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Abstract—In typical wireless cellular systems, the handover
mechanism involves reassigning an ongoing session handled by
one cell into another. In order to support increased capacity
requirement and to enable newer use cases, the next generation
wireless systems will have a very dense deployment with
advanced beam-forming capability. In such systems, providing
a better mobility along with enhanced throughput performance
requires an improved handover strategy. In this paper, we
will detail a novel method for handover optimization in a
5G cellular network using reinforcement learning (RL). In
contrast to the conventional method, we propose to control
the handovers between base-stations (BSs) using a centralized
RL agent. This agent handles the radio measurement reports
from the UEs and choose appropriate handover actions in
accordance with the RL framework to maximize a long-term
utility. We show that the handover mechanism can be posed
as a contextual multi-armed bandit problem and solve it using
Q-learning method. We analyze the performance of the methods
using different propagation and deployment environment and
compare the results with the state-of-the-art algorithms. Results
indicate a link-beam performance gain of about 0.3 to 0.7 dB
for practical propagation environments.

Index terms: Handover (HO), Mobility, Machine-Learning,
Reinforcement Learning, 5G, Beamforming.

I. INTRODUCTION

In cellular wireless systems, mobility is achieved through
handover (HO) mechanism. This enables UEs to move seam-
lessly within the coverage area of the network. The HO
mechanism involves reassigning an ongoing session handled
by one cell into another. A UE in the network will either
be in an idle or connected mode. In idle mode, the UE just
camps into a cell and does not have any active signaling
or data-bearers to the base-stations (BSs) . However, when
in connected mode, the BS will allocate resources to the
UEs and there will be an active signaling on the data and
control channels. In this paper, we describe a novel technique
for connected-state intra-frequency HOs in 5G context. In
typical cellular networks, UEs continuously monitor the signal
strengths of the serving and neighbor cells, and report them
to the serving base station. To illustrate this, consider a
UE moving away from the serving cell near the cell edge.
As shown in Fig. 1, when the serving cell reference signal
received power (RSRP) decreases below the acceptable level,
and the neighbor cell RSRP is higher than the serving cell
by a threshold (hysteresis value), then the serving BS initiates
a HO. The RSRP measurements are typically done on the
downlink reference signals. This algorithm is discussed in
more detail in [1], [2]. The hysteresis value (∆) along with

time-to-trigger1 (Γ) is used to overcome the ping-pong effect.

A. Related Work

There exist several algorithms which computes the HO
parameters such as time-to-trigger (Γ) and hysteresis value
(∆) optimally. The algorithms in [3] and [4] discuss methods
to overcome the ping-pong effect during HO. Optimization
of HO between macro and femto BS by exploiting the UE
information such as velocity, RSSI, etc. is discussed in [5].

Machine Learning has been proposed in several HO op-
timization problems. In hybrid cellular networks consisting
of drone and terrestrial UEs, the main-lobe of a BS antenna
is down-titled to serve terrestrial UEs. This results in drone
UEs being frequently served by the side-lobes of the BS
antennas [6]. This creates a fragmented coverage area served
by different BSs, thus increasing the radio link failures (RLFs)
and ping-pongs [7]. In [8], the author’s propose an RL based
mobility model for drones. The proposed model learns the
fragmented 3D-coverage described in [7], while trading off
throughput, ping-pong, and RLFs. In [9], authors address
reliability and latency in terrestrial millimeter-wave (mmWave)
mobile systems based on channel blockage prediction. In [10],
authors propose reinforcement learning based approach for
HO optimization. Here, authors propose threshold selection for
handover parameters such as ∆ and Γ as “action”, with reward
configuration derived from the throughput values aggregated
over some duration.

B. Contribution

While the previous works for HO optimization using ma-
chine learning have focused on specific use-cases such as
drones, railways, etc. or considers specific channel aspects
such as mmWave, blocking, etc., there is no work to the
best of our knowledge which considers the handover mobility
optimization exploiting the deployment aspects of 5G. In
typical 5G stand-alone (SA) deployments, the control and
synchronization are carried on much wider (large beam-width)
beams called access-beams, while data for the connected UE
is carried on a much narrow beams (due to beamforming)
called link-beams. In typical 5G systems, the coverage for
the access and link-beams are different. The link-beams are
typically on mmWave with much narrow beam-width and
sometimes penetrate deep into the neighbor cells, while the
access-beams are in mid-band with wide beam-widths. In
all the state-of-the-art HO algorithms discussed above, the

1The duration for which the target cell RSRP is above serving cell by ∆
(Refer to Fig 1)
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Fig. 1. Illustration of the HO mechanism in cellular networks

HO decisions are based on the measurements done on the
access-beams. In a dense 5G deployments, the connected
state UE can receive access-beams from multiple BSs with
sufficient power to perform initial entry procedure. In contrast
to prior works, we propose a methodology to formulate HO
procedure as a sub-class of reinforcement learning problem
called contextual multi-arm bandit (CMAB) problem. The
CMAB agent will handover UEs opportunistically such that
their average link-beam gain (and hence the throughput) can
be maximized. In the proposed system, serving BS will collect
measurement reports containing beam RSRP measurements
from UEs as before, however it will not take decision on the
HO, instead will forward the UE measurement reports to a
centralised CMAB agent which will choose the HO action.
We demonstrate the utility of such a formulation through
simulations.

II. REINFORCEMENT LEARNING

In this Section, we will describe briefly the reinforcement
learning (RL) framework. RL is an evaluative feedback based
learning paradigm as shown in Fig. 2. Here the agent learns
about the optimal action in a given situation based on trial and
error. This is achieved through exploration and exploitation.
During exploitation the agent takes the actions that yields
maximum reward, while during exploration the agent takes
action which may not yield maximum reward instantaneously,
however will help the agent to discover newer actions that are
profitable in the longer run.

Markov decision process (MDP) is often employed to
describe RL. It is characterized by a tuple consisting of
{S,A,P,R}, where S and A denotes the set of possible states
and actions respectively, P denotes the transition probabilities
for the states when a particular action is taken. MDP can be
solved to obtain an optimal policy, where a policy is defined
as the action to be taken at each state to maximize the reward.

A multi-arm bandit (MAB) problem is a variant of the RL
problem where the actions taken by agent does not alter the
operating environment. This problem involves identifying the
best arm among several arms of a muti-arm bandit whose

Fig. 2. Reinforcement learning framework

Algorithm 1: Q-Learning with ε-greedy algorithm for
CMAB

Data: Q(s, a)← Initialized with random rewards
Result: Q∗(s, a)← Optimized Q-Table

1 t← 0, s0 = sinit //At time-step 0
2 while t < MAX STEP do
3 g = rand() //Random number in range [0,1]
4 if g < ε then
5 at = rand(A) //Take random action, at ∈ A
6 else
7 at = argmax

a
{Q(st, a)}

8 //Q-Table updated with average reward for (st, at)
combination

9 Q(st, at)← 1
T

∑t
0 r(st, at)// T indicates number of

times action, at is taken at state, st up to time-step t
10 t← t+ 1

reward distribution is unknown by trial and error. The con-
textual multi-arm bandit (CMAB) problem is an extension of
the MAB problem in which the agent associates a context or
state with the MAB. Depending on the context a particular
arm yields maximum average reward. The task of the agent
now is to learn the relationship between the context, arm, and
reward, so that it can predict the best arm to play for a given
context vector. This is further illustrated in a 3 context CMAB
example as shown in Fig. 3, where for each of the contexts,
si, i ∈ {1, 2, 3}, a particular action, ai, i ∈ {1, . . . , 4}, yields
a better average reward.

In many practical RL problems, the model defining the P
and R are not available. In these problems, an optimal policy
can still be derived using Q-learning algorithm. In Q-learning
method, Q-value for a policy, π(a|s), is defined as an expected
long-term reward when the agent takes an action a at state s
and follows the policy π thereafter. With an iterative process of
exploration and exploitation, the agent can learn the optimal
Q-values, Q∗(s, a). The optimal policy is to take action, a,
which maximizes the Q-values for each state. The ε-greedy
algorithm for Q-learning is described in Algorithm 1. Here,
the agent explores by taking random-action with probability ε
and exploits by following an optimal-policy with probability
(1− ε) [11].

III. SYSTEM ASPECTS

In 5G, there exists two possible deployments, stand-alone
(SA) and non-standalone (NSA). In the NSA deployment,
the long-term evolution (LTE) is used for cell acquisition



Fig. 3. CMAB as an extension of MAB. In CMAB the best arm depends
on the state of the bandit.

Fig. 4. An illustration of a UE moving from position x1 to x2 in a 2-Node
network with 1 access-beam and 4 link-beams.

and control, while the data is transferred using the new-
radio (NR). In NR SA deployment, there are no cell specific
reference signals, instead the cell acquisition is performed
via synchronization signal block (SSB) beams. In this paper,
we call the beams used for cell acquisition as access-beams.
In 5G NR SA deployments in mmWave bands, the data
is typically carried on narrow beam called link-beams. An
example illustration with 2-BSs with 1 access-beam and 4 link-
beams is shown in Fig. 4. Note that in Fig. 4, the access and
link-beams are indicated by aij and lij respectively with i and
j indicating the BS-id and beam numbers. In the state-of-the-
art HO algorithms, the wide access-beams are used in the HO
inference. However, due to the dense deployment, it is possible
to have access-beams corresponding to many BS are strong
enough to perform HOs. Instead of using only access-beams
RSRP for HO inferencing, performance can be improved by
opportunistically choosing BSs for HO, which has higher link-
beam gain, among candidate BSs with sufficient access-beam
power to perform initial-entry. This can be accomplished using
a CMAB with link-beam RSRP after the HO action as the
reward which is further explained below.

In this paper, we propose an architecture, where a central-
ized CMAB agent will perform HO inference. The signaling
involved in the process is as shown in the Fig. 5. The
measurements from the UEs are forwarded to the centralized
CMAB agent by the serving BS. The context for the CMAB
agent consist of the access-beam measurements for serving
and neighbor BSs together with the serving BS-id. Each BS
can be considered as an arm. The CMAB action, i.e., pulling
the arm of the bandit is analogous to choosing an appropriate

Fig. 5. HO process using centralized CMAB agent.

Algorithm 2: HO Algorithm using Access-Beams
Input: Measurement Report, R
Output: Base station to Handover, n

1 bnbrs ← getNeighborAccessBeamPower(R)
2 bserv ← getServingAccessBeamPower(R)
3 bmax ← arg max(bnbrs)
4 βv ← getTimeToTriggerValue()
5 if bmax < bserv + ∆ then
6 n← getCurrentServingNode()
7 else if bmax > bserv + ∆ and βv < Γ then
8 startTimeToTriggerTimer()
9 n← getCurrentServingNode()

10 else
11 n← getNodeId(bmax)

12 return n

BS to HO or to stay in the current BS. The goal is to select an
action in a given context that maximizes the expected reward.
We consider RSRP of the link-beam after HO as the reward.
Since the link-beam RSRP is proportional to the throughput
of the UE after HO, the HO inference from CMAB tries to
maximize the throughput.

No special measurements or signaling is needed for this
method, traditional 3GPP signaling for HO as shown in Fig. 5
between BS and UE can be reused. Apart from the RSRP
measurements of the access-beams for serving and neighbor
cells, context for CMAB agent could also include location,
speed, antenna-setup, etc. Different reward configurations such
as downlink-throughput, SINR of the link-beam, etc. after HO
can also be considered. Though we have implemented CMAB
using Q-learning in this work, it can also be implemented
using algorithms such as neural network, random forest, etc.

IV. ALGORITHMS

The most common 5G HO method, is based on the RSRP
measurements of access-beams. The main essence of this
algorithm is that the HO is triggered by the serving BS when
the access-beam RSRP of the target BS is higher than the
RSRP of the serving BS by a hysteresis value for a duration
greater than time-to-trigger parameter. This algorithm runs in
every BS to make an inference on whether a particular UE
needs a HO. This method is briefly described in Algorithm 2.



Fig. 6. The block diagram to illustrate the performance evaluation setup

In this paper, we employ Q-learning method discussed in
Algorithm 1. The access-beam RSRP together with serving
cell-ID forms the “context/state” (refer to Fig. 4), target BS
to HO forms “action”, and received RSRP of the link-beam
after the HO forms “value/reward”2. During training phase,
we set, ε = 1 in Algorithm 1 and the UEs are made to take
random walks in a 2D radio environment. They are made to
report the access-beam RSRP measurements of serving and
neighbor cells which forms the context. A Q-Table is built by
trying random actions for the received states (contexts)3 and
recording the reward (link-beam RSRP after HO) observed.
During the active or online phase4, we exploit the built Q-
Table for optimal policy by

at = argmax
a
{Q(st, a)}. (1)

This way of separating offline training (ε = 0) and online
exploitation phase (ε = 1) will make the proposed solution
practical from the 5G operational perspective by preventing
the CMAB agent taking catastrophic HO action during active
or live phase.

Access-beam RSRP from serving and neighbor cells which
forms the context are continuous variables and it is not
possible to store all possible states/contexts in the Q-Table.
Only those states which are observed during the random walk
are stored in the Q-table. As long as the random walk of UEs
during training phase are sufficiently long, a good representa-
tion of possible contexts are observed and corresponding state-
action-values are captured in the Q-Table. During the active
phase, a similarity function based on the minimum Euclidean
distance measure between the Q-Table contexts and the newly
received context from the measurement report can be used to

2Value and reward are interchangeably used
3State and context are interchangeably used
4Active phase is used to denote exploitation mode of the RL based HO

algorithm

choose actions from the Q-Table. This is shown in (2)

c′ = min
c∈Q
‖c− p′‖ (2)

Where p′ denotes the received context having access-beam
RSRP measurements and the serving-cell ID during the active
phase. The c′ denotes the context in the Q-Table (Q) with
minimum Euclidean distance to p′.

The choice of the BS during the active phase is given by

i∗ = arg max
i
{VQ (c′, Ci)}, (3)

where VQ(c′, Ci) denotes the value/reward5 for the “action” of
choosing the BS, Ci for HO from the Q-Table for the context
c′. The i∗ denotes the BS index with maximum reward.

Below, we illustrate the difference between the 3GPP
method based on access-beam RSRP discussed in Algorithm 2,
and the proposed CMAB method using a simple example.
Consider a network with two BS in which a UE served by
BS-2 is moving from x1 to x2 as shown in Fig. 4. At x2,
the method described in Algorithm 2 will choose to stay in
BS-2, as the access-beam RSRP of BS-2 is stronger than
BS-1. However the proposed CMAB agent would choose
the action of HO to BS-1 because of larger reward since
l12 > max

j
(l2j), j ∈ 1, . . . , 4.

V. RESULTS

In this Section, we will evaluate the proposed method with
the 3GPP access-beam based method discussed in Algorithm 2
for three distinct deployment setup. The Environment-1 and
Environment-2 are based on the synthetic data generated from
a system emulator with different configurations of access and
link-beams. The configurations of access and link-beams for
Environment-1 and Environment-2 are as shown in Fig. 6. For
propagation, we used a simple path-loss model having a path-
loss exponent of 3.1. Environment-3 consist of 7 roof-top sites
with 21 BSs each having 1 access-beam and 8 link-beams.
Propagation model for Environment-3 is ITU standard based
with WINNER urban-macro (UMA) propagation model and is
inspired by the city environment of Tokyo and Seoul [12]. The
resulting RF beam patterns with the discussed configuration
for the three environments are shown Fig. 7.

As explained in the previous section, we build a Q-Table
during an offline training phase by setting ε = 1 in the
Q-learning method discussed in Algorithm 1. During this
phase, CMAB agent takes random actions (HO to random
BS) for the measurement report (context) reported by the UE
while performing a random-walk in 2-D coverage area of the
network. The actions which yielded maximum reward (link-
beam RSRP after HO) in a given state are retained in the
Q-table after the training phase and was used in inferencing
during active phase.

To access the performance in all the three environments,
we employ a semi-deterministic mobility where UEs will
take steps in vertical direction and when a UE hits the edge

5Value in the Q-Table is derived from the link-beam power obtained after
HO



Fig. 7. The beam power density in a 2D area for different environments used in the performance evaluation. (A) shows the access-beam setup (Pa =
max(paij ), i ∈ [1, . . . , 7], j ∈ [1, 2, 3], since there are 7 BS and each having 3 access-beams), while (B) and (C) shows link-beam energy distributions for
Environment-1 and Environment-2. (D) shows the link-beam setup for the Environment-3

of the network, it will relocate randomly to a different X-
position, and the whole process will repeat again. In each
step, the measurement is sent to the CMAB agent which
exploits the Q-Table using (1) to make an inference on the HO
decision6. Every 10000 steps forms an episode in our CMAB
formulation. We assess the performance using the following:
• Average received link-beam power, E (Pl) per episode
• Probability density function (PDF) of the received link-

beam power, p(Pl).
We compare the performance of the above metric with the

access-beam based method having ∆ and β set to 0. This
will ensure a fair comparison of the 3GPP access-beam based
algorithm with the proposed RL algorithm, since RL-algorithm
does not penalize the ping-pong during HO. We define gain,
G, as increase in the average link-beam gain by using CMAB,
and is defined as

G = {E (Pl)}Algorithm-1 − {E (Pl)}Algorithm-2, (4)

where Algorithm-2 is the 3GPP HO algorithm based on
access-beam RSRP and the Algorithm-1 is the proposed
CMAB based HO algorithm. The gain, G, for different
episodes with different initialization points are given in Fig. 8.
Notice from Fig 8 that the gain, G, is positive for all the

episodes in all three environments. The PDF of the G is

65G periodic measurement reporting strategy from UE to BS is employed
here

Fig. 8. The gain, G, for 10 different episodes. Each episode constitutes
10000 UE steps.

shown in Fig. 9. Notice that the gain, G in the Environment-
2 is more than in Environment-1 this is due to the higher
opportunity for RL based handover to pick better BSs as the
link-beams in this environment are narrow and penetrate deep
into the neighbor cells (refer to Fig. 7). For Environment-3



Fig. 9. The PDF of gain, G for different environments.

Fig. 10. The PDF of link-beam RSRP, Pl, for all three environment.

which is based on the WINNER UMA propagation model,
the results indicate a gain between [0.3 - 0.5] dB. The PDF of
the link-beam RSRP, Pl, experienced by the UE using both the
algorithms are shown in Fig. 10. Notice that the distribution
of p(Pl) for CMAB algorithm is shifted to the right for the
proposed method indicating the improvement in the link-beam
performance. Since the link-beams carry physical downlink
shared channel (PDSCH) data, the improvement in link-beam
RSRP will increase the downlink throughput for the UE. The
quantum of improvement depends on among other things,
channel condition, interference perceived by the UE.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed a HO algorithm for 5G system
using RL. We showed that the HO problem can be posed as a
sub-class of RL problems called CMAB. We showed how such

a system can be developed using a Q-learning method. We also
discussed mitigation strategies for some of the challenges of
the design such as state-space explosion by building a Q-Table
with representative states during the training phase and with
suitable choice of similarity function to pick the closest state
in Euclidean space during the active phase for HO inference.

We assessed the performance for different deployment and
propagation environments including an ITU standard based
one. We demonstrated the utility of the method through
average link-beam performance using a semi-deterministic
mobility model in three distinct environments. In all the
considered environments, the proposed method of this paper
performs better than the existing methods. The results also
indicate that when the link-beams are narrow and penetrate
deep into the neighbor cells, which will be common in dense
5G cellular deployments in mmWave band, the RL based HO
algorithm performs better due to the increased opportunity to
optimize long-term link gains.
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