8a)

with

σσσv = Jvψ̇ψψ =
p

4π




1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1







ψ̇1L
ψ̇1R
ψ̇2L
ψ̇2R


 (8b)

By combining Eqns.(7–8b), one now has:

σσσ =

[
Jp 0
0 Jv

][
ψψψ

ψ̇ψψ

]
(9)

To simplify the control scheme, the C-drives are controlled, rather than the whole PMC. Therefore, two identical independent
LQR controllers are used. As detailed by Friedlaender [35], the mathematical model of the C-drives is, if Coulomb friction
is neglected,

Mψ̈ψψ+Dψ̇ψψ = τττ (10)

where M and D are, respectively, the generalized-inertia and the damping matrices. To obtain a state-space representation,
the above equation is rewritten as

[
ψ̇ψψ

ψ̈ψψ

]
=

[
0 1
0 −M−1D

][
ψψψ

ψ̇ψψ

]
+

[
0

M−1

]
τττ (11)

Using Eqns.(7–11), one obtains

σ̇σσ = Aσσσ+Bτττ (12a)

with

A =

[
Jp 0
0 Jv

][
0 1
0 −M−1D

][
Jp 0
0 Jv

]−1

, B =

[
Jp 0
0 Jv

][
0

M−1

]
(12b)

and τττ denoting the control vector; one can now compute the trajectory-tracking error, i.e., e = σσσ−σσσd where σσσd is the desired
trajectory. Indeed, the time-derivative of the error vector is

ė = Ae+Bv (13)
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where v = τττ−τττd and τττd is the desired torque vector obtained from inverse dynamics. With a system in the form of Eqn.(13),
with state variables equal to zero at T = 0, the gains of a LQR controller can be found by minimizing the quadratic cost
function

J =
∫
(eT Qe+vT Rv)dt (14)

where Q and R are, respectively, the state and the control weighting matrices. The former is a 8×8 matrix, the latter a 4×4
matrix, both being positive definite. Given a state feedback control law defined as v =−Ke that minimizes the performance
index J of Eqn.(14), matrix K is given by [17]

K = R−1(BT P+NT ) (15)

In the above equation, P is found by solving the algebraic Riccati equation (ARE)

PMC

C-drive 1

C-drive 2

[
τ1L
τ1R

]

K∗

K∗

+

+

+

+
+

+

-

-

[xd yd zd φd]
T

Inverse dynamics
τ r

Jc

F
[u1d θ1d u2d θ2d]

T

d/dt

J

[ψT
d ψ̇

T

d ψ̈
T

d ]
T

σd

J∗
p

σ1d

σ2d

σ2

σ̃1

e1

e2

[ψ1L ψ1R]
T

[ψ2L ψ2R]
T

[
τ2L
τ2R

]

REFERENCE

CONTROLLER

OBS

OBSERVER

[σp1 σp2]
T

J∗
p

OBS

OBSERVER

[σp3 σp4]
T

Fig. 6. Control Scheme with LQR; A minimum-order observer is used to estimate σσσv.

AT P+PA− (PB+N)R−1(BT P+NT )+Q = 0 (16)

which is solved using Matlab’s continuous-time algebraic Riccati equation solver (CARE). Knowing P, K is known from
Eqn.(15), the complete control law now being readily available:

τττ = K(σσσd−σσσ)+ τττd (17)

The first term of the above equation is the feedback part containing the linear-quadratic regulator, the second the feed-forward
reference torque computed with the inverse dynamics model. The complete control scheme is illustrated in Fig. 6. In this
figure, the superscript ∗ refers to the part of the associated variable relative to only one C-drive, i.e.,

J∗ =
p
2




f − f 0 0
f f 0 0
0 0 1/(2π) −1/(2π)
0 0 1/(2π) 1/(2π)


 (18)
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In order to obtain the variable ψ̇ψψ, an observer is necessary to avoid numerical differentiation, which would introduce
noise. Many solutions exist; here the minimum-order observer is chosen, as it generally converges more quickly than its
full-order equivalent [36]. The latter would also estimate ψψψ with a lower accuracy, as it can be directly measured at the
actuators. The observer used is Luenberger’s [37]. First, the state space matrices A and B of the system are recalled:

A =

[
0 A12
0 A22

]
=

[
Jp 0
0 Jv

][
0 1
0 −M−1D

][
Jp 0
0 Jv

]−1

, B =

[
0

B2

]
=

[
Jp 0
0 Jv

][
0

M−1

]
(19)

The minimum-order observer is defined by

κκκ≡ σσσv−Lσσσp⇔ κ̃κκ≡ σ̃σσv−Lσσσp (20a)

˙̃κκκ = Uκ̃κκ+Vσσσp +Zτττ (20b)

where κ̃κκ and σ̃σσv are , respectively, estimations of κκκ and σσσv. The matrix L is made of the observer feedback gains and the
matrices U, V, and Z are defined as

U = A22−LA12, V = UL, Z = B2 (21)

The estimation of the state vector is then

σ̃σσ = ΦΦΦκ̃κκ+ΛΛΛσσσp (22)

with

σ̃σσ =
[
σσσT

p σ̃σσ
T
v
]T
, ΦΦΦ =

[
0 1
]T
, ΛΛΛ =

[
1 LT ]T (23)

The gains of the observer can be obtained with a pole-placement algorithm, such as the one included in Matlab’s Control
Systems Toolbox. The observer’s diagram is shown in Fig. 7.

τ Z
+

+

+

Vσp

∫

U

Φ
+

+

Λ

κ̃

˙̃κ
σ̃

OBS

Fig. 7. Minimum-order observer’s diagram.
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Fig. 8. Maximum torque of the actuators along the trajectory (VS stands for velocity scheduling)

5.1 Simulation Results
With the forward dynamics simulation model of the PMC, the LQR can be compared to the standard PID controller used

in the previous sections. As can be seen in Fig. 8, when the frequency is increased, the LQR control scheme proves to be
more adequate with respect to the maximum torque that must be provided by the actuators. The combined effect of the LQR
scheme and the velocity scheduling significantly reduces the maximum torque required.

Furthermore, if one considers the trajectory-tracking error, the choice seems even more obvious, as it remains relatively
small with the LQR control scheme, but it increases rapidly as the cycle time is reduced, as shown in Fig. 9, at 4 Hz. Thus,
the PID controller is an appropriate choice at frequencies around 1 Hz and lower, but, to achieve higher speeds, other control
strategies, such as LQR, should be investigated. The tracking error is further reduced when the scheduled trajectory is used.
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Fig. 9. Trajectory-tracking error at 4 Hz (PID: dashed curve, LQR: solid curve, LQR with velocity scheduling: dash-dot curve)
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6 Conclusions
The authors introduced a novel method of trajectory-planning to properly schedule the velocity of the MP of a parallel

SMG along the industry-adopted test cycle, while keeping the path and cycle time constant. The effectiveness of the pro-
posed method was shown on the PMC, a parallel two-limb SMG, performing the above-mentioned test cycle. The reported
kinematics and dynamics models of the PMC were used to find the critical points and demonstrate the smoothed torque peaks
due to trajectory-planning.

Moreover, it was shown with simulation that a control strategy based on the linear quadratic regulator can help achieve
better trajectory tracking while also reducing the maximum torque needed at high velocity. Furthermore, by means of the
normalized homogeneous state variables, the isotropic Jacobian matrix of the C-drive was obtained. Together, velocity
scheduling and trajectory-tracking LQR control made it possible to improve the speed and accuracy of the PMC.
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