DisTrRIBUTED Al

Usin

Archon fo Develop

Real-World DAI Apphcanons,

Part 1

Nick R. Jennings and E.H. Mamdani, Queen Mary and Westfield College

Jose Manuel Corera, Iberdrola
Inaki Laresgoiti, Labein

Fabien Perriollat, Paul Skarek, and Laszlo Zsolt Varga, European Laboratory for Particle Physics

' N MANY INDUSTRIAL APPLICA-
tions, substantial time, effort, and finances
have been devoted to developing complex
and sophisticated software systems. These
systems are often viewed piecemeal—as iso-
" lated islands of automation—when, in real-
ity, they are components of a much larger
business function.! A holistic perspective can
ntegrate the subsystems into a coherent and
consistent supersystem in which they work
together to better meet the entire applica-
tion’s needs. Because the subsystems are
integrated, the finite budgets available for
information technology development can be
made to go further. All the problem solvers
can share consistent and up-to-date versions
of the data; basic functions need only be
implemented in one place; problem solving
can use timely information that might not
otherwise be available; and so on.
Developing a well-structured distributed
artificial intelligence (DAI) system requires
a software framework that assists interaction
between the subcomponents, and a design
methodology that helps structure these inter-
actions. Archon (architecture for cooperative
heterogeneous on-line systems)>> addresses
both of these facets. It provides a decentral-
1zed software platform that offers the neces-

ARCHON PROVIDES A SOFTWARE FRAMEWORK THAT

ASSISTS INTERACTION BETWEEN THE SUBCOMPONENTS OF |
A DISTRIBUTED Al APPLICATION, AND A DESIGN

METHODOLOGY THAT HELPS STRUCTURE THESE

sary control and leve] of integration to help
the subcomponents work together. It also
provides a concomitant methodology that
offers guidance on how to decompose the
overall application and how to distribute the
constituent tasks throughout the community
to best use the capabilities of the Archon
framework.

The Archon project has applied both of
these facets to several real-world industrial
applications. Two of these applications, elec-
tricity-transportation management and par-
ticle-accelerator control, have run on line in
the organizations for which they were devel-
oped—Iberdrola, a Spanish electric utility,
and the European Laboratory for Particle
Physics (CERN). (Several other real-world
applications have also used Archon software
and methodology: electricity distribution and

INTERACTIONS.

supply,* control of a cement kiln complex,’
and control of a flexible robotic cell.® How-
ever, these are not yet operational in their
host organizations.)

Designing a multiagent
community

Archon’s problem-solving entities are
called agents; they can control their own
problem solving and interact with other
community members. The interactions typ-
ically involve agents cooperating and com-
municating with one another to enhance
their individual problem solving and to bet-
ter solve the overall application problem.
Each agent consists of an Archon layer and
an application program (known as an inrel-

Part of this article was adapted from “ARCHON: A Distributed Artificial Intelligence System for Industrial Applications,” by Nick R. Jennings and David
Cockburn, in Foundations of Distributed Artificial Intelligence, G.M.P. O’Hare and N.R. Jennings, eds. Copyright © 1996 John Wiley & Sons, Inc. Used
with permission. To order copies of this title, please call 1-800-CALL-WILEY.

64

0885-9000/96/$4.00 © 1996 TEEE

IEEE EXPERT

ligent system). The Archon approach clearly
distinguishes between an agent’s social
know-how (the AL) and its domain-level
problem solving (the IS). Such an approach
is flexible and open—imposing relatively
few constraints on the application designer,
yet providing many useful facilities. Cus-
tom-built ISs can use Archon to enhance
their problem solving and to improve their
robustness. However, preexisting ISs can
also be incorporated into an Archon-based
system, with a little adaptation, and can
experience similar benefits. Incorporating
preexisting ISs is important, because in
many cases developing the entire applica-
tion afresh would be too expensive or too
large a departure from proven technology.”

To successfully incorporate both. custom-
built and preexisting systems, system design-
ers must design the community from two dif-
ferent perspectives simultaneously. This
involves a top-down approach to look at the
application’s overall needs and a bottom-up
approach to look at the capabilities of the
existing systems. Once designers have iden-
tified the gap between what is required and
what is available, they can choose to provide
the additional functions through new systems,
through additions to the existing systems, or
through the Archon software itself. This
methodology, which is described more thor-
oughly by Laszlo Varga and his colleagues,*3
shapes the design process by providing guide-
lines for problem decomposition and distri-
bution that reduce inefficiencies.

The design process has two main phases:
problem analysis and actual design. The for-
mer should encompass both the preexisting
systems and potentially necessary new sys-
tems. The preexisting systems and their users
together already form a partially automated
multiagent system. The designers then must
extend and enhance this system, by discover-
ing all additional cooperative action in the
analysis phase, and by applying the tools pro-
vided by the Archon architecture, wherever
they pertain, in the design phase. The analysis
phase must identify and document the inter-
actions between the existing systems, between
the existing systems and their users, and
between the different users, for later use in the
design phase. The analysis phase might also
conclude that some of the existing systems
must be split up into several distinct agents—
for example, to increase their maintainability
or to increase the attainable parallelism.

The actual agent community design goes
top-down from the community level to the

Figure 1. Archon agent architecture.

individual tasks. On the community level, the
designers must decide the granularity of the
agents: whether it corresponds to the granu-
larity of the preexisting systems (that is,
whether each existing system should be
encapsulated as an agent) or whether a finer
decomposition is more appropriate. Then
they must determine each agent’s role in the
community and the decomposition of that
role into separate skills within the agent.
Another important methodological ques-
tion relates to the user interface: does the
designer hide all agents behind one interface,
or should each agent have its own interface
(and hence make all the interactions visible)?
The former approach suits applications in

- which the users view the multiagent system

as a single unit, while the latter approach is
better for applications where agents mainly
serve their own goals.

Knowing the skills in the community,
designers can describe the types of messages
that agents send each other, and can decide
the mechanisms to disseminate information
among the agents. After these steps and deci-
sions, they can instantiate the AL directly.

The Archon architeciure and
software framework

The Archon software has integrated a wide
variety of application program types under the
general assumption that the ensuing agents
will be loosely coupled and semiautonomous.
The agents are loosely coupled because the
number of interdependencies between their
respective ISs are minimized; the agents are

semiautonomous because their control regime
is decentralized (each individual ultimately
decides which tasks to execute in which
order). The ISs themselves can be heteroge-
neous—in terms of their programming lan-
guage, their algorithm, their problem-solving
paradigm, and their hardware platform (Clau-
dia Roda and her colleagues give a complete
taxonomy and its effect on system design®).
Their differences are masked by a standard
AL-IS interface. An AL views its IS in a purely
functional manner; it expects to invoke func-
tions (tasks) that return results; and a fixed lan-
guage* manages this interaction.

An Archon community has no centrally
located global authority; each agent controls
its own IS and mediates its own interactions
with other agents (acquaintances). Each
community member’s local goals express the
system’s overall objectives. Because the
agents’ goals are often interrelated, an
Archon-based system requires social inter-
actions to meet global constraints and to pro-
vide the necessary services and information.
The agent’s AL controls such interactions;
relevant examples include asking for infor-
mation from acquaintances, requesting pro-
cessing services from acquaintances, and
spontaneously volunteering information that
the agent believes is relevant to others.

In other words, an agent’s AL needs to
control tasks in its local 1S, decide when to
interact with other agents (for which it needs
to model the capabilities of its own IS and
the ISs of the other agents), and communi-
cate with its acquaintances. Archon’s mod-
ular and layered implementation architec-
ture (see Figure 1) embodies these basic

DECEMBER 1996

65

IS task
topology update

IS task name

UpdateTopology
withAlarms 4

Figure 2. UpdateTopologyWithAlarms monitoring unit.

Figure 3. StartNewDiagnosis plan.

requirements in four modules: the monitor,
planning and coordination module, agent
information management module, and high-
level communication module. :

Monitor. The monitor controls the local IS,
using three levels of representation: moni-
toring units, plans, and behaviors.

MUs. Monitoring units are the finest level of
control in the AL; an MU represents each IS
task. MUs present a standard interface to the
monitor whatever the host programming lan-
guage and hardware platform of the undex-
lying IS. Figure 2 represents an MU from
the Iberdrola application, called Update-
TopologyWithAlarms, which takes
ALARM-MESSAGES and DISTURBANCE-
ID as inputs, and outputs UPDATED~TOPOL--
OGY. The IS task associated with this MU is

called UpdateTopologyWithAlarms in
the AL and topology update in the IS.
MUs can send and receive messages
(directives, confirmations, and requests) to
and from the IS. All messages have to pass
through the AL-IS interface, which performs
the translation and interpretation required
for the IS to understand the AL directives
and for the AL to understand the IS mes-
sages. For instance, in the above example,
the interface invokes the IS function
topology update, passes the argu-
ments in.the form in which they are expected
by the IS’s host language, and returns the
updated topology in the format expected by
the AL. For the IS to be able to react to an
AL directive, the interface must translate the
command into the corresponding local con-
trol actions. However, this interpretation
depends on the vagaries of the IS—for

example, ABANDON in a C program might
involve killing a process, whereas in a rule-
based system it might mean clearing all the
facts asserted by the said task and then stop-
ping. Such fundamental differences in the
way the same AL communications function
in different ISs mean that the interface com-
mands must be specialized for the IS’s pro-
gramming language and implementation
paradigm. (We’ll discuss later how we car-
ried this out for the CERN application.)
Other interface functions include specifying
how many invocations of a particular task
can run in parallel and how many can be
queued should that limit be reached.

Plans. At the next level of granularity are
plans. Plans are prespecified acyclic OR-
graphs in which the nodes are MUs and the
arcs are conditions. These conditions can
depend on data already available from pre-
viously executed MUs in the plan or on data
input to the plan when it started. They can
use the locking mechanism for critical sec-
tions of the plan and can return intermediate
results before a plan has completed.

Figure 3 shows a sample plan that starts the
fault-diagnosis activity in the Iberdrola appli-
cation. First, ALARM-MESSAGES are input to
the SetNewFault MU, which notes a new
fault in the network and generates a new iden-
tifier (DISTURBANCE-1ID) for it. The MU
returns this identifier as one of the plan’s inter-
mediate results. The alarm messages and the
disturbance identifier then become inputs to
the UpdateTopologyWithAlarms MU.
When this MU is complete, the model of the
network on which the diagnosis will be based
is up to date, so identification of a list of poten-
tial faults can commence. This activity can pro-
ceed in two ways. The plan checks whether an
agent called BRS has already provided a list of
generated hypotheses (and stored it in the agent
information management module’s domain-
data component). If so, these hypotheses should
form the start point (the HypothesisGen-
erationFromForeignSource MU should
execute). If no pertinent information is avail-
able, the plan should generate the list from
scratch (the HypothesisGeneration MU
should execute). In this case, the plan returns
the list of generated hypotheses as an interme-
diate result so that they can be used elsewhere
in the agent or can even be disseminated to rel-
evant acquaintances. ‘

The plan mechanism has a built-in back-
tracking facility that can express preferences
and deal with complex alternatives. Consider

66

IEEE EXPERT

Figure 4. ReceiveAlarms plan (with backtracking).

the plan ReceiveAlarms (see Figure 4),
which determines what course of action an
agent should take when it receives alarm
messages. This plan has three possible steps:

1) See whether the alarms correspond to a
known ongoing fault.

2) See whether the messages have been
generated by planned maintenance
(maneuvers) on the network.

3) See whether the alarms correspond to a
new fault.

The monitor first tries the leftmost branch and
executes the OngoingFault MU. If this
MU cannot give a disturbance identifier for
the alarms, they cannot correspond to a known
fault, so this branch fails. If, on the other hand,
the MU finds an identifier, then the plan mech-
anism traverses the rest of the branch. In the
case of failure, the mechanism backtracks to
the last successful execution (the Collect -
Alarms MU) and tries the next branch (the
Maneuvers MU)—this branch fails if the
disturbance identifier associated with the
alarms does not have the tag MANEUVERS.
Finally, if the alarms are not generated by
maneuvers, they correspond to a new fault, so
monitor invokes the StartNewDiagnosis
branch (see Figure 3). This branch never fails,
so the ReceiveAlarms plan will success-
fully terminate when the plan completes.

Behaviors. The highest level of representation
for IS activities is the behavior level. Behav-
iors contain a plan, a trigger condition for acti-
vating the behavior, descriptions of the inputs
needed by the activity and the results that will
be produced, and any children of the behav-
ior. There are two types of behavior: those that
are visible to the planning and coordination
module (and the other AL components) and

those that are purely internal to the monitor
(for example, Ref ineHypotheses and
validateHypotheses in Figure 5). The
former type, called skills (for example, Diag-
noseFaults in Figure 5), can be triggered
by new data (those arriving from other agents
or those that the agent itself has generated) or
by direct requests from other agents.

DiagnoseFaults triggers when the
ReceiveAlarms plan detects a new fault.
It requires a block of alarm messages as an
input and executes the StartNewDiag-
nosis plan (see Figure 3). When this plan
is complete, the monitor considers the child
behaviors.

The leftmost behavior (RefineHy-
potheses) processes first. It takes the list
of generated hypotheses from the Start-
NewDiagnosis plan and tries to refine them
(a process that involves removing impossible
alternatives—see “A cooperative scenario” in
Part 2 for more details). The behavior checks
first whether the agent has the domain data
INITIAL-AREA-OUT~OF-SERVICE in
its agent information management module. If
it does, the REF1 (refinement 1) MU executes
and the Ref ineHypos plan successfully ter-
minates. If no initial area is out of service, the
behavior examines the next branch of the plan.
Again, the behavior evaluates the condition
on its arc. If the agent has received a list of val-
idated hypotheses from agent BRS, the REF2
MU executes and the plan successfully com-
pletes. If this condition is untrue, the behav-
ior tries the third arc—this tests whether the
agent has received a list of generated hypothe-
ses from agent BRS. If it has, the REF3 MU
executes and the plan successfully terminates.
If not, then all of the alternatives have been
exhausted—hence, the Re f ineHypos plan
has failed and so, in turn, has the Refine-
Hypotheses behavior.

If the RefineHypotheses behavior
succeeds (that is, REF1, REF2, or REF3 exe-
cutes), its child, validateHypotheses,
executes next. If it fails, the monitor invokes
the backtracking mechanism, and the alterna-
tive child of DiagnoseFaults (which is
also ValidateHypotheses)executes. In
either case, ValidateHypotheses takes
the generated and refined hypotheses (the lat-
ter only if they are available—RefineHy-
potheses might have failed) as inputs and
executes the Diagnose plan, which pro-
duces VALIDATED-HYPOTHESES. Because
this behavior has no children, it is deemed fin-
ished—-this, in turn, means that the Diag-
noseFaults skill has successfully com-
pleted. (We’ll present the actual code for many
of these monitor concepts in “Part 2: Elec-
tricity Transportation Management” and “Part
3: Particle Accelerator Control.”)

Agent information management module.
The AIM is a distributed-object-management
system that was designed to provide infor-
mation-management services to cooperating
agents.'® In Archon, it stores both the agent
models and the domain-level data.

Agent models. Agent models come in two
forms: self models and acquaintance models.
The self model contains information about
the local IS, and the acquaintance models
contain information about the other agents in
the system with which the modeling agent
will interact. The type of information con-
tained in both models is approximately the
same, although it varies in the level of detail,
and includes the agent’s skills, interests, cur-
rent status, workload, and so on.

To illustrate the agent models, consider
an agent, again from the Iberdrola applica-
tion, that can produce information about

DECEMBER 1996

67

Behavior (skill)

DiagnoseFaults
NewﬁaultDetected
ALARM-MESSAGES
VALIDATED-HYPOTHESES
GENERATED-HYPOTHESES
DISTURBANCE~ID

rtNewDiagnosis

Behavior
Name: RefineHypotheses

Input: GENERATED-HYPOTHESES
INITTAL~AREA~QUT-OF-SER
VALIDATED-HYPOTHESES

GENERATED-HYPOTHESES
Result: REFINED-HYPOTHESES

Plan: RefineHypos
GENERATE
HYPOTHES
(AGENT-ID

ValidateHypotheses dild hehaviors.

ALARM-MESSAGES. The interest slots of
its acquaintance models contain those
agents who are interested in receiving this
information and the conditions under which
they are interested (a null condition signi-
fies in all cases). The following portion of
an acquaintance model specifies that agent

O

Child: - (+ +) O

Behavior
Name: validateHypotheses

Input: GENERATED-HYPOTHESES
REFINED-HYPOTHESES

Result: VALIDATED-HYPOTHESES

Plan: Diagnose

Child: None

BRS is interested in alarm messages that
contain chronological information, that
agent AAA is interested only in nonchrono-
logical alarm messages, and that agent BAI
is only interested in nonchronological alarm
messages that have the string INT in their
ALARMS field (see Figure 6).

Domain-level data. In many industrial appli-
cations, the domain-level data that the agents
must exchange has a complex internal struc-
ture. In Archon, the AIM specifies and main-
tains this structure. For example, Figure 7
defines the information - type ALARM-
MESSAGES, where each of the following
types has the following set of permissible
values: AGENT (CSI | AAA), DISTURBANCE-
SOURCE (yymmddhhmms s | MANEUVERS
| UNKNOWN), Y-N-FLAG (YES | NO),
BLOCK-TYPE (UNIQUE | UNKNOWN |

‘MIXED), ID-TYPE (YYMMDDHHMMSS),

and LIST-OF-ALARMS (ALARMI, ...,
ALARMN). Figure 8 shows a specific
instance. (Based on the interest descriptor in
Figure 6, this alarm message would be
deemed of interest to agent AAA but not to
agent BRS. The first two alarm fields (both
starting with INT) would be of interest to
agent BAI, but the third field (starting with
0SCILOS) would not.)

Once domain data is stored in the AIM,
the AL’s reasoning and control mechanisms
can retrieve it (for example, the retrieval of
GENERATED-HYPOTHESES with agent
identifier BRS in the StartNewDiagno-
sis plan). Because the data has a definite
structure, it is possible to access the named
subparts (for example, the AIM can check
that CHRONOLOGICAL exists as a distinct
attribute and that it has the YES value).

Planning and coordination module. The
PCM is the reflective part of the AL, rea-
soning about the agent’s role in terms of the
wider cooperating community.!! This mod-
ule assesses the agent’s current status and
decides which actions to take to exploit
interactions with others while ensuring that
the agent contributes to the community’s
overall well-being. PCM functions include
deciding which skills should execute
locally and which skills to delegate to-oth-
ers, directing requests for cooperation to
appropriate agents, determining how to'
respond to requests from other agents, and
identifying when to disseminate timely
information to acquaintances who would
benefit from it.

The PCM consists.of generic rules about
cooperation and situation assessment that
apply to all industrial applications—the
AIM’s self and acquaintance models store
all the domain-specific information needed
to define individual behavior. To perform its
duties, the' PCM ‘refers to the self and

68

IEEE EXPERT

Figure 6. An exemplar interest slot of an acquaintance model.

Figure 7. Definifion of ALARM-MESSAGES information type.

acquaintance models. For example, to deter-
mine how to obtain currently unavailable
information needed to execute a behavior,
the PCM refers to its agent’s self model to
see if the PCM can obtain the information
locally by executing an appropriate skill. If
it cannot, it checks the acquaintance models
to see if another community member can
provide the information.

Interplay between the PCM and the agent
models also occurs when the monitor provides
some results from a behavior (for example, the
intermediate result GENERATED-HYPOTHE -
SES from StartNewDiagnosis). First,
the PCM checks the self model to see if the
data can be used locally, and then it examines
the acquaintance models to see if any other
agents are believed to be interested in receiv-
ing the data.

The PCM also refers to the self model
when deciding whether to honor a request
from another agent. If it decides to honor the
request, it activates the necessary skill to pro-
vide the requested data; when the informa-
tion is available, it ensures that the reply goes
to the request’s source.

High-level communication module. The
HLCM lets agents communicate with one
another using services based on TCP/IP. It

Figure 8. A specific instance of the AT.ARM-MESSAGES information type.

incorporates the functionality of the Interna-
tional Organization for Standardization/Open
Systems Interconnection (ISO/OSI) Session
Layer, which continuously checks commu-
nication links and provides automatic recov-
ery of connection breaks when possible. The
HLCM can send information to named
agents or to relevant agents (it decides
whether an agent is relevant by referring to
the interests registered in the acquaintance
models).

'N THE FOLLOWING TWO ARTI-
cles, we’ll describe in detail how we used
Archon to develop the CERN and Iberdrola
DALI applications. These two descriptions
complement each other: the CERN applica-
tion involves two relatively homogeneous
agents, both of which were originally con-
ceived as stand-alone preexisting systems,
and concentrates on the problems of inte-
grating them into an Archon community and
getting them to interact in a functionally
accurate, cooperative manner.'? The Iber-

drola application, on the other hand, involves
seven very heterogeneous agents, five of
which were custom built, which perform
three main types of activity (data acquisi-
tion, fault diagnosis, and service restoration)
and cooperate in different styles.

Acknowledgments

This work was carried out in the Esprit II pro-
ject Archon (P-2256), whose partners were Atlas
Elektronik, Framentec-Cognitech, Labein, Queen
Mary and Westfield College, Iberdrola, EA Tech-
nology, Iridia, Amber, the Technical University of
Athens, FWI University of Amsterdam, CAP Vol-
mac, CERN, and the University of Porto. We wrote
this article on behalf of the whole consortium; we
do not claim to have conceived or implemented all
of the concepts that we’ve described. These con-
cepts originated from interactions between all of
the consortium’s members. However, these indi-
viduals contributed significantly to certain aspects
of the project: Thies Wittig, Abe Mamdani, Erick
Gaussens (architecture design); Erick Gaussens,
Daniel Gureghian, Jean-Marc Loingtier, and
Bernard Burg (the monitor); Nick Jennings, Jeff
Pople, Jochen Ehlers, and Eugenio Oliveira (the
PCM); Frank Tuijoman, Hamideh Afsarmanesh,

DECEMBER 1996

69

and Giel Wiedijk: (the AIM); Claudia Roda and
Jutta Mueller (the HLCM); Nick Jennings (the
agent models); and Rob Aarmnts (the C-++ imple-
mentation). Juan Perez, Inaki Laresgoiti, Esther
Abel, Jon Barandiaran, Luis Fernando Penafiel,
Vicente Ferrer, Jose Corera, and Javier Echavarri
helped develop the Iberdrola system; and Laszlo
Varga, Paul Skarek, Fabien Perriollat, Joachim
Fuchs, Sergio Pasinelli, and Elena Wildner helped
develop the CERN system.

Laszlo Varga performed this research while on
leave from KFKI-MSZKI (Central Research Inst.
for Physics/Research Inst. for Measurement and
Computing Techniques), in Budapest.

References

1. N.R. Jennings, Cooperation in Industrial
Multiagent Systems, World Scientific Press,
London, 1994.

2. T. Wittig, ed., “ARCHON: An Architecture
for Multiagent Systems,” Ellis Horwood,
Chichester, United Kingdom, 1992.

3. T. Wittig, N.R. Jennings, and E.H. Mamdani,
“ARCHON —A Framework for Intelligent
Cooperation,” IEE-BCS J. Intelligent Systems
Engineering, Vol. 3, No. 3, Autumn 1994, pp.
168-179.

4. D. Cockburn and N.R. Jennings, “ARCHON:
A Distributed Artificial Intelligence System
for Industrial Applications,” in Foundations
of Distributed Artificial Intelligence, G.M.P.
O’Hare & N.R. Jennings, eds., John Wiley &
Sons, New York, 1996, pp. 319-344.

5. G. Stassinopoulos and E. Lembesis, “Appli-
cation of a Multiagent Cooperative Architec-
ture to Process Control in the Cement Fac-
tory,” ARCHON Tech. Report 43, Atlas
Elektronik, Bremen, Germany, 1993.

6. E. Oliveira and C. Ramos, “Cooperation in the
University of Porto Robotic Testbed,” tech.
report, ARCHON Public Deliverable 1050,
Atlas Elektronik, Bremen, Germany, 1993.

7. N.R. Jennings and T. Wittig, “ARCHON:
Theory and Practice,” in Distributed Artificial
Intelligence: Theory and Praxis, N.M.
Avouris and L. Gasser, eds:, Kluwer Acade-
mic Press, Dordrecht, The Netherlands, 1992,
pp: 179-195.

Nl

oo

. L.Z. Varga, N.R. Jennings, and D. Cockburn,
“Integrating Intelligent Systems into a Coop-
erating Community for Electricity Distribu-
tion Management,” Expert Systems with
Applications, Vol. 7, No. 4, Oct.—Dec. 1994,
pp. 563-579.

. R.Roda, N.R. Jennings, and E.H. Mamdani,
“The Impact of Heterogeneity on Cooperating
Agents,” Proc. AAAI Workshop on Coopera-
tion Among Heterogeneous Intelligent Sys-
tems, AAAI Press, Menlo Park, Calif., 1991.

10. F. Tuijnman and H. Afsarmanesh, “Distrib-
uted Objects in a Federation of Autonomous
Cooperating Agents,” Proc. Int’l Conf. Intel-
ligent and Cooperative Information Systems,
IEEE Computer Society Press, Los Alamitos,
Calif., 1993, pp. 256-265.

11. N.R. Jennings and J.A. Pople, “Design and

Implementation of ARCHON’s Coordination -

Module,” Proc. Workshop on Cooperating
Knowledge Based Systems, Dake Centre,
Univ. of Keele, Keele, UK, 1993, pp. 61-82.

12. V.R. Lesser, “A Retrospective View of FA/C
Distributed Problem Solving,” IEEE Trans.
Systems, Man and Cybernetics, Vol. 21, No.
6, Nov.—Dec. 1991, pp. 1347-1362.

Nick R. Jennings is a reader in the Department of
Electronic Engineering at Queen Mary & West-
field College (University of London). He heads the
Distributed AI Unit, which conducts basic and
applied research into the development of multi-
agent systems. His research interests include mul-
tiagent systems, agent-based computing, and the
information superhighway. Contact him at the
Dept. of Electronic Engineering, Queen Mary &
Westfield College, Mile End Rd., London E1 4NS,
United Kingdom; n.rjennings @ gmw.ac.uk.

Jose Manuel Corera is responsible for advanced
applications in Iberdrola’s Control Systems
Department. His research interest is software
applications for network management, including
areas such as Al, databases, and human-computer
interaction. He has a bachelor’s degree in electri-
cal engineering from the Bilbao Engineering
School and an MSc in advanced manufacturing
from the Cranfield Technology Institute. His
address is Iberdrola, Gardoqui 8, Bilbao, 48008
Spain; jose.corera@iberdrola.es.

Inaki Laresgoiti is a member of the Information
Technology Department of Labein (a research
institute in the Basque country). He is responsi-
ble for R&D in distributed systems and distrib-
uted artificial intelligence and their applicability
to the supervision of complex industrial processes.
He has been responsible for the implementation
of several knowledge-based systems for the elec-
trical utilities in the surrounding area. He is a
member of the Official College of Industrial Engi-
neers of Bizkaia. Contact him at Labein, Infor-
mation Technology Dept., Parque Tecnologico.

-Edificio 101, 48170 Zamudio, Bizkaia, Spain;

lares @labein.es.

E.H. Mamdani holds the Norte/RAE Chair of
Telecommunications Strategy and Services in the
Department of Electrical and Electronic Engi-
neering, Imperial College, London. He is well
known for his research in fuzzy logic during the
seventies and eighties. His recent research has
focused on uncertainty in artificial intelligence and
on intelligent agents for telecommunications. He
is a Fellow of the Royal Academy of Engineering
and the IEEE. Contact him at the Dept. of EE,
Imperial College, Exhibition Rd., London SW7,
United Kingdom; e.mamdani @ic.ac.uk.

Fabien Perriollat, a civil engineer in CERN’s
Nuclear Physics Experiment, is the project leader
of the controls for the Compact Muon Solenoid,
one of the two large experiments of the future
Large Hadron Collider. He has 25 years’ experi-
ence in control systems for large experimental
facilities at CERN. He is a member of the New
York Academy of Sciences. He can be contacted at
the PS Division, CERN, CH-1211 Geneve 23,
Switzerland; fabien.perriollat@cern.ch.

Paul Skarek works at CERN, where his research
focuses on introducing and applying Al in the
accelerator domain. His special interest is in expert
systems and cooperating multiagent systems. He
got his PhD in physics and in mathematics in 1960
from the University of Vienna. He is a member of
the Swiss Informaticians Society and the Austrian
Society for Artificial Intelligence. Contact him at
the PS Division, CERN, CH-1211 Geneve 23,
Switzerland; paul.skarek@cern.ch.

Laszlo Zsolt Varga is a senior scientific associate
at the KFKI-MSZKI research institute. -His
research interests include distributed artificial
intelligence and computer communication. He
graduated with distinction in 1984 and received
his PhD in 1988 from the Technical University of
Budapest. His address is KFKI-MSZKI, H-1525
Budapest POB 49, Hungary; varga@sun60.mszki.
kfki hu.

70

IEEE EXPERT

