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Abstract

This article describes a collaborative project between researchers in the
Mathematics and Computer Science Division at Argonne National Labora-
tory and the Computer Music Project of the University of Illinois at Urbana-
Champaign. The project focuses on the use of sound for the exploration and
analysis of complex data sets in scientific computing. The article addresses dig-
ital sound synthesis in the context of DIASS (Digital Instrument for Additive
Sound Synthesis) and sound visualization in a virtual-reality environment by
means of M4CAVE. It describes the procedures and preliminary results of some
experiments in scientific sonification and sound visualization.

While most computational scientists routinely use visual imaging techniques to ex-
plore and analyze large data sets, they tend to be much less familiar with the use of
sound. Yet, sound signals carry significant amounts of information and can be used
advantageously to increase the bandwidth of the human/computer interface. The
project described in this article focuses on scientific sonification—the faithful render-
ing of scientific data in sounds—and the visualization of sounds in a virtual-reality
environment. The project, which grew out of an effort to apply the latest super-
computing technology to the process of music composition (see Box 1), is a joint
collaboration between Argonne National Laboratory (ANL, Mathematics and Com-
puter Science Division) and the University of Illinois at Urbana-Champaign (UIUC,
Computer Music Project).

Digital sound synthesis is addressed in Section 1; the discussion centers on DI-
ASS (Digital Instrument for Additive Sound Synthesis). Section 2 describes some
experiments in scientific sonification. Sound visualization in a virtual-reality (VR)
environment is discussed in Section 3; here, the main tool is M4CAVE, a program to
visualize sounds from a score file. Section 4 contains some general observations about
the project.
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1 Digital Sound Synthesis

Digital sound synthesis is a way to generate a stream of numbers representing the
sampled values of an audio waveform. To realize the sounds, one sends these sam-
ples through a digital-to-analog converter (DAC), which converts the numbers to a
continuously varying voltage that can be amplified and sent to a loudspeaker.

One way of viewing the digital sound-synthesis process is to imagine a computer
program that calculates the sample values according to a mathematical formula and
sends those samples, one after the other, to the DAC. All the calculations are carried
out by a program, which can be changed in arbitrary ways by the user. From this
point of view, digital synthesis is the same as software synthesis. Software synthesis
contrasts with hardware synthesis, where the calculations are carried out in special
circuitry. Hardware synthesis has the advantage of high-speed operation but lacks
the flexibility of software synthesis. Software synthesis is the technique of choice if
one wishes to develop an instrument for data sonification.

With software synthesis, one can indeed realize any imaginable sound—provided
one has the time to wait for the results. With a sampling rate of 44,100 samples per
second the time available per sample is only 20 microseconds, too short for real-time
synthesis of reasonably complex sounds. For this reason, most of today’s synthesis
programs generate a sound file, which is then played through a DAC. But data soni-
fication in real time may become feasible on tomorrow’s high-performance computing
architectures. Our research effort focuses on the development of a flexible and power-
ful digital instrument for scientific sonification and on finding optimal ways to convey
information through the medium of sound.

1.1 DIASS – A Digital Instrument

Two pieces of software consitute the main tools of the project: DIASS, a Digital
Instrument for Additive Sound Synthesis, and M4CAVE, a program for the visu-
alization of sound objects in a multimedia environment. Both are part of a com-
prehensive Environment for Music Composition, which includes additional software
for computer-assisted composition and automatic music notation. Figure 1 gives a
schematic overview of the various elements of the Environment ; C and S mark the
data entry points for composition and sonification, respectively.

In this section we describe the workings of DIASS; we will describe M4CAVE
after we have discussed our ideas on scientific sonification.
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Figure 1: The Environment for Music Composition.

1.1.1 The Instrument

The DIASS instrument functions as part of the M4C synthesis language developed by
Beauchamp and his associates at the University of Illinois [3]. Synthesis languages like
M4C are designed around the notion that the user creates an instrument together with
a score that references the instrument. The synthesis program reads the instrument,
feeds it the data from the score file, and computes the final audio signal, which is
then written to a sound file for later playback [16].

The M4C synthesis language is imbedded in the C language. As part of the
current project, the instrument and relevant parts of M4C were redesigned for a
distributed-memory environment. The parallel implementation uses the standard
MPI message-passing library [6].

Like all additive-synthesis instruments, DIASS creates sounds through a summa-
tion of simple sine waves. The basic formula is

S(t) =
∑

i

Pi(t) =
∑

i

ai(t) sin(2πfi(t)t + φi(t)).

The individual sine waves that make up a sound are commonly designated as the
“partials” of the sound, hence the symbol P . The sum extends over all partials that
are active at the time t; ai is the amplitude, fi the frequency, and φi the phase
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of the ith partial. These variables can be modulated periodically or otherwise; the
modulations evolve on a slow time scale, typically on the order of the duration of
a sound. Phase modulation is barely distinguishable from frequency modulation,
particularly in the case of time-varying frequency spectra, and is not implemented in
DIASS.

The audible frequencies range roughly from 20 to 20,000 Hz, although in practice
the upper limit is one-half the sampling frequency (Nyquist criterion).

The partials in a sound need not be in any harmonic relationship (that is, fi need
not be a multiple of some fundamental frequency f0), nor do they need to share any
other property. The definition of a sound is purely operational. What distinguishes
one “sound” from another is that certain operations are defined at the level of a sound
and affect all the partials that make up the sound.

The evolution of a partial can be subject to many other controls, besides ampli-
tude and frequency modulation. Moreover, these controls can affect a single partial
or all the partials in a sound. For example, reverberation, which represents the com-
bined effects of the size and acoustic characteristics of the hall, affects all the partials
in a sound simultaneously, although not necessarily in the same way. Furthermore, if
a random element is present, it must be applied at the level of a sound; otherwise, a
complex wave is perceived as a collection of independent sine waves, instead of a sin-
gle sound. Hence, it is important that all partials in a sound access the same random
number sequence and that the controls of any partial that changes its allegiance and
moves from one sound to another be adjusted accordingly.

Table 1 lists the control parameters that can be applied in DIASS. Some, like
starting time and duration, do not change for the duration of a sound; they are static
and determined by a single value. Others are dynamic; their evolution is controlled by
an envelope—a normalized function consisting of linear and exponential segments—
and a maximum size. Not all control parameters are totally independent; some occur
only in certain combinations, and some are designed to reinforce others.

The control parameters give DIASS its flexibility and make it an instrument
suitable for data sonification. On the other hand, the fact that the control parameters
act at the level of a partial as well as at the level of a sound (or even at the level of
a collection of sounds) significantly increases its computational complexity.
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Table 1: Static (S) and dynamic (D) control parameters in DIASS.

Level Description Control Parameter
Partial Carrier (sine) wave S: Starting time, duration, phase

D: Amplitude, frequency
AM (tremolo) wave S: Wave type, phase

D: Amplitude, frequency
FM (vibrato) wave S: Wave type, phase

D: Amplitude, frequency
Amplitude transients S: Max size

D: Shape
Amplitude transient rate S: Max rate

D: Rate shape
Frequency transients S: Max size

D: Shape
Frequency transient rate S: Max rate

D: Rate shape
Sound Timbre D: Partial-to-sound relation

Localization D: Panning
Reverberation S: Duration, decay rate, mix
Hall S: Hall size, reflection coefficient

1.1.2 The Score

Input for DIASS consists of a raw score file detailing the controls. The raw score
file is transformed into a score file for the instrument—a collection of “Instrument
cards” (I-cards), one for each partial, which are fed to the instrument by M4C. The
transformation is accomplished in a number of steps.

Among the controls are certain global operations (“macros”), which are defined
at the level of a sound. In a first pass, these global controls are expanded into controls
for the individual partials. The next step consists of the application of the loudness
routines. These routines operate at the sound level and ensure that the sounds have
the desired loudness. The final step consists of the application of the anticlip routines.
For various reasons, historical as well as technical, sound samples are stored as 16-bit
integers. The anticlip routines guarantee that none of the sample values produced by
the instrument from the score file exceeds 16 bits. Because loudness and anticlip play
a significant role in sonification, we discuss the issues in more detail.

5



Loudness. The perception of loudness is a subjective experience. Although the
perceived loudness of a sound is related to the amplitudes of its constituent partials,
the relation is nonlinear and depends on the frequencies of the partials. At the
most elementary level, pure sinusoidal waves of low or high frequencies require a
higher energy flow and therefore a larger amplitude to achieve the same loudness
level as similar waves at mid-range frequencies. When waves of different frequencies
are superimposed to form a sound, the situation becomes still more complicated. The
sum of two tones of the same frequency produced by two identical instruments played
simultaneously is not perceived as twice as loud as the tone produced by a single
instrument.

An algorithm for data sonification must reflect these subjective experiences. For
example, when we sonify two degrees of freedom, mapping one (x1, say) to amplitude
and the other (x2, say) to frequency, then we should perceive equal loudness levels
when x1 has the same value, irrespective of the values of x2. Also, when the variable
x1 increases or decreases, we should perceive a proportional increase or decrease in
the loudness level.

The loudness routines in DIASS incorporate the relevant results of psychoacoustic
research [11] and give the user full control over the perceived loudness of a sound.
They also scale each partial so each sample value fits in a 16-bit register (see Box 2).

Anticlip. When several sounds coexist and their waveforms are added, sample val-
ues may exceed 16 bits (overflow), even when the individual waveforms stay within
the 16-bit limit. Overflow gives rise to “clipping”—a popping noise—when the sound
file is played. The anticlip routines in DIASS check the score for potential overflow
and rescale the sounds as necessary, while preserving the ratio of perceived loudness
levels. Thus it is possible to produce an entire sound file in a single run from the
score file, even when the sounds cover a wide dynamic range.

To appreciate the difficulty inherent in the scaling processes, consider the case
of a sound cluster consisting of numerous complex sounds, all very loud and resulting
in clipping, followed by a barely audible sound with only two or three partials. If the
cluster’s amplitude is brought down to fit the register capacity, and that of the soft
tiny sound following it is scaled proportionally, the latter disappears under system
noise. On the other hand, if only the loud cluster is scaled, the relationship between
the two sound events is completely distorted. Many times in the past, individual
sounds or groups of sounds were generated separately and then merged with the
help of analog equipment or an additional digital mixer. The loudness and anticlip
routines in DIASS deal with this problem by adjusting both loud and soft sounds so
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their perceived loudness matches the desired relationship specified by the user, and
no clipping occurs (see Box 3).

1.1.3 The Editor

Features like the loudness routines make DIASS a fine-tuned, flexible, and precise
instrument suitable for data sonification. Of course, they require the specification of
significant amounts of input data. The editor in DIASS is designed to facilitate this
process. It comes in a “slow” and a “fast” version.

In the slow version, data are entered one at a time, either in response to questions
from a menu or through a graphic user interface (GUI). The process gives the user
the opportunity to build sounds step by step, experiment, and fine-tune the instru-
ment. It is suitable for sound composition and for designing prototype experiments
in sonification. The fast version uses the same code but reads the responses to the
menu questions from a script. This version is used for sonification experiments.

1.1.4 Computing Requirements

The sound synthesis software embodied in DIASS is computationally intensive (see
Box 4). The instrument proper, the engine that computes the samples, has been im-
plemented in a workstation environment and on the IBM Scalable POWERparallel
(SP) system. Parallelism is implemented at the sound level to minimize communi-
cation among the processors and enable all partials of a sound to access the same
random number sequence. In parallel mode, at least four processors are used—one to
distribute the tasks and supervise the entire run (the “master” processor), a second to
mix the results (the “mixer”), and at least two “slave” nodes to compute the samples
one sound at a time. Sounds are computed in their starting-time order, irrespective
of their duration or complexity. (A smart load-balancing algorithm would take into
account the duration of the various sounds and the number of their partials.)

Performance depends greatly on the complexity of the sounds—that is, on the
number of partials per sound and the number of active controls for each partial. Typ-
ically, the time to generate a two-channel sound file for a 2’26” musical composition
with 236 sounds and 4939 partials ranges from almost two hours on four processors
to about 10 minutes on 34 processors of the SP. Figure 2 gives some indication of
the speedups one observes in a multiprocessing environment. The three graphs cor-
respond to three variants of the same 2’26” piece with different complexity. The time

7



Tp refers to a computation on p+2 processors (p “slaves”); all times are approximate,
as they were extracted from data given by LoadLeveler, a not very sophisticated tim-
ing instrument for the SP. Speedup is measured relative to the performance on four
processors (two compute nodes). One observes the typical linear speedup until satu-
ration sets in. The more complex the piece (the more partials), the later saturation
sets in.
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Figure 2: Timing results for DIASS on an IBM SP.

With a sampling rate of 44,100 samples per second and two-channel output, a
sound file occupies 176 KB per second of sound, so the sound file for the 2’26” musical
composition takes close to 25.8 MB of memory.

2 Data Sonification

Sonification is the faithful rendition of data in sounds. When the data come from
scientific experiments—actual physical experiments or computational experiments—
we speak of “scientific sonification.” Scientific sonification is therefore the analog of
scientific visualization, where we deal with aural instead of visual images. Because
sounds can convey significant amounts of information, sonification has the potential
to increase the bandwidth of the human/computer interface. Yet, its use in scientific
computing has received limited attention. One reason is, of course, that our sense
of vision seems much more dominant than our sense of hearing. Another important
reason is the lack of a suitable instrument for scientific sonification. One of the goals
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of our project is to demonstrate that, with an instrument like DIASS, one can probe
multidimensional datasets with surgical precision and uncover structures that may
be hidden to the eye.

2.1 Past Experiments

An early experiment with scientific sonification was done by Yeung [28]. Seven chem-
ical variables were matched with seven variables of sound: two with frequency, one
each with loudness, decay, direction, duration, and rest (silence between sounds). His
test subjects (professional chemists) were able to understand the different patterns of
sound representations and correctly classify the chemicals with a 90% accuracy rate
before and a 98% accuracy rate after training. His experiment showed that motivated
expert users can easily adapt to complex auditory displays.

Recently, a successful application of scientific sonification was reported in physics
by Pereverzev et al. [15]. The authors were able to detect quantum oscillations be-
tween two weakly coupled reservoirs of superfluid 3He using sound, where oscilloscope
traces failed to reveal structure.

Several other experiments reported in the literature refer to situations where
sounds are used in combination with visual images for data analysis. Bly [4] ran
discriminant analysis experiments using sound and graphics to represent multivari-
ate, time-varying, and logarithmic data. Mezrich et al. [14] used sound and dynamic
graphics to represent multivariable time series data. The “Exvis” experiment at the
University of Massachusetts at Lowell [20] expanded this work by assigning sonic
attributes to visual icons. The importance of sound localization is recognized by
ongoing work at NASA-Ames [26]. The evaluation of auditory display techniques is
reported extensively at the annual conferences of ICAD, the International Confer-
ence on Auditory Display; see [12]. Sound as a component of the human/computer
interface is discussed in [1].

Most of the attempts described above used MIDI-controlled synthesizer sounds,
which have drastic limitations in the number and range of their control parameters.
Bargar et al. [2] at the National Center for Supercomputing Applications (NCSA)
have developed a complex instrument with interactive capabilities, which includes
the VSS sound server for the CAVE virtual-reality environment.
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2.2 What We Have Done So Far

Much of our work so far has been focused on the development of DIASS [13, 10]. In
addition, we have used DIASS for two preliminary experiments in scientific sonifica-
tion, one in chemistry, the other in materials science.

The first experiment used data from Dr. Jeff Tilson, a computational chemist at
ANL, who studied the binding of a carbon atom to a protonated thiophene molecule.
The data represented the difference in the energy levels before and after the binding
at 128×128×128 mesh points of a regular computational grid in space. Because the
data were static, we arbitrarily identified time with one of the spatial coordinates and
sonified data in planes parallel to this axis. The time to traverse a plane over its full
length was usually kept at 30 seconds. In a typical experiment, we assigned a sound
to every other point in the vertical direction, distributing the frequencies regularly
over a specified frequency range, and used the data in the horizontal direction to
generate amplitude envelopes for each of the sounds. Thus, a sound would become
louder or softer as the data increased or decreased, and the evolution of the loudness
distribution within the ensemble of 64 sounds was an indicator of the distribution of
the energy difference before and after the reaction in space. The sound parameters
chosen for the representation of the data varied from one experiment to another.

The second experiment involved data from a numerical simulation in materials
science. The scientists were interested in patterns of motion of magnetic flux vortices
through a superconducting medium. The medium was represented by 384×256 mesh
points in a rectangular domain. As the vortices are driven across the domain, from
left to right, by an external force, they repel each other but are attracted by regularly
or randomly distributed defects in the material. In this experiment, frequency and
frequency modulation (vibrato) were used to represent movement in the plane, and
changes in loudness were connected to changes in the speed of a vortex. A traveling
window of constant width was used to capture the motion of a number of vortices
simultaneously.

These investigations are ongoing, and the results have not been subjected to rig-
orous statistical evaluation. They have merely served to demonstrate the capabilities
of DIASS and explore various mappings from the degrees of freedom in the data to
the parameters controlling the sound synthesis process. Samples can be heard on the
Web [24].
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2.3 What We Have Found So Far

General conclusions are that (i) the sounds produced in each experiment conveyed
information about the qualitative nature of the data, and (ii) DIASS is a flexible and
sophisticated tool capable of rendering subtle variations in the data.

Changes in some control variables, such as time, frequency, and amplitude, are
immediately recognizable. Changes in the combination of partials in a sound, iden-
tifiable through its timbre, can be recognized with some practice. Some effects are
enhanced by modifiers like reverberation, amplitude modulation (tremolo), and fre-
quency modulation (vibrato). In some instances, a modifier may lump two, three, or
more degrees of freedom together, like hall size, duration, and acoustic properties in
the case of reverberation. Through the proper manipulation of reverberation, loud-
ness, and spectrum, one can create the illusion of sounds being produced at arbitrary
locations in a room, even with only two speakers.

Like the eye, the ear has a very high power of discrimination. Even a coarse grid,
such as the temperate tuning used in Western music, includes about 100 identifiable
discrete steps over the frequency range encompassed by a piano keyboard. Contem-
porary music, as well as some non-Western traditional music, successfully uses smaller
increments of a quarter tone or less for a total of some 200 or more identifiable steps
in the audible range. Equally discriminating power is available in the realm of timbre.

Sound is an obvious means to identify regularities in the time domain, both at
the microlevel and on a larger scale, and to bring out transitions between random
states and periodic happenings. Most auditory processes are based on the recognition
of time patterns (periodic repetitions giving birth to pitch, amplitude, or frequency
modulation; spectral consistency creating stable timbres in a complex sound; etc.),
and the ear is highly attuned to detect such regularities.

Most conceptual problems in scientific sonification are related to finding suitable
mappings between the space of data and the space of sounds. Common sense points
toward letting the two domains share the coordinates of physical space-time if these
are relevant and translating other degrees of freedom in the data into separate sound
parameters. On the other hand, it may be advantageous to experiment with alterna-
tive mappings. Sonification software must be sufficiently flexible that a user can pair
different sets of parameters in the two domains.

Any mapping between data and sound parameters must allow for redundancies to
enable the exploration of data at different levels of complexity. Similar to visualization
software, sonification software must have utilities for zooming, modifying the audio
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palette, switching between visual and aural representation of parameters, defining
time loops, slowing down or speeding up, and so forth.

Our experiments also showed that DIASS, at least in its present form, has its
limitations. One limitation concerns the sheer volume of data in scientific sonification.
While the composition of a musical piece (the original intent behind DIASS) typically
entails the handling of a few thousand sounds, each with a dozen or so partials,
the number of data points in the computational chemistry experiment ran into the
millions, a difference of several orders of magnitude. By the same token, while a
typical amplitude envelope for a partial or sound in a musical composition involves
ten or even fewer segments, both experiments required envelopes with well over 100
such segments. Another difficulty encountered was the fact that both experiments
required sounds to be accurately located in space. While panning is very effective in
pinpointing the source on a horizontal line, suggesting the height of a sound is a major
challenge. We hope that additions to the software as well as a contemplated eight-
speaker system will help us get closer to a realistic three-dimensional representation
of sounds. Finally, to become an effective tool for sonification, DIASS must operate in
real time. All three concerns are being addressed in the new C++ version of DIASS
currently under development.

3 Sound Visualization in a VR Environment

The notion of sound visualization may at first sight seem incongruous in the context
of data sonification. However, as has been recognized by several researchers, the
structure of a sound is difficult to detect without proper training, and any means of
aiding the detection process will enhance the value of data sonification. Visualizing
sounds is one of these means. In this project we are focusing on the visualization of
sounds in the CAVE, a room-size virtual-reality (VR) environment [25], and on the
ImmersaDesk, a two-dimensional version.

3.1 M4CAVE – A Visualization Tool

The software collectively known as M4CAVE takes a score file from the sound synthe-
sis program DIASS and renders the sounds represented by the score as visual images
in a CAVE or ImmersaDesk. The images are computed on the fly and are made to
correspond exactly to the sounds one hears through a one-to-one mapping between
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control parameters and visual attributes. The code, which is written in C++, uses
OpenGL for visualizing objects.

3.1.1 Graphical Representations

Currently, M4CAVE can represent sounds as a collection of spheres (or cubes or
polyhedra), as a cloud of confetti-like particles, or as a collection of planes.

The spheres representation is the most developed and incorporates more param-
eters of a sound into the visualization than either of the other. Sounds are visualized
as stacks of spheres, each sphere corresponding to a partial in the sound. The posi-
tion of a sphere along the vertical axis is determined by the frequency of the partial,
and its size is proportional to the amplitude. A sound’s position in the stereo field
determines the placement of the spheres in the room. The visual objects rotate or
pulse when tremolo or vibrato is applied, and their color varies when reverberation
is present. An optional grid in the background shows the octaves divided into twelve
equal increments. Figure 3—taken from our Web site [24], where more samples can
be found—shows a visualization of nine sounds with different numbers of partials.

The plane and cloud representations were designed more on the basis of artistic
considerations. (Remember that the purpose of the visualization is to aid the per-
ception of sounds.) The strength of the cloud representation is in showing tremolo
and vibrato in the sound. The planes representation is unique in that it limits the
visualization to only one partial (usually the fundamental) of each sound. The various
representations can be combined, and the mappings chosen for each representation
can be varied by means of a menu.

3.2 Preliminary Findings

We have used M4CAVE to explore various mappings from the sound domain to the
visual domain. Besides the obvious short score files to test the implementation of
these mappings, we have used score files generated with DIASS of various musical
compositions, notably the “A.N.L.-folds” of Tipei [23]. A.N.L.-folds is an example of a
manifold composition, described in Box 1. Each member of A.N.L.-folds lasts exactly
2’26” and comprises between 200 and 500 sounds of medium to great complexity. The
picture of Fig. 3 was taken from a run of one of these A.N.L.-folds.
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Figure 3: Visualization of nine sounds. (Picture taken from a CAVE simulator.)

The combination of visual images and sounds provides indeed an extremely pow-
erful tool for uncovering complicated structures. Sometimes, the sounds reveal fea-
tures that are hidden to the eye; at other times, the visual images illuminate features
that are not easily detectable in the sound. The two modes of perception reinforce
each other, and both improve with practice.

4 Larger Issues

This project is unusual in several respects. It is somewhat speculative, in the sense
that we don’t have much experience with the use of sound in scientific computing.
This is the main reason why the involvement of someone expert in the intricacies of
the sound world is critical for its success. In our case, the expertise comes from the
realm of music composition.
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When do we declare “success”? Can we reasonably expect that sonification will
evolve to the same level of usefulness as visualization for computational science? The
answers to these questions depends on one’s expectations. Ours is a visually oriented
culture par excellence, and as a society we watch rather than listen. Contemporary
musical culture is often reduced to entertainment genres that use a simple-minded
vocabulary—no small impediment to discover the potential benefits of the world of
sound. But given unusual and unexpected sonorities, we may yet discover that we
have not lost the ability to listen.

When we engage in this type of research, it is easy to get swept up by unreason-
able expectations, looking for the “killer application.” But the killer application is
a phantom, not worth pursuing. What we can offer is a systematic investigation of
the potential of a new tool. If it helps us understand some computational data sets
a little better, or if it enables us to explore these data sets more easily and in more
detail, we have good reason to claim success. If the project adds to our understanding
of aural semiotics, we have even more reason to claim success. And if none of these
successes materializes, we can still claim that the people involved, both scientists
and musicians, gained by becoming more familiar with each other’s work and ways
of thinking. Such a rapprochement has, in fact, already occurred and led to a new
“Discovery” course entitled Music, Science, and Technology at UIUC, where some of
the issues presented here are being discussed in a formal educational context.
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Box 1. Computer-Assisted Music Composition

The idea of using computers for music composition goes back to the 1950s, when
Lejaren Hiller performed his experiments at the University of Illinois [7]. The premiere
of his Quartet No. 4 for strings “Illiac Suite” [8] (May 1957) is generally regarded
as the birth of computer music. Since then, computers have helped many composers
to algorithmically synthesize new sounds and produce new pieces for acoustic as well
as digital instruments. The proceedings of the annual conferences sponsored by the
ICMA (International Computer Music Association) are good sources of references [19].

Why would a composer need computer assistance when composing? A quick
answer is that, as in many other areas, routine operations can be relegated to the
machine. A more sophisticated reason may be that the composer may rely on expert
systems to write Bach-like chorales or imitate the mannerisms of Chopin or Rach-
maninov. There are, however, more compelling reasons when composing is viewed as
a speculative and experimental endeavor, rather than as an ability to manufacture
pleasing sounds [21].

Music is basically a dynamic event evolving in a multidimensional space; as such,
it can be formalized [27]. The composer controls the evolution by supplying a set of
rules, and accepts the output as long as it is consistent with the logic of the program
and the input data. If the set of rules allows for a certain degree of randomness, the
output will be different every time a new “seed” is introduced. The same code and
input data may thus produce an unlimited number of compositions, all belonging to
the same “equivalence class” ormanifold composition [22]. The members of a manifold
composition are variants of the same piece; they share the same structure and are the
result of the same process, but differ in the way specific events are arranged in time.

A nontraditional way of composing, the manifolds show how high-performace
computing provides the composer with new means to try out compositional strategies
or materials and hear the results in a reasonable amount of time.
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Box 2. Loudness

Sound is transmitted through sound waves—periodic pressure variations that cause
the eardrums to vibrate. But the perception of loudness has as much to do with
the amount of energy that is carried by the sound wave as with the processing of
this energy that takes place in the ear and the brain once the sound wave has hit
the eardrums. The latter is a much more subjective part of the experience. The
algorithms underlying the loudness routines of DIASS incorporate therefore formal
definitions, as well as results of psychoacoustic research experiments. We summarize
the most relevant elements of the algorithm, referring the reader to [17] or [18] for
details.

The definition of (perceived) loudness begins with the consideration of the energy
carried by the sound wave. The intensity I of a pure tone (sinusoidal sound) is
expressed in terms of its average pressure variation ∆p (measured in newton/m2),

I = 20× log10(∆p/∆p0).

∆p0 is a reference value, usually identified with a traveling wave of 1,000 Hz at the
threshold of hearing, ∆p0 = 2× 10−5 newton/m2. The unit of I is the decibel (dB).

Because of the way acoustical vibrations are processed in the cochlea (the internal
ear), the sensation of loudness is strongly frequency dependent. For instance, while an
intensity of 50 dB at 1,000 Hz is considered piano, the same intensity is barely audible
at 60 Hz. In other words, to produce a given loudness sensation at low frequencies,
a much higher intensity (energy flow) is needed than at 1,000 Hz. The intensity I is
therefore not a good measure of loudness if different frequencies are involved.

In the 1930s, Fletcher and Munson [5] performed a series of loudness-matching
experiments, from which they derived a set of curves of equal loudness. These are
curves in the frequency (f) vs. intensity (I) plane; points on the same curve rep-
resent single continuously sounding pure tones that are perceived as being “equally
loud.” They are similar to those recommended by the International Organization for
Standardization (ISO) [9] and are presented in Fig. 4. The curves show clearly that,
in order to be perceived as equally loud, very low and very high frequencies require
much higher intensities (energy) than frequencies in the middle range of the spectrum
of audible sounds.

The (physical) loudness level Lp of a Fletcher-Munson curve is identified with
the value of I at the reference frequency of 1,000 Hz. The unit of Lp is the phon.
The Fletcher-Munson curves range from a loudness level of 0 to 120 phons over a

20



10
1

10
2

10
3

10
4

10
5

−20

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

60

70

80

90

100

110

120

Frequency (Hz)

In
te

ns
ity

 (
dB

)

Figure 4: Curves of equal loudness (marked in phons) in the frequency vs. intensity
plane.

frequency range from 25 to 16,000 Hz.

The loudness level Lp still does not measure loudness in an absolute manner: a
tone whose Lp is twice as large does not sound twice as loud. Following Rossing [18],
we define the (subjective) loudness level Ls in terms of Lp by the formula Ls =
2(Lp−40)/10. The unit of Ls is a sone. To be effective, loudness scaling must be done
on the basis of sones.

The loudness of a sound that is composed of several partials depends on how well
the frequencies of the partials are separated. With each frequency f is associated a
critical band, whose width ∆f is approximely given by the expression [29]

∆f ≈ 25 + 75
(

1 + 1.4(f/1000)2
)0.69

.

Intensities within a critical band are added, and the loudness of a critical band can
again be read off from the Fletcher-Munson tables. If the frequencies of its constituent
partials are spread over several critical bands, the loudness of a sound is computed
in accordance with a formula due to Rossing [18],

Ls = Ls,m + 0.3
∑

i

Ls,i.

Here, Ls,m is the loudness of the loudest critical band, and the sum extends over the
remaining bands.

The loudness routines in DIASS use critical band information and a table derived
from the Fletcher-Munson curves to create complex sounds of specified loudness.
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Box 3. Loudness of Sound Clusters

The waveform of Fig. 5, which was produced with DIASS, illustrates the concept of
equal loudness across the frequency spectrum and for different timbres. The waveform
represents five sound clusters, each lasting 5.5 seconds (except the fourth, which lasts
5.7 seconds). The clusters, although of widely different structure, have been designed
to be perceived at the same loudness level (25 sones).

Figure 5: Waveform of five sound clusters of equal perceived loudness.

The distribution of the sounds within each cluster is represented schematically
in the diagram of Table 2. The first sound cluster has 24 sounds. The fundamental
frequencies of the sounds range from 40 to 5,000 Hz. Each sound is harmonically
tuned; that is, it is made up of a fundamental and all its harmonics (partials whose
frequencies are integer multiples of the fundamental frequency). The frequencies are
limited to one-half of the sampling rate (Nyquist criterion); hence, the number of
partials in this cluster is 754 (at a sampling rate of 22,050 Hz). The second sound
cluster has 5 sounds, harmonically tuned, with fundamental frequencies ranging from
40 to 4,000 Hz; the number of partials is 113. The third, fourth, and fifth cluster
have 15, 1, and 10 sounds, with 453, 60, and 250 partials, respectively. All partials
are assigned the same amplitude, which presents the worst-case scenario when one
tries to obtain the same perceived loudness for all clusters.
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Table 2: Distribution of fundamentals in the clusters of Figure 5.

Fundamental 24 Sounds 5 Sounds 15 Sounds 1 Sound 10 Sounds
Frequency (754 partials) (113 partials) (453 partials) (60 partials) (250 partials)

5,000 Hz
4,500 Hz
4,000 Hz
3,000 Hz
2,666 Hz
2,000 Hz
1,666 Hz
1,333 Hz
1,000 Hz
750 Hz
625 Hz
500 Hz
400 Hz
300 Hz
200 Hz
165 Hz
130 Hz
90 Hz
80 Hz
70 Hz
60 Hz
53 Hz
46 Hz
40 Hz

Time 0.0” 5.5” 11.0” 16.5” 22.2”
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Box 4. Computational Complexity

To give some idea of the computational complexity, consider the following simple
scenario, where we wish to sonify time-varying data representing the values of two
primary and several secondary observables measured over the course of an experiment.
A natural choice is to map the primary observables onto loudness and frequency and
to use amplitude and frequency modulation to monitor the secondary observables.
The sample values of the sound wave S must be calculated from an expression of the
form

S(t) = a(t) sin (2πf(t)t+ φ) . (1)

The frequency f represents three degrees of freedom: the carrier frequency fC , and
the amplitude aFM and frequency fFM of the modulating wave,

f(t) = fC(t) + aFM(t) sin
(

2πfFMt + φFM
)

. (2)

The carrier frequency is identified with a primary observable, each of the remaining
two degrees of freedom can be identified with a secondary observable,

Similarly, the amplitude a is given by an expression of the form

a(t) = aC(t) + aAM(t) sin
(

2πfAMt+ φAM
)

. (3)

We compute the carrier amplitude aC from the observed loudness, which is identified
with one of the (primary) observables, so its value is given. The amplitude aAM and
frequency fAM of the modulation represent two more degrees of freedom, which can
be identified with two other secondary observables. In total, we have therefore two
primary and four secondary variables (not counting the phases, which we assume to
be static).

The amplitude aC(t) must be computed such that S(t) has the perceived loudness
level Ls(t),

Ls(S(t)) = Ls(t). (4)

The loudness function Ls is a nonlinear function of the amplitude and frequency of
the partial (sound). Its computation is done in the loudness routines of DIASS and
involves a significant number of operations, including table lookups; see Box 2.

On the basis of these formulas we can obtain a rough estimate of the number
of operations (additions, multiplications, function evaluations—sine, exponential, or
logarithm, and table lookups) required for the computation of a single sample value.
The contribution that is most difficult to estimate is the computation of the carrier
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Table 3: Number of operations per partial per sample value.

Eq. Adds Mults Fn Evals Tbl Lkups

(1) 1 3 1 -
(2) 2 3 1 -
(3) 2 3 1 -
(4) 1 3 2 1

Total 6 12 5 1

amplitude from the loudness; the data in Table 3 represent the minimum number of
operations. Ignoring phases and so forth, we find a total of at least 24 operations.
Hence, at the standard rate of 44,100 samples per second, one needs to perform more
than 1.1 million operations per second.

The simultaneous sonification of more observables is obviously much more com-
plicated; in fact, the complications grow exponentially. A careful estimate of the
computational complexity requires an analysis of the anticlip routines, which is be-
yond the scope of the present article.
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