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Hysteresis, Avalanches, and Noise

Matthew C. Kuntz, Olga Perković, Karin A. Dahmen,
Bruce W. Roberts, and James P. Sethna

As computers increase in speed and memory, scien-
tists are inevitably led to simulate more complex systems
over larger time and length scales. Although a simple,
straightforward algorithm is often the most efficient for
small system sizes, especially when the time needed to
implement the algorithm is included, the scaling of time
and memory with system size becomes crucial for larger
simulations.

In our studies of hysteresis and avalanches in a sim-
ple model of magnetism (the random-field Ising model at
zero temperature), we often have found it necessary to
do very large simulations. Previous simulations were lim-
ited to relatively small systems (up to 9002 and 1283 [1],
see however [3]). In our simulations we have found that
larger systems (up to a billion spins) are crucial to ex-
tracting accurate values of the universal critical expo-
nents and understanding important qualitative features
of the physics.

We have developed two efficient and relatively
straightforward algorithms which allow us to simulate
these large systems. The first algorithm uses sorted
lists and scales as O(N logN), and asymptotically uses
N × (sizeof(double)+sizeof(int)) bytes of memory, where
N is the number of spins. The second algorithm, which
does not generate the random fields, also scales in time
as O(N logN), but asymptotically needs only one bit of
storage per spin, about 96 times less than the first algo-
rithm. Using the latter algorithm, simulations of a billion
spins can be run on a workstation with 128MB of RAM
in a few hours.

In this column we discuss algorithms for simulating
the zero-temperature random-field Ising model, which is
defined by the energy function

H = −
∑

<i,j>

Jsisj −
∑

i

[H(t) + hi]si, (1)

where the spins si = ±1 sit on a D-dimensional hypercu-
bic lattice with periodic boundary conditions. The spins
interact ferromagnetically with their z nearest neighbors
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with strength J , and experience a uniform external field
H(t) and a random local field hi. We choose units such
that J = 1. The random field hi is distributed according
to the Gaussian distribution ρ(h) of width R:

ρ(h) =
1√
2πR

e−h2/2R2

. (2)

The external field H(t) is increased arbitrarily slowly
from −∞ to ∞.

The dynamics of our model includes no thermal fluc-
tuations: each spin flips deterministically when it can
gain energy by doing so. That is, it flips when its local
field

heff
i = J

∑

j

sj + hi +H (3)

changes sign. This change can occur in two ways: a
spin can be triggered when one of its neighbors flips (by
participating in an avalanche), or a spin can be triggered
because of an increase in the external field H(t) (starting
a new avalanche).

The zero-temperature random-field Ising model was
introduced by Robbins and Ji [3] to study fluid inva-
sion in porous media and front propagation in disor-
dered systems. We have used the same model [5] in
a different way [6] to model noise in hysteresis loops
in disordered materials. In particular, we wish to un-
derstand Barkhausen noise in magnetic materials with
quenched disorder [4]. It has been found experimentally
that when an external field is gradually applied, many
materials magnetize not continuously, but in a noisy way,
with jumps (avalanches) of all sizes. (The noise can be
heard by wrapping the magnetizing material in a coil of
wire and amplifying the signal into a speaker. The sig-
nal makes a crackling noise when a permanent magnet is
brought close, quite similar to the crackling noises heard
in fires, crisped rice cereals, and crumpled paper [7].) In
the steepest part of the hysteresis loop, these avalanches
are found to have a power-law distribution of sizes with
an exponent τ ≈ 1.5. Power laws are also found in the
distribution of avalanche times with an exponent α ≈ 2
and in the power spectrum.

The zero-temperature random-field Ising model is
interesting because, as in the disordered magnetic ma-
terials it attempts to model, the avalanches can have a
broad range of sizes. If all the avalanches were small,
understanding them would be straightforward and not
very interesting. Indeed, at large disorder R, the chance
that a spin which has just flipped will trigger one of its
z neighbors scales roughly as zJ/R. If this quantity is
smaller than unity (large disorder), all avalanches will be
small: the noise will be a series of small pops all of about
the same size. This behavior is uninteresting not because
it is simple, but because the behavior is strongly depen-
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dent on the details of the model at short distances, where
the model is at best a caricature of a real material.

It also is easy to understand the system in the small
disorder regime zJ/R >> 1, where almost all the spins
flip over in one infinite avalanche. There are many prob-
lems (for example, fracture and first-order phase transi-
tions) where a single nucleation event leads to the release
of the stored energy in a single catastrophic event.

FIG. 1. A three-dimensional view from one side of a single
avalanche in a 200× 200× 200 system at R = 2.3 (within 6%
of the critical disorder Rc). The avalanche contains 282,785
spins. The time when each spin flipped is shown by its color.
The avalanche generally grew from left to right. Note that it
has many branches and holes; the large avalanches in three
dimensions probably have a fractal dimension a little less than
three. Also notice that on the right hand side, there are sev-
eral dark red spots poking through in the middle of the light
green area. The green area stopped growing, but other parts
of the avalanche later filled in the holes.

We focus on the crossover between these two limit-
ing cases, where the system exhibits crackling noise with
avalanches of all sizes. For a particular value of the disor-
der R = Rc, a spin which has just flipped will on average
flip exactly one neighbor as the external field H(t) is in-
creased to a particular value Hc. The avalanches at Rc,
Hc (the critical point), are finely balanced between stop-
ping and growing forever. They advance in fits and starts
(see Figs. 1 and 2) and come in all sizes (Figs. 3 and 4)
with a probability which decreases as a power law of the
number of spins in the avalanche. At Hc, the distribu-
tion of avalanche sizes decays with an exponent of τ ≈ 1.6
(quite close to the experimental results), and integrated
over all H , the distribution decays with an exponent [13]
τ̃ ≈ 2. Below the critical disorder Rc, there will be an
avalanche which will flip a nonzero fraction of the spins
in the system even as the system size goes to infinity: we
call this avalanche the infinite avalanche. There are very
large avalanches even for disorders far above the critical

disorder. In three dimensions, there are still two decades
of power law scaling 50% above the critical point. How-
ever, the convergence to the expected asymptotic power
law is very slow (Figure 3). This behavior means that we
see critical scaling even if we do not fine tune R to Rc,
but we must use very large systems to get close enough
to Rc to obtain a convincing power law. In practice, we
needed simulations of approximately a billion spins to
understand the physics in three dimensions [10]. Two di-
mensions remains a challenge because the proper scaling
is not clear even for 30, 0002 spins [10,14].
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FIG. 2. A time series showing the number of spins which
flipped in each shell of the avalanche shown in Fig. 1 [9]. Note
that the avalanche is a series of bursts: near the critical point,
the avalanche is always on the verge of halting, so it proceeds
in fits and starts.

It is crucial with this many spins that our algo-
rithms be efficient both in computer time and mem-
ory. We begin by giving the simple, but inefficient
approach which has an execution time which scales as
O(N2). We then develop a more efficient approach using
a sorted list which gives an execution time which scales
as O(N logN), but which needs memory storage which
scales as N×(sizeof(double)+sizeof(int)). A billion spins
would demand 12 Gigabytes of RAM for efficient execu-
tion, which is not usually available. Finally, we give an al-
gorithm whose execution time also scales as O(N logN),
but whose memory requirements are asymptotically only
one bit per spin. In this case 109 spins requires 120 MB of
storage, which is feasible on a standard workstation [8].
We conclude with a discussion of time and space issues for
calculating and storing histograms and correlation func-
tions.
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FIG. 3. Distribution of avalanche sizes for different values
of the disorder R in three dimensions. Some avalanches re-
main large (hundreds of spins) for R a factor of two above
the critical value Rc ∼ 2.16 where we expect a pure power
law. The avalanches are enormous (millions of spins) when
the system is still 4% away from the critical point; for this
reason we need large systems. The inset is a scaling collapse
of the data: the thin lines in the main figure show the scaling
prediction for the avalanche sizes stemming from the scaling
collapse [10]. Note that the scaling predictions already work
well at R = 4. The pure asymptotic power law behavior is
not yet seen at R = 2.25, when six decades of scaling are
observed. We needed simulations of a billion spins to show
convincingly that the power law would eventually occur [10].

FIG. 4. A 30, 000 × 30, 000 simulation with disorder
R = 0.65, where each pixel represents a 30 × 30 square,
and each avalanche is a different color. Note that there are
avalanches of all sizes, with many smaller avalanches, and
fewer large ones.

The Brute Force Method

The brute force method is the easiest one to imple-
ment and is competitive for system sizes up to about
10,000 spins. In this method, we store a spin direction
and a random field for each site of the lattice. We can
then proceed as an experimentalist would by measuring
the magnetization at specific predetermined values of H .
We start with magnetization M = −N and a large neg-
ative field H0 and then increment to H1, check all spins
in the lattice, and flip those spins in a positive local field.
Then we must check the neighbors of the flipped spins
again to see if their local fields are now positive. This pro-
cedure is continued until all the neighbors of flipped spins
have been checked. We then repeat the whole procedure
again for a new field H2, and so on. This approach gives
the correct magnetization at the fields Hn: the order in
which spins are flipped can be shown not to influence the
final state [15,5]. However, unless the increments in H
are very small, several avalanches may occur in a given
increment, and all information about single avalanches
(such as histograms of avalanche sizes) will be distorted.

The time for the brute force method scales as
O(NXT ), where X is the number of fields Hn at which
the magnetization is measured, and T is the average time
needed to check the neighbors of the flipped spins mea-
sured in units of shells of neighbors.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Lattice Queue

End of Shell

11 17 10 20 20 18 6
12 12 15 15 19 19 7

FIG. 5. Example of how a queue is used to propagate an
avalanche. The colored spins are spins which either have
flipped in the current avalanche or will flip in the current
avalanche. Spin 13 triggered the avalanche, then the light grey
spins (14,8,12) were put on the queue as the first shell. As
they flipped, the second shell, the blue spins (15,19,7,11,17),
were put on the queue. As the first blue spins (15,19,7)
flipped, the dark red spins (10,20,20,18,6) were added to the
queue as the start of the third shell. The next spin to flip is
at the left hand side of the queue. When this spin flips, its
neighbors will be checked, and the neighbors which are ready
to flip will be added to the right hand side of the queue. The
small numbers below the spins in the queue indicate which
neighbor caused the spin to be put on the queue. Note that
different neighbors can cause a spin (such as spin 20) to be
put on the queue more than once. We have to be careful to
only flip the spin once.

A variation on this approach is to propagate one
avalanche at a time as shown in Fig. 5:
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1. Find the triggering spin for the next avalanche by
checking through the lattice for the unflipped site
with the largest internal field hint

i = heff
i −H .

2. Increment the external field so it is just large
enough to flip the site, and push the spin onto a
first-in first-out (FIFO) queue (see Fig. 5, right).

3. Pop the top spin off the queue.

4. If the spin has not been flipped, flip it and push all
unflipped neighbors with positive local fields onto
the queue.

5. While there are spins on the queue, repeat from
step 3.

6. Repeat from step 1 until all spins are flipped.

This method is standard for avalanche propagation
problems. It also is related to the propagation of cluster
flips in the Wolff algorithm [16]. Using a queue instead of
recursion has two advantages. First, recursion is slower
and more memory intensive, because each recursive call
must push all local variables and all registers onto the
system stack (which usually has a pre-allocated limit). If
we use our own queue, we need only to push the coordi-
nate of the next spin on the queue each time, and we can
make the queue as large as necessary. Second, in order
to produce a natural spin-flip order, we want to flip all
spins that are ready to flip at a given time before we flip
the spins that they cause to flip. If we put spins that are
ready to flip on a FIFO queue, we correctly achieve this
order. This procedure corresponds to doing a breadth-
first search. Recursion, which is the same as putting the
spins on a LIFO stack, would explore all possible conse-
quences of flipping the first neighbor it looks at before
it considers the second neighbor. This depth-first search
produces an unnatural spin-flip order (although the final
state after the avalanche is unchanged [15,5]). The dy-
namics during the avalanche of Fig. 2 assumes one shell
of spins flipped during each time slice, which is easy to
determine by placing markers on a FIFO spin queue, as
shown in Fig. 5. Each time the marker is popped off of
the queue, a new shell is started and the marker is put
back on the end of the queue.

Doing the brute force algorithm one avalanche at
a time is very inefficient except at very low disorders.
Sweeping through the entire lattice for each avalanche
takes O(N) time per avalanche. Because there are O(N)
avalanches, the total running time scales as O(N2). A
hybrid approach, finite steps in field followed by internal
propagation of avalanches, could be quite efficient if one
is solely interested in the magnetization at those fields.
A brute force method is probably necessary when simu-
lating systems with long-range interactions [2].

Time Efficiency: Sorted Lists

The brute force method is very inefficient at locating
the origin of the next avalanche, and we are immediately
led to think of storing the several largest local fields in
each sweep. If we take this thinking to its logical conclu-
sion, we are led to store a list of all of the spins in the
system, sorted according to their random fields.

1 2 3
4 5 6
7 8 9

+5.5
+4.0
+0.9
-1.1
-1.4
-2.5
-6.6

-19.9

4
1

7
6
3
8
2
9
5

+14.9

0
1
2

3,4

Lattice SortedList

H =1.1

h i Spin#

FIG. 6. Example of how a sorted list is used to find the next
spin in the avalanche. The colors indicate spins which have
already flipped. The first column in the sorted list contains
the random field, and the second column contains the number
of the spin with that random field. The arrows to the right
indicate the nextPossible[n↑] pointers — the first spin which
would not flip with n↑ neighbors up. The spins pointed to are
the possible starting locations for the next avalanche. Note
that some of the pointers point to spins that have already
flipped, meaning that these spins have more than n↑ neighbors
up. In a larger system, the unflipped spins will not all be
contiguous in the list.

Unfortunately, life is complicated by the fact that
spins experience not only their local random fields, but
also fields from their neighbors. To find the origin of the
next avalanche, we use the following algorithm:

1. Define an array nextPossible[n↑], n↑ = 0, 1 . . . z,
which points to the location in the sorted list of the
next spin which would flip if it had n↑ neighbors.
Initially, all the elements of nextPossible[n↑] point
to the spin with the largest local random field, hi.

2. Choose from the z + 1 spins pointed to by
nextPossible, the one with the largest internal field
hint
i [n↑] = n↑ − n↓ + hi = 2n↑ − z + hi.

3. Move the pointer nextPossible[n↑] to the next spin
on the sorted list.

4. If the spin with the largest hint
i [n↑] has n↑ up neigh-

bors, then flip it. Otherwise go back to step 2.

An example of the sorted list and the pointers from
nextPossible is shown in Fig. 6.
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The sorting of spins can be done in time
O(N logN). Storage with this algorithm is N ×
sizeof(int) for the sorted array (if we reduce the D-
dimensional coordinates to one number [18]), and N ×
(sizeof(spin) + sizeof(double)) for the lattice itself. Var-
ious other compromises between speed of execution and
storage are possible, but all leave the running time
O(N logN). The sorted-list algorithm is fast: the largest
system sizes we can store on a reasonable workstation
execute 10002 and 1003 spins in a few seconds. It is the
method of choice for these small systems or when one is
interested in the behavior for non-monotonically increas-
ing fields. ∗

Space Efficiency: One Bit per Spin

The combination of the rapid execution of the
sorted-list algorithm and large finite size effects led us
to develop an algorithm optimized for memory efficiency.
The key is to recognize that we need never generate the
random fields! In invasion percolation [19] (and in the in-
terface problem [3] analogous to ours) the random fields
are generated only on sites along the boundary of the
growing cluster. In our problem, we can take this idea
further: for each change in a spin’s local field given by
Equation 3, we generate only the probability that it will
flip. Storing the random fields is unnecessary because
the external field, the configuration of the spin’s neigh-
bors, and the knowledge that the spin has not yet flipped
gives us all the information which we need to determine
the probability that the spin will flip. The only quan-
tity which we must store for each site of the lattice is
whether the spin is up or down. Thus, we can store each
site of the lattice as a computer bit saving large amounts
of memory.

For a monotonically increasing external field, the
conditional probability that a spin flips before its nonran-
dom local field, Hnr ≡ H+(2n↑−z), reaches Hnr+∆Hnr

given that it has not flipped by Hnr is

Pflip(Hnr,∆Hnr) =
[P↓(Hnr)− P↓(Hnr +∆Hnr)]

P↓(Hnr)
, (4)

where P↓(Hnr) is the probability that a spin points down

∗The sorted-list algorithm can be used for non-monoton-
ically increasing fields with only a few minor additions. When
the external field is being lowered instead of raised, the
avalanche propagation is the same, except spins are flipped
when their local field becomes less than zero instead of when it
becomes greater. The nextPossible array needs to be handled
carefully. The next spin that would flip up if the field were in-
creased is the last spin that would have already flipped down
with the field decreasing. Every time the direction of change
of the external field is reversed, all of the nextPossible[n↑]
pointers need to be adjusted by one to account for this.

when the local field isHnr. A spin with local fieldHnr will
point down if its random field hi satisfies hi +Hnr ≤ 0.
This condition implies that the probability that a spin
with n↑ up neighbors points down is

P↓(n↑, H) =

∫ −Hnr(n↑,H)

−∞

ρ(h) dh (5)

=
1

2
+

1

2
erf

(

−Hnr(n↑, H)/
√
2R

)

=
1

2
erfc

(

Hnr(n↑, H)/
√
2R

)

. (6)

(Writing P↓ in terms of the erfc function removed some
problems with rounding at large negative fields H .)
These probabilities are illustrated graphically in Fig. 7.

P (L)↓

∆L

-L-(L+ L)∆

P (L, L) P (L)flip ∆ * ↓ρ(h )i

FIG. 7. The probability that a spin will not have flipped
by the time its local field reaches L is the probability that the
random field is less than −L. This probability is represented
by the shaded area of the Gaussian. The probability that the
spin will flip before the field reaches −(L+∆L) is represented
by the area of the darker region divided by the area of the
shaded region.

Finding the next avalanche is subtle when the ran-
dom fields are not stored: changing the external field H
introduces a probability that any unflipped spin in the
lattice may flip. Inspired by the continuous time Monte-
Carlo algorithm [20], we keep track of Nn↑

, the number
of down spins which have n↑ up neighbors. Given the
probabilities that spins with n↑ up neighbors will flip,
we calculate both the change in the external field ∆H
needed to flip the next spin and the probability that the
next spin to flip has n↑ up neighbors. We then randomly
choose n↑ and search at random through the lattice for a
spin with n↑ up neighbors. The time taken for the search
is the part of the algorithm which scales worst for large
N . If there are Nn↑

spins left, this search will take an av-
erage time O(N/Nn↑

). Summing over Nn↑
and n↑ yields

a bound of order zN logN . In one of our programs, we
use a tree structure to do this search more efficiently;
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this complication decreases the running time by 40% for
a 5002 system at R = 1.

How do we calculate ∆H? From Equation 4, the
probability that a single spin with n↑ neighbors up has
not flipped in the range ∆H is 1 − Pflip(n↑, H,∆H) =
P↓(n↑, H+∆H)/P↓(n↑, H). The probability that no spin
with n↑ up neighbors has flipped in this range is

P none
n↑

=

[

P↓(n↑, H +∆H)

P↓(n↑, H)

]Nn↑

, (7)

and the probability that no spin has flipped between H
and H +∆H is

P none(∆H) =

z
∏

n↑=0

P none
n↑

. (8)

To find ∆H , we choose a random number r uniformly
distributed between zero and one, and set ∆H so that
P none(∆H) = r.

Unfortunately, we cannot solve for ∆H analytically,
and we must find a numerical solution. To find this solu-
tion efficiently, we need a good initial guess. In analogy
with nuclear decay, if spins flip with a constant rate Γ,
we expect the probability that no spins have yet flipped
to be e−Γ∆H . So, for a first approximation of ∆H , we
assume that the spin-flip rate Γ is a constant, and there-
fore

∆H1 = − log(r)

Γ(H)
. (9)

where Γ(H) is given by

Γ(H) = −d log(P none(∆H = 0))

d∆H

= −
z

∑

n↑=0

Nn↑

d log(P↓(n↑, H +∆H))

d∆H

=

z
∑

n↑=0

Nn↑

ρ(Hnr(n↑, H))

P↓(n↑, H)
≡

z
∑

n↑=0

Γ(n↑, H) (10)

We can make a better second guess by looking at the
error in our first guess. If the error in our guess is ∆r =
P none(∆H) − r, then we can make an improved second
guess for ∆H by aiming for r −∆r:

∆H2 = − log(r −∆r)

Γ(H)
. (11)

These two guesses can then be used as input into a root
finding routine [21]. Note that while these guesses are
usually very good for small |H | and lead to quick solu-
tions, they can be very bad for large |H |. If the guesses
for ∆H are very large, it may be better to choose two

arbitrary guesses. In our code, if ∆H1 > 20, we use
∆H1 = 0 and ∆H2 = 20 for the two guesses.

Our algorithm for finding the next avalanche be-
comes

1. Choose a random number r uniformly distributed
between zero and one.

2. Pre-calculate the values of P↓(n↑, H) using Equa-
tion 6. These values will be used repeatedly in solv-
ing for ∆H .

3. Calculate guesses for ∆H using Equations 9 and
11, and use them as input to a root finding routine
to find the exact solution for ∆H .

4. Increment H by ∆H .

5. Calculate the array probFlip[n↑] for use in the re-
mainder of the avalanche, where probFlip[n↑] is the
probability at the current field H that a spin will
flip when its number of up neighbors changes from
n↑ to n↑+1 (see Equation 4).

6. Calculate the rates for flipping spins for each n↑ at

the current field H = Hold +∆H :

Γ(n↑, H) = Nn↑
ρ(Hnr(n↑, H))/P↓(n↑, H) (12)

and the total rate Γ(H) =
∑z

n↑=0 Γ(n↑, H).

7. Choose a random number uniformly distributed be-
tween zero and Γ and use it to select n↑.

8. Search at random in the lattice for an unflipped
spin with n↑ up neighbors [22].

9. Start the avalanche at that spin. During an
avalanche, the algorithm is essentially the same as
the brute force algorithm:

10. Push the first spin onto the queue.

11. Pop the top spin off of the queue.

12. If the spin is unflipped, flip it, find n↑, and decrease
Nn↑

by one. Otherwise, skip to step 14.

13. Look at all unflipped neighbors. For each unflipped
neighbor, find the current number of up neighbors,
n↑; decrease Nn↑−1 by one, and increase Nn↑

by
one. Push the spin on the queue [23] with proba-
bility probFlip[n↑ − 1], as calculated in step (5).

14. While there are spins left in the queue, repeat from
step 11.

15. While there are unflipped spins, repeat from step
1.
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This algorithm is about half as fast in practice as the
sorted-list algorithm which is faster than we expected.
The overhead involved in solving for ∆H is presumably
compensated by the time saved not shifting data in and
out of cache. Systems of 109 spins take a few days of
CPU time on a reasonable workstation; 30, 0002 systems
take less than 15 hours on a 266 MHz Pentium II.

Calculating Histograms and Correlations

Several functions are needed to characterize the crit-
ical properties of our model. The simplest function is the
magnetization M as a function of the external field H .
We also calculate distributions of avalanche sizes (Fig. 3,
top), and correlation functions. Some care must be taken
to make sure that the calculation of these functions does
not dramatically increase the running time or memory
requirements of the simulation.

When doing calculations with a billion spins, we
cannot output any quantity which scales linearly with
the system size. Instead of computing H(M) at each
avalanche (about a GB of data, which rapidly would fill
our disk), we are forced to compute H(Mn) at pre-chosen
points.

The characteristic feature of the critical point is the
appearance of an infinite avalanche. The equivalent of an
infinite avalanche in a finite system is an avalanche which
spans the entire system in at least one dimension. To
tell whether we are above or below the critical point, we
need to detect these spanning avalanches. In three and
higher dimensions, the number of spanning avalanches
as a function of R is also interesting to study. The most
obvious way of detecting spanning avalanches is to mark
each row as a spin flips in it, and check at the end of the
avalanche to see if all the rows contain flipped spins from
the avalanche. However, this method requires O(N1/D)
operations per avalanche. Because there are many small
avalanches, this method is unacceptable. A preferable
method is to keep track of the 2 × D boundaries of the
avalanche as it grows. If a pair of boundaries meet, then
the avalanche is a spanning avalanche. We must take
care to treat the periodic boundary conditions properly.

Another useful function is the avalanche size distri-
bution D(S), defined as the number of avalanches which
flip S spins during the simulation, divided by the total
number of spins. Like theM(H) curve, the avalanche size
distribution scales linearly with the system size. Thus,
we need bins up to size N , the size of the largest possible
avalanche. Logarithmic binning is the obvious solution,
with bin n including all sizes bn−1

a < S < bna . We have
chosen ba from 1.01 to 1.1. Large bins are preferable for
lower statistical noise. This choice is particularly impor-
tant in the tail of very large avalanches, where small bins
would contain few avalanches. However, very large bins
will systematically alter the shape of the scaling functions
(although they will not change the critical exponents). It

is important to divide the final population in each bin by
the number of integers contained within the bin (and not
just the bin width). Clearly we should also ignore the
early bins which do not contain any integers.

We calculate the correlation function G(x,R) within
an avalanche, where G(x,R) gives the probability that
the first spin in an avalanche will cause a spin a distance
x away to flip in the same avalanche. At the beginning
of each avalanche, we record the coordinates of the first
spin in the avalanche. Then, for each subsequent spin
in the avalanche, we calculate the distance x to the first
spin, and add one to the appropriate bin. Logarithmic
binning is not necessary for the correlation function, be-
cause the size of the correlation function is proportional
to the length of the system, not the total number of spins.
Thus, we use a fixed bin size bc = 1. At the end of the
simulation, each bin should be normalized by the number
of spins which are between x − bc/2 and x + bc/2 away
from the origin.

The only tricky part of calculating G(x,R) comes
from the periodic boundary conditions. If the avalanche
crosses a boundary, two points at opposite ends of the
avalanche can come close together. Because we do not
calculate G(x,R) for spanning avalanches, we know that
there will be at least one row in every dimension which is
not touched by the avalanche. To calculate separations,
we use the periodicity of the lattice and the continuity
of the avalanche to shift the coordinates so they are all
on one side of these empty rows. Because we are already
keeping track of the boundaries of the avalanche for the
detection of spanning avalanches, finding an empty row
is easy.

The running times of the three algorithms as a func-
tion of system size are shown in Fig. 8. The brute force
algorithm can be useful when one cares only aboutM(H)
at a few points, but is otherwise too slow for large sys-
tems. The sorted-list algorithm is the fastest algorithm,
but on a 128 MB machine, only system sizes of about six
million spins can be run. The bits algorithm is almost as
fast as the sorted-list algorithm, and asymptotically uses
only one bit of memory per spin.
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FIG. 8. The running times for the three algorithms for
two-dimensional systems with R = 1.0 on a 266 MHz Pen-
tium II with 128 MB of memory. Note that both the bits
algorithm and the sorted-list algorithm have run times which
grow approximately linearly (the logN is not visible), and
the brute force running time grows quadratically. Also notice
that the largest bits simulation was 64 times larger than the
largest sorted-list simulation.

We have made C++ source code implementing all
three algorithms available at
http://www.lassp.cornell.edu/sethna/hysteresis/code/.
Each algorithm is contained in a separate, well-
documented class. There are classes for detecting span-
ning avalanches, measuring avalanche size distributions,
and measuring correlation functions. There are also both
Microsoft Windows and command line interfaces to the
code. The command line interface should be portable
to any computer with a C++ compiler and an imple-
mentation of the Standard Template Library. We have
also compiled executables for Windows 95/NT, Linux,
and several other flavors of UNIX. The running times in
Fig. 8 all come from the code compiled under Linux.

Working on hysteresis, avalanches and noise with
our model has been very rewarding. The simulations
are beautiful and entertaining in themselves. Developing
faster and more space efficient algorithms was amazingly
satisfying: each new method not only eased our lives and
our computer budgets, but also opened a whole new win-
dow on the behavior of the model. It was also fun devel-
oping new ways of measuring what was happening in the
simulations: watching the spins flip and measuring the
avalanche size distribution was only the beginning. We
have written a few exercises which we hope will entertain
and inform you as they did us.

Suggested problems for further study

1. Phase Transitions in the Shape of the Loop. Download
our program from
http://www.lassp.cornell.edu/sethna/hysteresis/code/.

Also download DynamicLattice and xmgr if you are using
Unix. Run the program. Under Windows, just press OK
in the opening dialog box to run a simulation with the
default parameters. Under UNIX, type run at the >>>

prompt. (More detailed instructions can be found on our
Web site.) Try the other two algorithms. For smaller
systems, brute force works acceptably, but for L = 500
it is rather slow.

You should see an animation of the avalanches as
the external field is ramped upward and the spins flip.
After the simulation ends, you should obtain a graph of
M(H), the avalanche size distribution D(S,R), and the
correlation function G(x,R). The M(H) curve shows
the bottom half of the hysteresis loop: it should consist
of many jumps of various sizes. The top half of the hys-
teresis loop is pretty much the same shape −M(−H),
but the details of the jumps are different.

The avalanche size distribution D(S) measures the
number of jumps as a function of size S. It should look
like a fairly good power law, and be a straight line on a
log-log plot.

A log-log plot of the correlation function G(x, r)
looks much less linear. At small distances, the corre-
lation function decreases as a power law, but the power
law behavior bends over after only a decade or so. This
behavior is a symptom of R not being quite at the critical
disorder Rc.

(a) According to our scaling theory [5,10], near the
critical point D(S,Rc) ∼ S−τ̃ . What is your best esti-
mate for the exponent τ̃ at the default value R = 1.0?

(b) Do a simulation at a smaller value of disorder R,
say 0.8. Does the behavior of G(x,R) remain a power
law over larger values of x?

(c) Do a simulation with D = 3, L = 50, and
R = 2.5. What is τ̃ in three dimensions? (To obtain
better data, do several runs and use the averaging op-
tion.) Consider R = 2.1. Does the shape of the M(H)
curve look qualitatively different? We believe that the
power law distributions occur for Rc ∼ 2.16. At this
value, the hysteresis loop first develops a macroscopic
jump (the infinite avalanche). One obtains power laws
and scaling at the phase transition in the shape of the
hysteresis loop, between smooth loops and ones with an
infinite avalanche.

2. Time, Space, and Bits. We have a local, somewhat
older supercomputer with four gigabytes of RAM. How
large a system could we run in this memory using the
three algorithms we discussed? Ignore all the memory
requirements except those that scale linearly with the
number of spins N ; the rest is negligible. Assuming the
time spent in bits continues to grow as N logN after the
last data point in Fig. 8, how long will the largest possible
bits simulation take to complete?
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3. Programming. To do the following problems, you will
need to download the source code for our program from
http://www.lassp.cornell.edu/sethna/hysteresis/code/.
You will also need a C++ compiler which supports the
standard template libraries. The standard template li-
braries are an important advance for scientific program-
ming. We find them incredibly useful, and look forward
to their wide implementation now that the C++ stan-
dard is in place. Links to compilers supporting the stan-
dard template libraries can be found on our Web page.

Run the simulation described in Problem 1 to test
that the programworks. Then try the following problems
(many details on how to work with our source code can
be found on our Web site).

(a) Adding a Spin-Flip Action: Time Series for Large
Avalanches. We have designed our code so that it is easy
to add new types of measurements. One quantity which
experimentalists measure is the change in magnetization
with time. In our code, we record the time series of the
whole run, with each avalanche represented as a single
point. There is also interesting structure within each
avalanche (see Fig. 2). Add a new class to the program
which records the time series within the largest avalanche.

(b) Implementing Brute Force. Implement the
brute force algorithm. You can either replace the
BruteForceHysteresisSimulation class or implement
it from scratch.

(c) Implementing Sorted
Lists. Implement the sorted list algorithm by replacing
the SortedListHysteresisSimulation class.

(d) Implement the bits algorithm.

More information on how
to write your own BruteForceHysteresisSimulation,
SortedListHysteresisSimulation, and
BitsHysteresisSimulation classes are available on our
Web site.
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