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Abstract—In order to satisfy the ever-growing Quality of Ser-
vice (QoS) requirements of innovative services, cellular commu-
nication networks are constantly evolving. Recently, the 5G Non-
Standalone (NSA) mode has been deployed as an intermediate
strategy to deliver high-speed connectivity to early adopters of 5G
by incorporating Long Term Evolution (LTE) network infrastruc-
ture. In addition to the technological advancements, novel com-
munication paradigms such as anticipatory mobile networking
aim to achieve a more intelligent usage of the available network
resources through exploitation of context knowledge. For this
purpose, novel methods for proactive prediction of the end-to-end
behavior are seen as key enablers. In this paper, we present a first
empirical analysis of client-based end-to-end data rate prediction
for 5G NSA vehicle-to-cloud communications. Although this
operation mode is characterized by massive fluctuations of the
observed data rate, the results show that conventional machine
learning methods can utilize locally acquirable measurements
for achieving comparably accurate estimations of the end-to-end
behavior.
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I. INTRODUCTION

Data is anticipated to become the “new oil” of the au-
tomotive industry. While traditionally, moving vehicles were
only regarded as means for personal transportation, their role
within the Intelligent Transportation Systems (ITSs) is cur-
rently experiencing a significant transformation. Due to their
various sensing and communication capabilities, cars are able
to become moving sensor nodes and act as the main resources
of novel data-driven services in the context of traffic sensing,
High Definition (HD) mapping of the geographic and the radio
environment, as well as for distributed weather and air quality
sensing. As a consequence of the rise of the vehicular big
data paradigm, the resource optimization of the vehicle-to-
cloud communication has become an emerging research field
[1], [2]. According to a recent study by Cisco [3], connected
car services are expected to become the fastest growing type of
Internet of Things (IoT) connections in the next years with an
expected Compound Annual Growth Rate (CAGR) of 30 %.

In parallel to the intensification of the resource demands and
QoS requirements of the novel applications and services, cel-
lular communication networks are subject to a technology evo-
lution that aims to achieve a more efficient usage of the shared
radio channel and the limited spectrum resources. To this date,
the deployment of the emerging 5G network technology has
started worldwide. While the 5G vision consists of the three
major building blocks Enhanced Mobile Broadband (eMBB),
Massive Machine Type Communications (mMTC), and Ultra
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Fig. 1. Schematic comparison of the 5G SA and NSA network architectures.
This work focuses on 5G NSA end-to-end data rate prediction from the mobile
device through the public cellular network to an application server.

Reliable and Low Latency Communications (URLLC), most
operators rely on a sequential approach for implementing these
novel mechanisms. The 5G NSA mode is an intermediate
approach for offering the users eMBB-compliant data rates. As
shown illustrated in Fig. 1, this is realized through integrating
new 5G Radio Access Network (RAN) components into
existing LTE networks. In contrast to that, the full-featured
5G Standalone (SA) mode will rely on a dedicated 5G core
network that allows for future implementation of network
slicing, mMTC, and URLLC.

Anticipatory mobile networking [4] is a novel communi-
cations paradigm that proposes the exploitation of context
knowledge for proactive system and network optimization. As
pointed out by a recent white paper of the 5G Automotive
Association (5GAA) [5], this approach is expected to become
one of the key enablers for future connected and autonomous
driving. Client knowledge about the end-to-end communica-
tion efficiency — e.g., represented by the predicted end-to-
end data rate — allows the mobile clients to become parts
of the network fabric and contribute to improving the overall
network efficiency, e.g., via multi-Radio Access Technology
(RAT) networking [6] and opportunistic data transfer [2], [1].

In continuity to previous work [7], which presented an em-
pirical analysis of client-based data rate prediction in vehicular
LTE networks, this paper investigates the usage of machine
learning for end-to-end data rate prediction in vehicular 5G
NSA networks. To the best of our knowledge, this study
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represents the first empirical analysis of this network type in
real world vehicular 5G NSA scenarios.

The remainder of the paper is structured as follows. After
discussing the related work in Sec. II, an overview of the
methodological setup for the real world data acquisition is
given in Sec. III. Afterwards, an in-depth study of machine
learning-based data rate prediction is given in Sec. IV.

II. RELATED WORK

Although in theory, the interplay of the different mech-
anisms within cellular communication networks can be de-
scribed deterministically, the massive system complexity typ-
ically does not allow to derive accurate analytical models
of end-to-end processes [7]. Machine learning methods are
inherently capable of closing this gap as they allow to un-
cover and exploit hidden dependencies between measurable
indicators. As a consequence, they have started to penetrate
all areas related to wireless communications. A comprehensive
summary of applications, methods, and challenges is provided
by Wang et al. in [8].

Client-based data rate prediction can be either performed
actively or passively. Active prediction approaches such as
LinkForecast [9] rely on continuous time-series analysis of on-
going data transmissions that are usually exclusively injected
for performing the measurements. However, vehicle-to-cloud
communications is typically non-continuous and is character-
ized by event-controlled medium access patterns (e.g., through
timer mechanisms or opportunistic methods). As analyzed by
Raida et al. in [10], another issue is that active prediction ap-
proaches can be impacted by self-interference due to distortion
of network context measurements such as Reference Signal
Received Quality (RSRQ). Consequently, passive prediction
approaches, which only rely on passively acquirable indicators,
have achieved wider adoption in the scientific community.
To the best of our knowledge, the only empirical study of
client-based 5G data rate prediction has been published by
Narayanan et al. in [11]. However, the authors focus on the
millimeter Wave (mmWave) frequency range which requires
the consideration of technology-specific impact factors such
as the relative angle between the antenna panels and the User
Equipments (UEs). Several research works have addressed
passive data rate prediction within LTE networks. Due to the
continuity of the 3rd Generation Partnership Project (3GPP)
standardization of the physical layer measurements [12], these
studies are still highly relevant for 5G communications. We
summarize the main conclusions from literature as follows:

• Measurable context indicators such as signal strength
and signal quality are highly correlated to the end-to-
end data rate. However, simple prediction models using
single indicators (e.g., Signal-to-Inteference-Plus-Noise
Ratio (SINR)) do not yield accurate prediction results as
they only consider parts of the implied effects. In contrast
to that, machine learning methods are able to exploit the
joint knowledge of all locally measurable indicators [13],
[14], [7].
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Fig. 2. Illustration of the novel Android measurement application.

• The integration of knowledge about the payload size
of data packets allows to implicitly consider hidden
cross-layer dependencies (e.g., between transport layer
mechanisms and the channel coherence time) within the
predictions models [7].

• Assuming a proper model tuning, there are only minor
differences between the classes of machine learning
models. Nevertheless, tree-based approaches such as Ran-
dom Forest (RF) often outperform more complex methods
such as (deep) Artificial Neural Network (ANN) which
suffer from the curse of dimensionality. In addition, they
often also allow for less complex model tuning [15], [16],
[14], [7].

• A major limitation for the achievable accuracy of client-
based methods is that UEs are mostly unaware of the
intra-cell traffic load [17]. As demonstrated in [18], co-
operative data rate prediction, which incorporates network
infrastructure knowledge, is a promising approach for
improving the achievable prediction accuracy.

For the future network evolution beyond 5G [19], there is
already a consensus that pervasive intelligence will be one of
the key drivers. In this context, the high grade of platform
heterogeneity will require to adopt machine learning models
with respect to the platform-specific resource constraints such
as the computational power and the achievable memory, and
energy efficiency [20].

III. REAL WORLD DATA ACQUISITION METHODOLOGY

For performing the real world measurements, we devel-
oped a novel Android application (see Fig. 2) that uses
the native Aplication Programming Interface (API) to mon-
itor CellSignalStrengthNr updates that report signal
strength and signal quality indicators. In addition, the novel
application integrates iperf 3.9 for performing data rate
measurements of active data transmissions in uplink and
downlink direction. The latter are performed with a fixed
interval of 10 s, whereas a random payload size is selected
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Fig. 3. Overview of the measurement locations and the respective 5G
coverage within the German federal state of North Rhine-Westphalia.

from 1 MB to 10 MB in order to pay attention to cross-layer
dependencies (e.g., between the implied transmission duration
related to the payload size and the channel coherence time).
Each active measurement is annotated with the corresponding
context indicators (see Sec. IV).

The selection of an adequate measurement device is a non-
trivial task as not all chipsets report the required context
measurements to the user space. After an initial investiga-
tion, we selected the OnePlus 8 Pro (Qualcomm Snapdragon
865 System-on-a-Chip (SoC)) as a measurement device. For
completeness, it is remarked that we initially considered the
usage of additional measurement devices Huawei Mate 20
X 5G, Samsung Galaxy S10 5G, and Samsung A90 5G.
However, here we encountered the problem that the chipset
of these devices did not support a specific NSA frequency
combination where LTE operates at 1800 MHz and 5G is
applied at 2100 MHz. As this frequency combination is widely
utilized by the analyzed Mobile Network Operator (MNO)
in the considered scenarios, the 5G coverage was massively
reduced (from 78 % to 54 % in the Dortmund scenario) which
rendered the usage of these devices practically unusable.

As illustrated in Fig. 3, the real world measurements cover
campus, suburban, urban, and highway areas in the German
cities Bonn, Cologne, Dortmund, and Hamm. The overall data
set consists of 8349 active measurements and 43.12 GB of
transmitted data. We also compared our measurements with the
official statements of the MNO concerning the 5G coverage
within the considered scenarios. Without further consideration
of the intended receiver sensitivity, it turned out that the MNO
optimistically claimed to achieve 92.82 % 5G coverage while
our measurement only achieved 72.78 %.

For strengthening the reproducibility and the reusability
of the empirical results, we provide the source code of the
developed application and the obtained raw measurements in

an Open Source manner1.

IV. CLIENT-BASED END-TO-END DATA RATE PREDICTION
FOR 5G NSA NETWORKS

Data rate prediction is a regression task. Hereby, a machine
learning model fML is trained offline using N feature vectors
— the context measurements — X = [x0, ...,xN ]

ᵀ with
corresponding labels — the data rate measurements — y
such that fML : X → y. Afterwards, the trained model
can be utilized to make predictions ỹ for unlabeled context
measurements x as ỹ = fML(x).

Each feature vector x = (xnet,xmob,xapp) is composed of
individual context measurements from three different logical
domains:

• Network context xnet: Reference Signal Received Power
(RSRP), RSRQ, SINR, SS-RSRP, SS-RSRQ, SS-SINR,
Timing Advance (TA), Carrier frequency

• Mobility context xmob: Velocity, Cell ID
• Application context xapp: Payload size of the data packet

to be transmitted

It is remarked that for RSRP, RSRQ, and SINR, two variants
are utilized. The regular version denotes the Reference Signal
(RS) indicators of the link to the evolved Node B (eNB) master
node whereas the Synchronization Signal (SS) variants refer to
the connection to the next generation Node B (gNB) secondary
node according to [12].

For performing the actual machine learning-based data
rate prediction, different regression models, for which the
hyperparamters are determined using an initial grid search
optimization, are applied.

• Linear Regression (LR)
• Artificial Neural Network (ANN) [21] using the Adam

optimizer and Rectified Linear Unit (ReLU) activation
function

• Random Forest (RF) [22] with active pruning
• Support Vector Machine (SVM) [23] using the Radial

Basis Function (RBF) kernel
• Xtreme Grandient Boosting (XGB) [24]

A summary of the protocol- and transmission direction-
specific hyperparameter values is given in Tab. I. All machine
learning evaluations are performed with the scikit-learn
[25] toolkit.

In order to evaluate the performance of the prediction
models, we consider the Root Mean Square Error (RMSE)
that is computed as

RMSE =

√∑N
i=1 (ỹi − yi)

2

N

with ỹ being the prediction with corresponding ground truth
measurement y of the N measurements. For achieving a better
understanding of the generalizability of the achieved results,
we perform 10-fold cross validation.



TABLE I
HYPERPARAMETERS OF THE MACHINE LEARNING MODELS

Model Hyperparameter TCP UDP
UL DL UL DL

LR Fit intercept True True True True
Normalize True True False True

ANN

Learning rate η 0.2 0.01 0.01 0.01
Momentum α 0.001 0.001 0.3 0.3
Network architecture [10,5] [10,10,10] [10,5] [10,5]
Number of epochs 2000 1000 1000 1000

RF Max depth 100 100 31 100
Number of trees 406 203 406 203

SVM Regularization C 100 100 100 100
Kernel coefficient γ Scale Auto Auto Auto

XGB

Max depth 1 10 10 1
Number of trees 1000 10 100 361
Min loss reduction γ 0.00 6.66 0.00 0.00
Regularization λ 0.25 1.0 0.75 0.5

UL: Uplink, DL: Downlink
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Fig. 4. Comparison of the achieved data rate prediction accuracy for
different machine learning models, transmission directions, and protocols. For
reference, the dashed lines illustrate the 10 % level of the direction-specific
data rate. The errorbars show the standard deviation over the different runs
of the 10-fold cross validation.

A. Comparison of Machine Learning Models

At first, the performance of the regression models is com-
pared. The results of the 10-fold cross validation are shown
in Fig. 4. As the RMSE should be assessed relatively to
the respective value range of the target variables (also see
Fig. 5), the overlayed dashed lines show the 10 % level of
the measured data rate values as reference. In general, User
Datagram Protocol (UDP) shows larger RMSE values than
Transmission Control Protocol (TCP) since higher peak data
rates are achieved for both directions. Depending on transport
protocols and transmission directions, the RF RMSE can be
approximated as 6 % to 11.5 % of the maximum data rate.
While in all variants, the lowest RMSE is achieved by the RF
model, there are only minor differences between the (well-
tuned) prediction models. It is remarkable that even simple
approaches such as LR are able to achieve a comparably

1The raw measurements are available at https://github.com/
hendrikschippers/CNI-Cell-Tracker
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Fig. 5. Comparison of the RF-based data rate predictions and corresponding
measurements. The diagonal lines show the behavior of hypothetically perfect
prediction models. In addition, the 90 % and 99 % percentiles of the empirical
measurements are shown.

high prediction accuracy. For completeness, it is remarked
that minor changes of the hyperparameters of the ANN and
SVM can lead to completely different prediction results. In
contrast to that, the tree-based models allow for more intuitive
and less sensitive parameter optimization. With respect to
its outstanding performance, the further paragraphs focus on
providing additional information for the RF model.

The scatterplots in Fig. 5 illustrate the scenario-specific
distributions of the predictions and measurements for the dif-
ferent variants of the RF model. This visualization also shows
that global metrics such as RMSE are only able to provide
a limited insight into the behavior of the prediction models.
The 5G NSA operation mode shows a very dynamic behavior
where the peak data rates are approached infrequently. As
a consequence, the prediction models show a pessimistic
behavior: As an example, for the TCP uplink model, 90 % of
the measurements are below 27 % and 99 % are below 60 % of
the maximum data rate. In addition, the generalizability of the
prediction model is constrained by the high grade of network
heterogeneity over the different evaluation scenarios. Since the
highest uplink data rates in Cologne are not observed in other
scenarios, they would not be predicted if the Cologne data was
removed from the training set.
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Fig. 6. RMSE cross-scenario performance evaluation of the RF models. Agg:
Aggregated data of all scenarios, Bo: Bonn, Co: Cologne, Do: Dortmund, Ha:
Hamm.

B. Cross-Scenario Model Generalization

In order to analyze the generalizability of RF-based data
rate prediction, a cross-scenario performance evaluation is
performed. For this purpose, the overall data set D is split
into the i scenario-specific subsets. Within each iteration, Di

is chosen as the test set Dtrain and the remaining subsets jointly
form the training set Dtrain. The resulting RMSE matrices
for the transport protocols and transmission directions are
shown in Fig. 6. For each variant, the first column shows the
performance of the overall prediction model in each of the
individual scenarios. In this case, the aggregated training set
is composed of 90 % of the data per scenario and the remaining
10 % forms the test set.

By comparing the values of the first column R1 of the
RMSE matrix R with the main diagonal Rdiag = diag−1(R),
it can be determined if the model leverages the additional
data of the other scenarios for achieving better predictions
(R1 < Rdiag) or if it rather benefits from applying a more
local perspective (Rdiag < R1). For all variants, the results
are ambiguous and no clear trend can be identified. It is
remarked that these findings are partially opposed to our
previous analysis of LTE communications in [7] where we
— in compliance with general data science principles [26] —
concluded that the machine learning models benefit more from
additional data than from applying a more local perspective.
However, the 5G NSA results illustrate that in some cases,
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Fig. 7. Relative feature importance of the RF model based on MDI analysis.
The overlayed pie chart illustrates the overall feature importance per context
domain.

heterogeneous and non-converged networks — the 5G market
penetration is still in the early adoption phase — require a
deeper consideration of the local phenomena.

Analogously, the first row Rᵀ
1 shows the capability of each

scenario-specific model to induce the behavior of the overall
data set. While none of scenario-specific models is able to
approach the performance of the cross-validated aggregated
data set, there are also significant differences between the sce-
narios. Here, the highest average generalization is achieved by
the Dortmund scenario. These findings illustrate that machine
learning models for end-to-end data rate prediction require
a high grade of versatility of the features and labels. As an
example, a model that is only trained on the Bonn scenario
is unable to predict the higher data rates that occur in the
Cologne scenario.

C. Relative Feature Importance

In order to gain insight into the interplay of the different
features of the RF model, the MDI-based relative feature
importance [27] is analyzed in Fig. 7. It remarked that the
interpretation of these results is non-trivial: The MDI only
represents the internal description of the measurements by the
RF model which does not necessarily equal the underlying
real world impact factors. The results show a high similarity
between the two transmission directions, which indicates that
network quality is often symmetric and that passive downlink
indicators provide meaningful information for estimating the
uplink behavior. Although for both protocols, the network
context xnet is the most significant context domain, the payload
size of the data packet is the most important individual
feature for TCP. This observation is in compliance with earlier
LTE measurements of [7] and can be explained by the slow
start mechanism and potential retransmissions. In contrast to
that, the network context features have an even increased
significance for UDP with the carrier frequency being the most
relevant individual feature. The latter can be regarded as a
weighting factor that scales the impact of the other network
context features. In all variants, the importance of the SS-
SINR is very low as this indicator is rarely contained in the



measurement reports of the UE. However, as the respective
calculation and reporting mechanisms are not standardized
by 3GPP and depends on the modem manufacturer, this
observation might be specific for the considered measurement
device.

V. CONCLUSION

In this paper, we presented an empirical analysis of client-
based data rate prediction in vehicular 5G NSA scenarios
that covers TCP and UDP in uplink and downlink direction.
Although 5G NSA already delivers eMBB peak data rates,
a large amount of data rate measurements occur in the lower
regions. This dynamic behavior renders 5G data rate prediction
a challenging task and illustrates that the NSA operation
mode is not yet able to provide the QoS guarantees for
highly resource demanding services such as teleoperation.
However, our analysis also shows that the general principles
of machine learning-based data rate prediction that utilizes
context measurements as input features are still applicable. In
all variants, the RMSE can be approximated as 6 % to 11.5 %
of the MNO- and protocol-specific maximum data rate. It is
remarked that the 5G adoption rate is in the early market
stage and the chasms towards the mainstream market is yet
to be crossed. Thus, we will monitor the further developments
towards a more converged network state, especially in the light
of spectral resource competition implied by increasing number
of active users. Moreover, we will extend our data set with
measurements for other MNOs and evaluation scenarios.
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