Qualitative Models as Indices for
Memory-based Prediction

Boi Faltings
Artificial Intelligence Laboratory (LIA)
Swiss Federal Institute of Technology (EPFL)
IN-Ecublens, 1015 Lausanne
Switzerland

faltings@lia.di.epfl.ch
October 31, 1996

1 Introduction

Computational modelling has now reached a level of maturity where it is
possible to correctly simulate the behavior of a new airplane design and
thus dispense with building prototypes. However, many processes are not
understood enough to construct such detailed models. Well-known examples
of this are cement kilns or the combustion processes in an automobile engine.
It is clear that enormous benefits can be reaped if it were possible to correctly
model such processes.

The models which allow us to simulate airplanes are the result of many
years of scientific work based on careful observations of many examples.
Experimentation allowed choosing examples to prove or disprove specific hy-
potheses. This made the process of learning models from the observations
computationally tractable.

For many of the systems which we do not know how to model, it is difficult
to construct experiments giving just the crucial conclusions. Thus, even
though observations might contain all the information necessary to learn a
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correct model, it is not possible to choose the examples in a way which makes
this learning process computationally tractable and error-free.

The question then arises whether it is even necessary to learn models at
a great level of precision. The inductive learning problem in general is of
exponential complexity, so for complex systems any learning algorithm can
only provide approximations whose value is uncertain.

It has been observed that human experts often reason from particular
previous experiences. An abundant source of examples for this can be found
in the financial sections of newspapers, where the performance of certain in-
vestments is habitually explained in terms of similar cases in earlier history.
Note that this elegantly avoids the combinatorial complexity of inductive
learning: the time required for finding a similar example grows at most li-
nearly with the number of examples. Even though this retrieval operation
has to be performed once for each new situation, and thus on the order of
once for each example, the resulting complexity is at most the square of the
number of examples which is still much better than any inductive learning
scheme. The paradigm of memory-based reasoning ([3]), sometimes referred
to as instance-based learning ([1]), is intended to replicate such reasoning on
a computer (Figure 1). The difficulty now shifts from modelling the relation
between observations and a value to be predicted to deciding when a pre-
vious example is similar enough to make a good predictor. This question,
intuitively simple, turns out to be very subtle and sensitive to a careful cho-



ice of attributes and their weighting. Similarity measures which fully exploit
the information in the examples require a lot of knowledge about the system
which generated them!

Luckily, in most cases such knowledge is in fact available in the form of
qualitative models. At the qualitative level, most systems are quite well-
understood: we know that the more fuel we burn, the higher the force gene-
rated by the combustion. Even systems which are termed ”chaotic”, such as
the weather, are actually quite stable and predictable at a sufficiently high
qualitative level. Thus, the question becomes how to exploit qualitative mo-
dels in similarity metrics for memory-based reasoning. This is the topic of
this paper.

I first briefly discuss the strengths and weaknesses of the qualitative and
memory-based reasoning paradigms. I then show how the two can compen-
sate each other’s weaknesses. We have applied this idea to two different
processes: coffee roasting and decaffination. Both applications used large
amount of data collected from actual plants operated by Nestle in the UK
and Spain. They are examples of processes for which existing models can
provide only very inaccurate predictions. In both cases, attempts to predict
behavior using statistical methods and neural networks have not succeeded
in providing usable predictions. In contrast, the qualitative models used in
memory-based reasoning take into account subtleties of the process which
purely statistical criteria are likely to miss. The results are thus significantly
better than what could be obtained with conventional methods.

2 Qualitative Reasoning: structured but impre-
cise

Qualitative Reasoning attempts to model the way that human experts make
predictions in continuous systems without precise numerical information.
This involves two parts: a qualitative model, and a reasoning technique for
generating predictions.

Qualitative models have so far been investigated almost exclusively for
systems with lumped parameters. Formalisms for qualitative modeling ([4,
11, 6]) differ in many aspects but agree on the following elements:

e paramelers which take on qualitative values, for example positive (4),
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Figure 2: A mass on a spring, and ils qualitative model.

zero (0) and negative (-).
e qualitative relations, which can be either (in the notation of Forbus ([6]):

— proportionalities, where a parameter increases or decreases pro-
portionally to another. Propotionalities correspond to equations.

— influences, where a positive parameter causes another to increase
or decrease. Influences correspond to differential equations.

The qualitative model can be represented as a graph. Figure 2 shows an
example of a qualitative model.

Qualitative reasoning techniques can use such models to obtain qualita-
tive predictions. These are based on consistency of qualitative value com-
binations with the proportionalities in the qualitative model. For example,
in the model shown in Figure 2, it is impossible to have the combination
F =+4,a = —, since F is positively proportional to a.

It is also possible to qualitatively predict behavior over time. In this case,
each combination of qualitative values consistent with the proportionalities
forms a qualitative state. Influences are now used to rule out inconsistent
transitions between qualitative states. For example, in the model of Figure 2,
it is impossible to have a transition from:

r=+,F=—a=—v=—



to the qualitative state:
r=+,F=—a=—v=+

since this would contradict the positive influence between a and v: a being
negative, v can only decrease, and thus not change signs from negative to
positive. It turns out that in this example, qualitative reasoning is sufficient
to uniquely identify a single successor to each state and thus correctly predict
the oscillation of this system.

While qualitative reasoning is quite good at modelling the capabilities
of an expert, it is very rare that the limited precision provided by the sign
values is sufficient for a practically interesting problem. Numerically precise
answers can be obtained by attaching interval constraints to parameters,
as for example in Q3 [2]. Using recently improved techniques of interval
constraint propagation ([10, 5]), it is possible to obtain results with sufficient
precision to be of practical use. It is also possible to use qualitative models
for generating numerical simulation models, such as SIMGEN [7]. For diffe-
rential equations, phase space techniques ([13, 14]) can offer more accuracy.
However, these techniques require significantly more than purely qualitative
knowledge, and thus may not be realistic in many cases.

3 Memory-based Reasoning: lacking structure

In its most general form, memory-based reasoning predicts the values of
a class parameter given the values of a set of attributes by retrieving the
previous case judged to be most similar and returning its class. This implies
a metric for comparing similarities of different cases and thus comparing
different combinations of matching attributes. In order to avoid excessive
complexity, it is necessary to compose the metric from metric for individual
attribute matches. This composition presents a number of problems:

e dependencies between attribute values: if attribute a; 1s equivalent to
attribute a,, they should not be counted twice when both match.

e dependencies between the influence and attribute has on the class: if
the class ¢ = a;—a;, then only matching a; or a; gives little information
about the class. Only when both attributes match do we have an
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Figure 3: Fzample of a qualitative model.

indication that the class is also the same. Furthermore, there are many
cases where the difference between attributes is identical but which
would not match according to this criterion.

These are serious problems which are not easily solved. Many early memory-
based reasoning systems simply used a weighted nearest-neighbour metric,
where weights were chosen according to the statistical significance of the
attributes. In [3], the authors report on experiments with a variety of diffe-
rent similarity metrics. These experiments showed clearly that other metrics
were more powerful than the weighted nearest-neighbours approach. Other
authors, for example Richter ([12]), attempt a more systematic treatment of
similarity metrics based on theories of uncertain reasoning. While most of
the approaches provide an approximate solution to the problem of depen-
dencies between attribute values, they do little to address the dependencies
which might exist in the way attributes influence the class.

4 The perfect couple

The interesting aspect of qualitative reasoning is that it provides tools for
constructing accurate qualitative models of even rather complex systems.
Even for devices which are quite poorly understood, experts are able to
construct a fairly accurate qualitative model. This model can provide the
structure which is lacking for accurate similarity measures in memory-based
reasoning. Qualitative models offer a way to address both the dependencies
between attribute values themselves as well as between attribute values and



the class. Assume that the qualitative model is represented as a graph as
shown in Figure 3, and that the goal is to predict the value of parameter =
given measurements of all others as well as a library of previous cases which
give combinations of all attributes.

4.1 Instantaneous prediction

Consider first the case where prediction is instantaneous, i.e. the goal is to
predict the value of z at the same time instant as the measurement of the
attribute values. In this case, influence relations are to be ignored.

Dependencies of attribute values For evaluating the similarity of a
case, only matches in parameters which have a direct influence on the para-
meter to be predicted are of importance. Thus, in the example of Figure 3,
only matches in parameters a, b and d are significant. The degree of match
in parameters ¢ and e gives no further information about the similarity con-
cerning = and thus should be ignored entirely. Thus, given the qualitative
model, only parameters which are directly related to the class parameter are
to be taken into account.

Dependent influence on the class When more than a single parameter
is directly related to the class, their influence is dependent. Matching all pa-
rameters would ensure almost prefect prediction of the class, while matching
a single one individually might give no information at all. In fact, unless
the parameters have different orders of magnitude, it would usually be ne-
cessary to match all of them quite closely to ensure a good match of the
class. It is unlikely that such close precedents can be found. However, using
the signs assigned to qualitative proportionalities, it is possible to find cases
which provide upper or lower bounds on the true value of the class = ([9]).
In particular, assuming that p. denotes the value of p in the case and pg the
measured value of p, non-matching cases can be categorized into:

o lower bound: (a. < ag) A (b. < by) A (d. > dy)
o upper bound: (a. > ag) A (b. > by) A (d. < dp)

e irrelevant: all others



By ordering upper and lower bounds, we can construct a closest interval
within which the value of = must lie, as long as the qualitative model is
accurate and complete.

4.2 Prediction over time

Next, consider the case of prediction over time, i.e. to predict the value of the
class at some time in the future given the current measurements of the class
and related variables. Now, the influence of all parameters related to the
class through proportionalities is already included in the degree to which the
current value of the class matches. On the other hand, now the influences
become important, since they describe how a parameter will change over
time.

When the time interval over which prediction is made 1s sufficiently short,
parameter values can be assumed approximately constant. The set of relevant
parameters for the prediction can then be determined by a similar reasoning
as above to be those which are directly influencing the class parameter. Thus,
in the example of Figure 3, it is now the degree of match of parameters e
and f together with the current value of = which determine the likelihood of
the future value of = being the same.

Depending on the actual length of the time interval, changes in the para-
meters influencing the class may also have to be considered in the same way.
For the example of Figure 3, this means that matching parameter ¢ might
also be important since it influences parameter e. Thus, the set of relevant
parameters is now found as all those which are a certain maximal distance
from the class in the graph of qualitative influences.

Once the set of relevant parameters has been determined, the same method
as for instantaneous prediction can be applied to obtain bounds on the class
value to be predicted. For parameters which are not directly influencing the
class, the direction of the inequality is obtained by multiplying the influence
signs on the path between it and the class.

4.3 Statistical correctness of predictions

If the qualitative model were completely accurate, i.e. 1t would include all
relevant parameters, then the bounds obtained by the above methods would



be guaranteed. However, in practice any model leaves out certain parame-
ters, which means that it cannot be trusted in limit cases. Furthermore,
measurements may be inaccurate and falsify the result.

Hellerstein ([9]) already proposed a method whereby bounds are loosened
to obtain a certain statistical confidence level in their validity. His method
is based on not taking the closest bounding cases, but only the n-th closest,
where n depends on the level of confidence to be achieved. In our applications,
this has not improved the results, so I refer the reader to [9] for a detailed
description of this method.

5 Experience with two practical examples

In my laboratory, we have applied the approach described above to two
different applications:

e predicting several crucial parameters in the operation of a continous
coffee roaster.

o predicting the final coffeine content in a decaffination process

I now describe the major results of each application in sequence.

5.1 Modelling a coffee roaster

Coffee roasting is an inherently unstable process and must be carefully control-
led to avoid fires which destroy the entire load. The control problem was
especially difficult for a new type of ”continuous-roast” coffee roasters instal-
led by Nestle in England and Japan. The numerical models which should
form the basis for controlling the devices turned out the be highly inaccurate,
resulting in frequent fires or shutdowns during the roasting process.

A process monitoring logs records snapshots of the system at thirty-
second intervals. Each snapshot records the values of about 70 roaster para-
meters. Historical cases are provided in the form of one or more such process
logs, each containing about 2600 snapshots (24 hours of recording). In order
to give sufficient time for corrective action, the prediction should be made
10 minutes (20 samples) ahead. Thus, the monitoring logs were transformed
into a case library where each case associates a set of observations with the
value to be predicted 20 samples later.



Figure 4: A prediction obtained using the nearest-neighbor approach. The
solid line shows the actual measurements, the dolted line is the prediction.
Tics on the X-axis represent fifty-minule intervals.

The qualitative model was based on structural schemata of the device as
well as commonsense physical knowledge. It might seem desirable to involve
an expert when formulating the model. However, it often turns out that
an expert’s understanding of a complex process like coffee roasting includes
many misconceptions about how the process really works. The strength of
an expert is quantitative experience with the process, which in this case is
provided by the cases. Therefore, we consciously made not attempt to consult
experts when constructing the model; it is incomplete and possibly contains
some inaccuracies as well. By itself, it is insufficient for practically interesting
predictions about the roaster.

Based on the indices as provided by the qualitative model, a simple
nearest-neighbour approach can already provide rather accurate predictions.
Figure 4 shows a sample prediction of the roaster’s heater setting. Places
where the parameter drops to zero indicate shutdowns, and we are looking
at a particularly troublesome period. Note that the prediction is particularly
bad when the roaster is restarted. This is easily explained since restart is

10



Figure 5: Predicting bounds on the roaster temperature. The solid line shows
the actual measurement, the dotted lines give the predicted bounds.

done by operator action which is not represented in the cases!

However, the nearest-neighbour prediction fails to distinguish places where
the confidence in the prediction is high from those where this confidence is
low. Computing bounds on the actual value by classifying cases as upper and
lower bounds provides such information. Figure 5 shows a sample prediction
made using this approach, this time for predicting roaster temperature.

We selected five data files to use in all tests; logs from one roaster taken
from five days in January 1994. In all cases, the roaster was producing
the same recipe, which means that the external settings were identical. All
logs contain one or more anomalous events; normally emergency shut-downs
followed by some period of inactivity and a process restart. Depending on
the test, we use between one and four logs as the source of historical cases
(training examples), and one as a test set. Each data point in the graphs
that follow represents the average of five test runs, one using each of the logs
as a test set.

To verify our hypothesis that our approach degrades gracefully with the
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Figure 6: Bounds widen slowly as the qualitative model degrades.

quality of the input model, we ran a test in which we gradually removed
constraints from the model (see Figure 6). This test was done using the
bounding approach. Since the presence of large amounts of data tends to
improve performance the performance of poor indexing schemes (given eno-
ugh examples, even a poor indexing scheme will find an applicable example),
we emphasized the model’s importance by only using a single historical data
set in each test run.

As constraints were removed from the model, the width of the bounds
(graphed as “error”) does indeed increase, but it does so gradually. Ulti-
mately, when all constraints are removed, the only remaining index is the
variable itself; prediction of the query parameter’s future value is based so-
lely on its past value, resulting in a confidence interval with an average width
of more than 40% of the parameter’s range (each bound is more than 20%
distant from the center point).

The prediction using memory-based reasoning was the first to predict ro-
aster behavior sufficiently accurate to be useful for human operators. Earlier
attempts using neural networks had failed to achieve the required degree of
accuracy. We should however note that Marc Goodman ([8]) has achieved
results of similar quality on the same data; his system uses memory-based
reasoning with an indexing scheme derived from statistics on the data. The
main drawback of this approach is that it i1s likely to suffer from overfit-
ting: attributing unduly high importance to parameters whose relation to
the result is purely coincidental to the particular data set. Qualitative mo-
dels avoid this phenomenon by the fact that they are based on scientifically
established physical principles.

12



5.2 Modelling a decaffination process

The second example is a model of a decaffination process. This process,
typical of many processes in the food industry, extracts the main elements of
the solid coffee beans into a liquid, filters the liquid to extract the caffeine,
and then reinserts it into the solid matter. It is important to predict as
early as possible in the process whether the final caffeine contents will be
sufficiently low to satisfy the quality requirements so that corrective action
can be taken if necessary.

In order to make this prediction, we had available about 5°000' cases,
each of which gives all parameters in the decaffination of a particular load of
coffee beans as well as the final caffeine content. The prediction here is not a
prediction over time, but of the caffeine content of the current load of coffee
beans.

The qualitative model related all parameters of the process and allowed to
restrict the attention to a small number which directly influence the caffeine
content. Some of these parameters which proved statistically insignificant
were not considered. Finally, only 6 parameters were selected as important
for prediction. They are:

1. amount of total solid matter fed into the extraction cycle: positively
related to caffeine contents.

2. activity index of filter in the extraction cycle: negatively related to
caffeine contents.

3. total amount of filter material

4. amount of caffeine measured in the extraction cycle: positively related
to caffeine contents.

5. extraction time
6. extraction temperature

It is interesting to note that these were not the parameters which were most
significant in the overall statistics for predicting caffeine content. Even an

!The exact number varies between experiments because some do not contain all
parameters.
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expert in the plant operation required some time before being convinced
that these parameters were in fact useful. Intuitively, this is because they
are important only in certain combinations: suppose that the caffeine content
¢ was the sum of two independent parameters a and b: ¢ = a + b. If both
a and b vary over a considerable range, ¢ might end up being statistically
entirely independent of a and b by themselves, in spite of being very much
related to their sum. Note, however, that the most important parameter, the
initial caffeine content of the beans before the process, is unavailable.

We again predicted both individual values using the nearest-neighbour
method and intervals using the classification of cases into bounds. However,
it turned out that when using all 6 parameters, the interval prediction very
often failed to find enough cases to obtain significant lower or upper bounds.
We thus reduced the set of parameters to (1), (2) and (4) only.

Figure 7 gives an idea of the prediction error using nearest-neighbour
indexing based on the qualitative model. It shows the number of cases where
the prediction error exceeded a certain bound. The cutoff value for accepting
a batch of decaffinated coffee is about 0.05; while there are almost no cases
which have that much error, there are quite many where the prediction error
is of the same order of magnitude so that some improvements would still be
desirable.

Figure 8 shows the width of the bounds computed using the qualitative
relations. This gives an idea of how much precision can be expected from
the method. Note in particular that the interval width was never greater
than 0.05, whereas the maximum error in the nearest-neighbour method was
about 0.07.

The overall prediction accuracy of both the nearest-neighbour and the
interval-based approach is slightly better than what had been obtained with
statistical tools and a neural network, but not good enough yet to be the
basis for actual plant operation. It is likely that collecting more data will
improve the situation by making it possible to use all important indexing
parameters.

6 Conclusions

The most important problem in computing today is the software engineering
bottleneck, which is to a large extent a knowledge engineering bottleneck.
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Figure 7: Number of cases where the prediction error of final caffeine content
exceeds the given limit, using nearest neighbour indexing with indices given
by the qualitative model.
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Ever decreasing hardware costs are making techniques for efficient knowledge
acquisition all the more important.

While it would be most desirable to have computers which can learn
the required knowledge fully autonomously, the complexity of practically
interesting problems and the relative sparsity of data makes this goal difficult
to reach. Automated learning, at least for now, requires some bootstrapping
with human knowledge.

[ think that the approach outlined in this paper is an interesting direction
for resolving the knowledge engineering bottleneck. Both qualitative models
and libraries of cases can be obtained with relatively little knowledge engi-
neering effort. In combination, the two techniques neatly cover each other’s
shortcomings:

e the imprecision and ambiguities inherent in the qualitative model are
irrelevant since the cases provide numerically precise answers. The
qualitative model does not even have to be complete.

o the qualitative model provides sound and justified criteria for selecting
cases, allowing subtleties which statistical criteria are likely to miss.

More advanced techniques of qualitative modelling, for example simulation ([11])
and envisionments ([6]), could extend these techniques to devices whose qu-
alitative relationships vary over time. Also, similar techniques should be
applicable in tasks other than prediction, such as diagnosis and design.

Acknowledgements

I would like to thank Bradley Richards for implementing the coffee roaster
model, and Eric Sauthier and Christian Werner for implementing the decaf-
fination process model. Peter Duxbury-Smith and Olivier Currat provided
data for the coffee roaster and the decaffination process. Finally, T thank
Nestec SA for their support, both with expertise and financially, of this rese-
arch. Further support from the Commission pour I'innovation technologique
(CTI) of the Swiss Government is also acknowledged.

17



References

1]

2]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

D. Aha, D. Kibler, and M. Albert: “Instance-based learning algo-
rithms,” Machine Learning 6, 1991.

D. Berleant, B. Kuipers: “Combined qualitative and numerical si-
mulations with Q3,” in B. Faltings, P. Struss (eds.): Recent Advances
in Qualitative Physics, MIT Press, 1992

R.H. Creecy, B.M. Masand, S.J. Smith, D.L.Waltz: "Trading
MIPS and Memory for Knowledge Engineering,” Communications of

the ACM 35(8), August 1992

Johan de Kleer, John Seely Brown: "A qualitative physics based
on confluences,” Artificial Intelligence 24, 1984, pp. 7-84

B. Faltings: “Arc-consistency for continous variables,” Artificial Intel-

ligence 65, 1994, pp. 363-376

K. Forbus: “Qualitative Process Theory,” Artificial Intelligence 24,
1984

K. Forbus, B. Falkenhainer: “Self-Explanatory Simulations: Scaling
up to large models,” Proceedings of the 10th National Conference of the
AAAL AAAT/MIT Press, 1992

M. Goodman: “Results on Controlling Action with Projective Visu-
alization,” Proceedings of the 12th National Conference of the AAAIL
AAAI/MIT Press, 1994

J. Hellerstein: “Obtaining Quantitative Estimates from Monotone Re-
lationships,” in B. Faltings, P. Struss (eds.): Recent Advances in Quali-
tative Physics, MIT Press, 1992

E. Hyvonen: “Constraint reasoning based on interval arithmetic: the
tolerance propagation approach,” Artificial Intelligence 58, 1992, pp.
71-112

Ben Kuipers: “Qualitative Simulation,” Artificial Intelligence 29,
1986, pp. 289-338

18



[12] M.M. Richter: "On the Notion of Similarity in Case-Based Reaso-
ning,” in G. della Riccia et al (eds.): Mathematical and Statistical
Methods in Artificial Intelligence, Springer Verlag 1995, pp. 171-184

[13] E. Sacks: “Automatic analysis of one-parameter planar ordinary diffe-
rential equations by intelligent numerical simulation,” Artificial Intelli-

gence 48, 1991, pp. 27-56

[14] F. Zhao: “Extracting and representing qualitative behaviors of complex
systems in phase spaces,” Artificial Intelligence 69, 1994, pp. 51-92

19



