
A I  I N  D E S I G N

Design Rationale Systems:
Understanding the Issues
Jintae Lee, University of Hawaii

IN THE LAST FEW YEARS, INTEREST
in design rationales has grown. Design ratio-
nales are important tools because they can
include not only the reasons behind a design
decision but also the justification for it, the
other alternatives considered, the tradeoffs
evaluated, and the argumentation that led to
the decision. The use of a design rationale sys-
tem—a tool for capturing and making design
rationales easily accessible—can thus improve
dependency management, collaboration, re-
use, maintenance, learning, and documenta-
tion. However, if such systems are to keep pace
with the growing and changing demands of
design technology, researchers and develop-
ers must begin to answer certain questions.

In this article I identify seven issues, which
I have derived from an informal (undocu-
mented) survey of major existing design
rationale systems and discussions with work-
shop participants, including those in the 1992
AAAI Design Rationale Capture and Use
Workshop.1 The issues identified include
what services to provide; what parts of the
rationale to represent explicitly; how to rep-
resent, produce, and access rationales and
manage them cost effectively; and how to
integrate the design rationale system.

My goal in writing this article is to help
researchers and developers of future design
rationale systems understand the available
options and tradeoffs. No one system can hope

to address all these issues. Some will empha-
size one thing; others, another. Indeed, these
issues delineate the major dimensions along
which a design rationale system is likely to dif-
fer. But if the community can better understand
each of these issues, it will be more equipped
to produce design rationale systems that suc-
ceed in their particular application areas.

What services to provide

The services a design rationale system
provides will determine almost all other
aspects of its design, such as what to repre-
sent and how to represent the rationales.

Figure 1 shows common services classi-
fied into four major groups according to the
user group who benefits: better design
(designers), better maintenance (system
maintainers), learning (new trainee, students,
learning programs), and documentation

(future designers and maintainers). The
arrows between services indicate that a ser-
vice at the end of the arrow (tail) supports the
service at the beginning (arrowhead). For
example, using design rationales to support
dependency management or problem solving
or simulation and diagnosis improves design
and maintenance, and supports learning.
Using design rationales to support project
management helps support collaboration,
requirements engineering, or reuse—any one
of these in turn can result in better design.

Better design support.Well-structured de-
sign rationales can help designers track the
issues and alternatives being explored and
their evaluations. This, in turn, clarifies the
overall structure of the reasoning process and
supports decision making. In some cases, of
course, all this information can actually hin-
der design activities by imposing unneces-
sary overhead or breaking the natural flow

MOST CURRENT DESIGN RATIONALE SYSTEMS FAIL TO

CONSIDER PRACTICAL CONCERNS, SUCH AS COST-EFFECTIVE

USE AND SMOOTH INTEGRATION. THE AUTHOR IDENTIFIES

SEVEN TECHNICAL AND BUSINESS ISSUES AND DESCRIBES

THEIR IMPLICATIONS.

78 0885-9000/97/$10.00 © 1997 IEEE IEEE EXPERT

.



of design activities, but in most cases this
clarification leads to better design.

Theoretically, one design rationale system
can support all the services described here
both during design and before—for exam-
ple, during requirements definition.

Dependency management.Design can be
viewed as the process of managing depen-
dencies to yield a product that honors all
dependencies among requirements and the
components that implement them. Design
rationales can make explicit dependency rela-
tions among design parts, decisions, argu-
ments, and alternatives so that they work
together consistently. Some systems provide
dependency management simply by display-
ing issues that depend on the current issue,2

while more complex systemsactually detect
conflicts among various constraints.3

Collaboration/project management.Design
rationales also provide a common founda-
tion when multiple parties are involved.
Explicitly represented rationales can provide
common vocabulary and project memories,
and make it easier to negotiate and reach con-
sensus. In Shared-DRIM,3 for example,
whenever a design agent makes a recom-
mendation, the system checks to see if an
existing recommendation might conflict with
it. If so, the system informs all relevant par-
ties about the change made to the object,
identifies the cause of the change, and looks
for a constraint violation. In this way, inter-
actions among, say, engineers and contrac-
tors are reduced, which helps design proceed
more efficiently.

Design rationales also help designers or
computational agents track unresolved issues
and their dependencies, train newcomers,
restore interrupted designs, and support dis-
tributed task allocation.

Reuse/redesign/extension support. Design
rationales help reuse in two ways. First, they
can serve as indices to past knowledge (sim-
ilar designs, parts, problems encountered).
SoftDA,4 for example, supports reuse by
acquiring the relationship information about
designs and requirements and using it to
index documents and codes. 

Designers can also reuse the rationales
themselves. For example, the precedent man-
agement in Sibyl5 uses the goals from past
decision rationales to suggest potentially rel-
evant alternatives, and uses both goals and
alternatives to retrieve potentially relevant

arguments evaluating the alternatives. 
For reuse to be successful and cost-

effective, however, the design rationale sys-
tem must also make it cost-effective to sort
out knowledge that is outdated or context-
sensitive. Without this provision, its sugges-
tions must be taken with a large grain of salt.
Mary Lou Maher and Andres Gomez de
Silva Garza discuss other problems in the
reuse of design knowledge.6

Better maintenance support. Because
design rationales explain the design decisions
made, they can also help maintain the design.
Most existing systems provide this service
in its simplest form: comments documenting
program codes. EES,7 on the other hand,
extracts much richer development rationales
and uses them to generate more sophisticated
explanations for system maintenance.

Learning support. Design rationales can
help both people and systems learn mutually
and interactively. Janus,8 for example, pro-
vides computational agents, or critics,which
have access to design rationales and monitor
human designers. When a critic encounters
a human decision that is suboptimal accord-
ing to its knowledge, it presents the designer
with an appropriate recommendation along
with its rationales. The designer can either
agree and accept them, thus acquiring a new
piece of knowledge, or disagree and teach
the system by supplying a new piece of
knowledge so that the critic knows better
next time.

Of course, many learning systems attempt
to pick up knowledge from past problem-
solving traces. And if you view a problem-
solving process as the process of designing a
solution, technically all these systems can be
design rationale systems, especially those

that learn by analogy (see articles by Ashok
Goel and Alex Duffy in this issue).

Documentation support. Design rationales
can be used to automatically generate docu-
mentation. I mention documentation as a
category apart from better design because
documents help others besides designers.
Managers or users can use them to evaluate
the design. Lawyers can use them to deter-
mine if the design is intellectual property. In
fact, Frank Shipman and Ray McCall,8 who
articulate three main perspectives of design
rationales—argumentation, communication,
and documentation—argue that the docu-
mentation perspective has been the most suc-
cessful and should provide a model for the
design of design rationale systems (see “How
to access rationales”).

What to represent explicitly

It is impossible to represent an entire
design rationale explicitly. Rationales are
embedded not only in formal documents
such as design specifications, meeting ab-
stracts, and interface documents, but also in
informal media such as phone conversations,
blackboard sketches, and discussions over
lunch. In fact, almost anything in a design
process may be a part of a design rationale
as long as it is represented and can be used to
trace a reason for some aspect of the design.
Whatever is represented, however, must be
accessible, so it must have some structure.
This is why, say, videotaping all designer
interaction would not be suitable. The
unstructured nature of the recording would
make it difficult to access exactly what is
needed and use that information in any quan-
titative way. 

MAY/JUNE 1997 79

Better design
support

Better maintenance Learning support Documentation
support

Dependency
management

Problem-solving
support

Simulation and
diagnostics support

Collaboration
support

Requirement
engineering support

Reuse support

Project management
support

Figure 1. Services provided by most design rationale systems. Arrows between services indicate support relations.

.



Functional dependency. As is true for any
representation, what you represent depends
on what you want to do with it. Shipman and
McCall8 note that if design rationales are used
primarily to ensure careful reasoning and bet-
ter problem solving among the designers
(argumentation perspective), then the logical
structure of the reasoning must be made
explicit so that the system can do the logical
bookkeeping and detect any potential errors.
On the other hand, if the rationales are used
primarily to enable outsiders to understand or
regulate design activities (documentation per-
spective), then only the results of the reason-
ing and their immediate explanations must be
documented—not all the possibilities and the
dead ends explored. Finally, if rationales are
used to support project management, then
constructs and attributes that reflect project
status must be provided, such as unresolved
or pending issues and deadlines and the peo-
ple responsible for them.

Generic structure.In my survey of existing
and proposed design rationale systems and
in my discussions with workshop partici-
pants, I was able to find a generic structure to
what was being represented—despite major
differences in system implementation. This
structure takes the form of layers, with some
layers specializing other layers or requiring
the presence of others. I identified three
major layers: decision, design artifact, and
design intent.

Decision layer. The decision layer charac-
terizes the generic structure of a decision
process, regardless of use. It comprises five
sublayers: issue, argument, alternative, eval-
uation, and criteria. Figure 2 shows how pro-
viding additional constructs progressively
for each sublayer can differentiate the com-
ponents of design rationales and enrich their
representation.5 The argumentation layer
(Figure 2a) makes explicit the arguments
underlying a decision and their relations
(supports, refutes, qualifies). The alternative
layer (Figure 2b) makes explicit individual
alternatives and their relations (component-
of, incompatible, specializes). With con-
structs for this layer (and the constructs link-
ing them to those in the argument layer), the
system can sort an undifferentiated body of
arguments and associate them with individ-
ual alternatives.

The evaluation layer (Figure 2c) makes
explicit the evaluation measure and the rela-
tions used (nominal, ordinal, real values,

maximum expected utility). With the evalu-
ation layer, the individual evaluations be-
come accessible to the system, which might
use them to rank the alternatives or recom-
pute the evaluations when related evaluations
change. The criteria layer (Figure 2d) makes
explicit the criteria used and their relations
(mutually exclusive, tradeoffs, specializes).
With constructs for this layer, the system can
group evaluations and the arguments by
alternative and criterion, display them (in a
table, for example), and update evaluations
when the relevant criteria change. The issue
layer (Figure 2e) makes explicit the individ-
ual issues and their relations (generates,
depends-on, replaces). With the issue layer,
the system can now track all issues that

depend on a particular issue, all issues that
are yet to be resolved, issues that replace a
given issue, and so on.

The constructs underlying these sublayers
appear under different names and not all are
always present explicitly. However, even
systems that do not make them explicit rep-
resent them implicitly as text. For example,
gIBIS2 explicitly represents only the deci-
sion layer, calling it “issue,” the alternative
layer (position), and the argument layer
(arguments). DRL5 provides similar con-
structs for the sublayers, calling them deci-
sion problem, alternative, and claim, respec-
tively, and adds constructs for the criteria
layer (criteria). Of course, a design rationale
system must provide constructs for a layer
before it can see the designer’s actions.
Hence, if the system supports comparing
alternatives along different criteria, it must
also provide constructs for representing the
alternative and the criteria spaces.

Systems also differ in the richness of the
constructs they provide to represent a par-
ticular space. For example, the constructs in
DRCS9 for the evaluation space let design-
ers characterize the evaluation of alternative
design specifications, reveal how well spec-
ifications have been achieved (has-impor-
tance, is-more-important-than, has-subat-
tribute, has-subspecification, specification,
version, achieves), and provide evaluation
history (version, achieves relation between
version and specification). However, these
services come at the cost of high overhead.
Generally, the less a system represents, the
less overhead it will impose—but the trade-
off is fewer services. 

Design artifact layer. If a design activity is
viewed solely as a set of decision-making
steps, the rich information about how the
design components are related and how the
information relates to individual decisions
will remain implicit, if it is there at all. The
design artifact layer takes a broader view,
making explicit both decision-making steps
and the related information.

A system can also provide constructs for
representing design artifacts but not decisions.
For example, FR10 expresses only the func-
tional or causal relation among design com-
ponents and requirements. Again, the system’s
intended function explains this representation.
The author notes that the design rationales can
be used for tasks such as simulation, verifica-
tion, and diagnosis, but the system would not
be able to answer questions about the alterna-
tives and arguments explored.

Systems also differ in the richness of the
constructs they provide for this layer. Colin
Potts and Glen Bruns11 designed a system that
explicitly introduces a construct in this space
(artifact) and relates it to the decision layer.
The artifact-synthesis layer in DRCS pro-
vides a richer set of constructs such as mod-
ule, interface, connection, and constraints for
representing artifacts and related operations. 

Although a design rationale system should
not be expected to represent or reason about
all domain-specific design artifacts, it should
at least provide a way to link design rationale
objects (such as those in the decision layer)
to relevant design artifacts. For example, a
system need not provide a construct such as
Hydraulic Jack, but it should provide a con-
struct, say Artifact, that it knows can be
decomposed into other artifacts, each of
which can be associated with an issue or a
set of constraints.

80 IEEE EXPERT

SYSTEMS ALSO DIFFER IN THE

RICHNESS OF THE CON-
STRUCTS THEY PROVIDE TO

REPRESENT A PARTICULAR

SPACE. GENERALLY, THE LESS

A SYSTEM REPRESENTS, THE

LESS OVERHEAD IT WILL

IMPOSE—BUT THE TRADEOFF

IS FEWER SERVICES. 

.



Design intent layer.The third layer represents
the metainformation underlying design deci-
sions, such as intents, strategies, goals, and
requirements. Once represented, this layer
allows a design rationale system to reason
about the goal, intent, or plan responsible for
a given design. For example, from goals the
system can derive criteria for evaluating
alternatives so that when goals change, it can
update or at least flag the criteria as outdated.
The constructs provided for this layer range
from simple constructs, such as objective and
goal to complex constructs that capture rela-
tions, such as is-more-important and has-
higher-priority.

How to represent rationales

The details of how design rationales are to
be represented will depend on the system’s
representation language. However, the degree
of formality is a more generic issue. For the
sake of discussion, I assume a representation
can be informal, semiformal, or formal,
although formality is typically a continuum,
not a set of categories with thresholds.

Once again, the choice of approach depends
largely on the services the system will pro-
vide. Informal representation captures ratio-
nales in an unstructured form: descriptions in
a natural language, audio/video recordings,

and raw drawings. Informal descriptions are
easy to create, but the system cannot interpret
them, making them ill-suited for most com-
putational services. The Electronic Notebook,
developed by Fred Lakin of the Performing
Graphics Company, attempts to overcome this
limitation by using parsing technology. How-
ever, the technology is not yet mature enough
to produce reliable interpretations of complex
descriptions.

A semiformal representation is best if the
primary services are to help people archive,
retrieve, and examine the reasons for their
decisions. In a semiformal representation,
only parts of the representation are computer

MAY/JUNE 1997 81

Argument layer
Artifact 

(bicycle)

(a)

(b)

Alternative i
(mountain bike)

Alternative layer

Arguments relevant to
the design of the artifact

(c)

(d)

(e)

Alternative j (racing bike)

Arguments about
alternative j

Evaluation
layer

Evaluation i (good)
Evaluation j (poor)

Alternative layer

Arguments about the 
relation between 
evaluations i and j

Arguments about
evaluation j

Arguments about
evaluation i

Issue layer

Alternative layer Criteria layer

Evaluation layer

Arguments about 
the relation between 

criteria i and j

Arguments about
criteria j

Arguments about criterion i

Alternative 
layer

Criteria layer

Issue j

Evaluation layer

Arguments about 
the relation 

between  i and j

Arguments about
issue j

Arguments about issue i

Issue i

Arguments
about the relation be-
  tween alternatives i and j

Arguments
about alternative i 

Criterion i

Criterion i

Figure 2. A progressively differentiated representation of design rationales within each of five sublayers in the decision layer.

.



readable; the rest is informal. In the systems
with a semiformal representation, such as
Sibyl,5 the user interacts typically with dif-
ferent types of templates by filling out their
attributes, either by typing in a natural lan-
guage or by selecting from a menu of options.
A semiformal representation can support
many computational services not possible
with an informal representation and may even
require less overhead in capturing rationales
because the system can suggest what infor-
mation is expected (typed forms and options).
However, the set of computational services
would depend on how much of the represen-
tation was formal.

In a formal representation, objects and rela-
tions are defined as formal objects that the
system can interpret and manipulate using
formal operations. The creation of design
rationales thus becomes a matter of creating
a knowledge base in some formal language.
The kind of formal representation will depend
on the operations to be performed (deductive
inference, associate defaults, inheritance). It
can be any one of several standard represen-
tations: rules, frames, and logic. An example
is any machine-learning system that uses its
past problem-solving traces for future prob-
lem solving.

The more formally rationales are repre-
sented, the more services the system can pro-
vide. However, formalizing knowledge is
costly. One way to reduce cost is to formalize
it incrementally—essentially transforming a
semiformal representation to a formal one.
Thus, rationales can be captured with less
overhead (because they are captured in a semi-
formal state), but once formalized can be used
to support more computational services.

uiSibyl,12for example, starts with an infor-
mal requirements description, extracts rele-
vant keywords, and determines if it can
replace or describe any keywords with exist-
ing formal objects. If not, it attempts to help
formalize the keywords by offering poten-
tially related formal objects.Gerhard Fischer
and Kumiyo Nakakoji of the University of
Colorado attempt to incrementally formalize
rules or domain objects from informal texts,
using keywords.13 mSibyl, proposed by
Lukas Reucker and Warren Seering of the
Massachusetts Institute of Technology, offers
still another alternative: The user supplies a
restricted form of English sentence as an
attribute value of a semiformal object such as
Decision and the system parses it into a for-
mal language. Although the system’s attempt
to formalize hardly succeeds the first time,

the incremental formalization approach is still
appealing because it changes creation to the
easier process of reaction and modification.

How to produce rationales

Design rationales can be produced in
many ways, with the system participating
entirely alone, somewhat, or not at all. The
approaches described here are in order of
minimum to maximum system participation.

Reconstruction. In this approach, people
produce design rationales without using the
system. They can do so by reasoning from
their existing knowledge (introspection),

conducting interviews with those involved
in the design, or capturing rationales in raw
form, such as video, and then translating
them into a more structured form. Yet another
way is to reverse-engineer a design by try-
ing to infer a plan from the design artifact
itself through a general knowledge of func-
tions and device behaviors. 

Reconstruction allows more careful reflec-
tion on the representation and layout of the
rationales and does not disrupt the designers’
activities. Jeff Conklin and K. Burgess-
Yakemovic2 report on using gIBIS at NCR,
saying that the reconstruction process helped
them identify several design omissions that
would have cost three to six times more than
the cost of capturing and reconstructing the
rationales. Shipman and McCall8 claim that
the success of the documentation perspective
of design rationales (as opposed to the com-
munication and argumentation perspectives)
owes much to the post-hoc creation of docu-
mentation. On the down side, the cost of
reconstruction is high and it may introduce the
biases of the person producing the rationales.

Record-and-replay. In this approach, ratio-
nales are captured as they unfold—for exam-
ple, as designers use a shared database to raise
issues, propose alternatives and criteria, and
enter evaluations. The rationales can be cap-
tured synchronously (via videoconferencing
or a shared screen that participants use to inter-
act with one another) or asynchronously (via
bulletin board or e-mail-based discussion).
Systems that have informal and semiformal
representations tend to use this approach
because a representation that is too rich or too
formal would create excessive overhead and
disrupt the flow of design activities. 

Methodological byproduct.In this approach,
design rationales naturally emerge from the
process of designers following a certain
method. For example, in EES, the developers
of an expert system follow a specific method
that EES supports. The method’s steps are in
essence different kinds of refinements and
reformulations, which the system captures and
uses to generate explanations. Another exam-
ple is the transformational approach,14 in
which a design rationale is defined as a trace
of the decomposition of the heuristic methods
into submethods and finally into applied trans-
formations. The designer uses the transfor-
mations to verify that the derived artifact
meets all specifications.

This approach is appealing because the
user benefits from the method and the ratio-
nales are captured at a relatively low cost.
The challenge is to provide a method that
really does help the user without imposing
excessive overhead or restrictions.

Apprentice.In this approach, the system gen-
erates rationales by essentially “looking over
the designer’s shoulder” and asking questions
whenever it does not understand or disagrees
with the designer’s action. ADD,15for exam-
ple, learns about the features that make a spe-
cific case different from a standard one.
Whenever the designer’s proposed action dif-
fers from ADD’s expectations, it will ask the
designer to justify or explain the difference.
Later, it answers queries for design rationales
by using both its domain knowledge and the
designer-supplied justifications. Janus16also
uses this approach.

Both the user and system benefit from this
interaction. The user benefits if the system is
right; the system learns something if it is
wrong. In addition, rationales are captured in
the context of use, when the relevant knowl-
edge is fresh in the designer’s mind and new

82 IEEE EXPERT

FORMALIZING KNOWLEDGE IS

COSTLY. ONE WAY TO REDUCE

COST IS TO FORMALIZE IT

INCREMENTALLY—ESSENT-
IALLY TRANSFORMING A

SEMIFORMAL REPRESENTATION

TO A FORMAL ONE.

.



knowledge can be anchored in old. However,
for this approach to be viable, it must create
an initial knowledge base rich enough to
understand most of the designer’s actions and
ask intelligent questions when it does not.

Automatic generation.In the simplest form
of this approach, the system generates design
rationales automatically from an execution
history. An expert system that uses a trace of
its rule invocations to explain the why and
how of its actions is an example. This ap-
proach has the appeal of creating rationales
at little cost to the user later and of being able
to maintain consistent and up-to-date ratio-
nales. However, it also has the high initial
cost of compiling the knowledge needed to
construct the rationales. Furthermore, to go
beyond the simple explanatory model based
on execution traces, many issues at the core
of machine-learning research must be re-
solved: what parts of the problem-solving
trace must be captured and how, how to infer
rationales from the trace, how to assess their
relevance, and how to adapt them to the cur-
rent situation.

How to access rationales

A design rationale system need not make
rationales directly accessible to the user. How-
ever, accessibility lets the user directly exam-
ine, update, or revise rationales, making
design activities more cost-effective and effi -
cient. Such systems can be classified as user-
initiative or system-initiative, depending on
whether the user or the system initiates access.

In a user-initiative system, the user decides
the parts of the design rationale to examine
and when or how to look at them. These sys-
tems must help the user become aware of
what exists and make it easy to find the
desired parts. Most systems adopt simple
versions of query and navigational aids
(trees, zoomable graphical views), but many
useful navigational tools such as the fish-eye
view and guided tour are still not being used.

In a system-initiative system, on the other
hand, the system decides when and how to
present which parts of the rationales. Such
systems must have enough knowledge to
make intelligent decisions and must present
rationales in ways that the user finds unob-
trusive. Possible solutions to the second
problem are the Janus critic16 and ADD’s
apprentice15 (described earlier). However,
these solutions have only begun to address

the issue of how to make a system understand
the designer’s actions enough to ask intelli-
gent questions at appropriate times without
seeming obtrusive. Much more research is
needed before a system-initiative approach
becomes viable.

Another critical issue associated with
design rationale access is intelligent index-
ing. Designers will be disrupted if the sys-
tem’s response is slow, no matter how appro-
priate its timing might be. A special case of
the tradeoff between representational for-
mality and computational services (described
earlier) is the tradeoff between the structure in
rationale representation and ease of retrieval.
Incremental formalization provides an inter-
esting approach to the indexing problem. For

example, MIT’s mSibyl uses the formal rep-
resentation of knowledge about mechanical
artifacts to provide more intelligent indexing
and matching of design rationales.

How to manage rationales
cost-effectively

Like anything else, a design rationale sys-
tem will not be used if the cost outweighs the
benefits. The benefits are the services the sys-
tem can provide. The cost is primarily the
cost of producing the rationales in a form that
can support the services. The fixed cost, such
as building the system or the initial knowl-
edge base, is not a big problem as long as the
cumulative benefits from the system’s use
outweigh it. The bigger question is, who will
bear the cost of producing design rationales
for a particular artifact, and why?

The ideal cost bearer is the person who
gets enough benefit to compensate for the
cost. The interactive acquisition of the ratio-

nales in which the user and the system mutu-
ally benefit is an example, although even
here the extra time and attention spent inter-
preting and answering questions is still a cost
that requires compensation.

When the cost bearer is not the same as the
beneficiary, providing a cost-effective sys-
tem becomes more problematic. In fact, as
Jonathan Grudin of the University of Cali-
fornia, Irvine, points out, many groupware
systems fail exactly because of this mis-
match.17 For example, most online meeting
schedulers fail because they require people
to maintain their local calendars online, even
though the only beneficiaries are those
responsible for scheduling the meeting.
Grudin recommends either that the connec-
tion between the contributor and the benefit
be made clear to all group members, or, bet-
ter still, that there be a process along with the
technology that delivers some benefit to the
contributor. For example, whenever a de-
signer benefits from part of a rationale, the
system might allow the designer to send
compliments to the contributor, which man-
agers and others can see.

How to integrate the system

Integration is concerned with integrating
the use of a design rationale system with all
the varied aspects of design activities. It must
be able to integrate

• Design rationales of multiple users
despite heterogeneous mediums (video,
audio, text) and/or platforms (Unix, Win-
dows, Mac OS).

• Design rationales with other objects that
serve different functions—for example,
to link design rationales to objects in
CAD or database modules.

• Different types of representation (object-
oriented vs. rule-based, procedural vs.
declarative, formal vs. informal).

Integration, like cost-effective rationale
management, has not received much research
attention in the context of design rationale
systems. Only a few systems have attempted
to address integration needs. More design
rationale researchers should understand these
types of integration and begin to adapt exist-
ing technologies to the systems they propose.

Among users.Because a design rationale
system has many users, it should provide

MAY/JUNE 1997 83

WHEN THE COST BEARER IS

NOT THE SAME AS THE

BENEFICIARY, PROVIDING A

COST-EFFECTIVE SYSTEM

BECOMES MORE PROBLEMATIC.
IN FACT, MANY GROUPWARE

SYSTEMS FAIL EXACTLY

BECAUSE OF THIS MISMATCH.

.



some way to share objects or translate them
over heterogeneous representations or sys-
tems. Exporting and importing through a file
may work in some cases. Another possible
solution is the wrapper approach,18 in which
each system builds a layer that handles any
heterogeneous input, allowing participants
to maintain their autonomy. Yet another pos-
sible solution is to communicate via a black-
board by publishing a portion of each par-
ticipant’s private scratchpad. Both options
will require developing a common protocol
and language or an extension of an API for
exchanging design rationale information.

Among multimedia objects.Even when
there is only one user, a design rationale sys-
tem must be able to integrate various multi-
media artifacts that must be accessed: design
notebooks, sketchbooks, phone conversa-
tions, videos, CAD drawings, and e-mail.
Phidias16 addresses this problem by provid-
ing uniform access to artifacts through hyper-
text typed links, which the user can define.
Phidias stores and manages these heteroge-
neous objects in a single hypermedia data-
base, the Hyper-Object Substrate.

With design modules.A design rationale
system must integrate well with other design
components, such as CAD module databases
and simulation packages. Because these
components are often implemented on dif-
ferent platforms, integration also means
achieving interoperability across heteroge-
neous platforms. Integration with other mod-
ules requires not only that these objects be
linked or presented to the user but also that
other modules be able to understand and
manipulate them—at least enough for, say,
the critic module to use design rationale
objects and decide whether or not to inter-
rupt the user.

Shared-DRIM3 is one system that is well
integrated with many other design modules,
including Object Store, the Cosmos rule sys-
tem, the Coplan constraint manager, the Dot-
strean communication manager, the Gnomes
geometric module, the Shared abstraction
and integrity manager, and the Congen alter-
native generator. PTTT19provides an exam-
ple of integration with standard operating
procedures, a compound document editor,
mail, a code management system, and a
photo manager. When PTTTidentifies a
process problem, for example, it can display
a standard operating procedure, which can
then point to the stored information (experi-

ments, process sheets) used to develop the
process step. Examining the insights and
problems in such an integrated system can
aid the design of a future design rationale
system.

AMONG THE SEVEN ISSUES I
have identified, only a few have been explored
in sufficient depth. Issues such as how to rep-
resent design rationales will not pose many
new problems for developers of future design
rationale systems. However, a few critical
issues have been neglected. For example, I
believe providing for cost-effective use,
domain-knowledge generation, and integra-
tion give rise to many open research questions.

Designing a cost-effective system is one
of the most urgent issues design rationale
researchers face. Without a handle on this
problem, the system, even with many sophis-
ticated features, may not be used or, worse,
may be counterproductive.20 Neither do I
believe that management is beyond the con-
cern of research. The eventual goal of all
research is to pave the way for practical sys-
tems. Of what practical value can engineer-
ing be if it is not cost-effective? The chal-
lenge is for researchers to build in an
incentive structure that would obviate the
need for a separate management structure.
One approach is to provide a game-like inter-
face for acquiring design rationales. Similar
problems have been studied in other fields
such as computer-aided instruction and
machine learning. Future research in design
rationale systems would benefit from these
studies.

Another urgent need is for methods to pro-
duce formal design rationales at less cost.
Incremental formalization is promising, but
existing proposals are only a beginning. Key-
word-based parsing can go only so far, and a
robust technology for understanding natural
language is not yet here. A restricted form of
natural language with a menu-based inter-
face might be a compromise worth explor-
ing. Again, researchers would do well to
examine the many relevant techniques and
methods that have been explored in knowl-

edge acquisition, reuse, natural language
understanding, and machine learning.

Finally, integration is an important issue
that can no longer be overlooked. Researchers
in the management of design rationale sys-
tems can look at solutions that work in other
areas, such as wrappers, mediators, OLE, and
APIs.

By addressing these neglected areas,
design rationale research can enhance its con-
tribution to design research and begin to pro-
duce more esffective and economical sys-
tems.

References
1. J. Lee, “AAAI ‘92 Workshop on Design

Rationale Capture and Use,” AI Magazine,
Vol. 14, No. 2, 1993, pp. 24–26.

2. J. Conklin and K. Burgess-Yakamovic, “A
Process-Oriented Approach to Design Ratio-
nale,” in Design Rationale Concepts, Tech-
niques, and Use, T. Moran and J. Carroll, eds.,
Lawrence Erlbaum Associates, Mahwah,
N.J., 1995, pp. 393–428.

3. F. Pena-Mora, D. Sriram, and R. Logche,
“Design Rationale for Computer-Supported
Conflict Mitigation,” J. Computing in Civil
Eng., Vol. 9, No. 1, 1995, pp. 57−72; URLfor
Shared-DRIM: http://ganesh.mit.edu/feniosky/
shared_ pub.html.

4. S. Yamamoto and S. Isoda, “SOFTDA—A
Reuse-Oriented Software Design System,”
Proc. Compsac, IEEE Computer Society Press,
Los Alamitos, Calif., 1986, pp. 284−290.

5. J. Lee and K.-Y. Lai,  “What’s in Design
Rationale?” J. Human-Computer Interaction,
Vol. 6, No. 3, 1991, pp. 251−280. 

6. M. Maher and A. Garza, “Case-Based Rea-
soning in Design,” IEEE Expert, Vol. 12, No.
2, Mar./Apr. 1997, pp. 34–41.

7. R. Neches, W. Swartout, and J. Moore, “En-
hanced Maintenance and Explanation of
Expert Systems through Explicit Models of
Their Development,” IEEE Trans. Software
Eng., Nov. 1986, pp. 1337−1351.

8. F. Shipman and R. McCall, “Integrating Dif-
ferent Perspectives on Design Rationale: Sup-
porting the Emergence of Design Rationale
from Design Communication,” Tech. Report
96-001, Center for the Study of Digital
Libraries, Texas A&M Univ ., College Station,
Texas, 1996.

9. M. Klein, “Capturing Design Rationale in
Concurrent Engineering Teams,” Computer,
Vol. 26, No. 9, Jan. 1993, pp. 39−47.

84 IEEE EXPERT

.



MAY/JUNE 1997

10. B. Chandrasekaran, A. Goel, and Y. Iwasaki, “Functional Rep-
resentation as Design Rationale,” Computer, Vol. 26, No. 9,
Jan. 1993, pp. 48−56.

11. C. Potts and G. Bruns, “Recording the Reasons for Design
Decisions,” Proc. Int’l Conf. Software Eng., IEEE CS Press,
1988, pp. 418−427.

12. J. Lee, “Incrementality in Rationale Management,” Proc.
Requirements Eng. Symp., IEEE CS Press, 1992, p. 283.

13. G. Fischer and K. Nakakoji, “Making Design Objects Rele-
vant to the Task at Hand,” Proc. AAAI ‘91, AAAI Press/MIT
Press, Cambridge, Mass., 1991, pp. 67−73.

14. I. Baxter, “Design Maintenance Systems,” Comm. ACM, Vol.
35, No. 4, Apr. 1992, pp. 73−89.

15. A. Garicia and H. Howard, “Acquiring Design Knowledge
through Design Decision Justification,” Artificial Intelligence
in Eng. and Manufacturing, Vol. 6, No. 1, pp. 91−109.

16. G. Fischer et al., “Making Argumentation Serve Design,” in
Design Rationale Concepts, Techniques, and Use, T. Moran
and J. Carroll, eds., Lawrence Erlbaum Associates, 1995, pp.
267−294.

17. J. Grudin, “Groupware and Social Dynamics: Eight Challenges
for Developers,” Comm. ACM, Vol. 37, No. 1, Jan. 1994, pp.
92−105

18. M. Genesereth, “An Agent-Based Approach to Software Inter-
operation,” Tech. Report Logic-91-6, Stanford Univ. Logic
Group, Stanford, Calif., 1991. 

19. D. Brown and R. Bansal, “Using Design History Systems for
Technology Transfer,” in Computer Aided Cooperative Prod-
uct Development, D. Sriram, R. Logcher, and S. Fukuda, eds.,
Lecture Notes Series, No. 492, Springer-Verlag, New York,
1991, pp. 544−559. 

20. S. Shum and N. Hammond, “Argumentation-Based Design
Rationale: What Use at What Cost?” J. Human-Computer Stud-
ies, Vol. 40, 1994, pp. 603−652.

Acknowledgments
I thank all the workshop participants and organizers who con-

tributed to the valuable discussions on which this article is partly
based. I also thank the four anonymous IEEE Expertreviewers for
their valuable and detailed comments. Finally, I thank Frank Halasz,
who got me interested in the topic of design rationales while I
worked with his group at the Xerox Palo Alto Research Center.

Jintae Leeis an assistant professor of decision sciences at the Uni-
versity of Hawaii, where he is leading the Process Interchange For-
mat project to define a common language for process descriptions.
He is also an active member of the MIT Process Handbook project
to create an intelligent repository of process descriptions for reuse
in process modeling and analysis. His research interests are under-
standing and improving knowledge sharing processes. Lee received
a BA in mathematics from the University of Chicago, an MA in psy-
chology from Harvard University, and a PhD in electrical engi-
neering and computer science from the Massachusetts Institute of
Technology in 1991. He is a member of the IEEE, the AAAI, and
the ACM. His address is Dept. of Decision Sciences, Univ. of
Hawaii, 2404 Maile Way, Honolulu, HI 96825; jl@hawaii.edu.

G E T C O N N ECTED
with a new publication from IEEE Computer Society

Features
❖ Peer-reviewed articles report the latest developments in

Internet-based applications and enabling technologies. 
❖ Essays, interviews, and roundtable discussions address

the Internet’s impact on engineering practice and society.
❖ Columnists provide tutorials and expert commentary on

a range of topics.

IEEE Internet Computing

is a bimonthly magazine focused

on Internet-based applications 

and supporting technologies. 

IC is designed to help computer

scientists and engineers use the

ever-expanding technologies and

resources of the Internet.

To subscribe at half yearly rates
❖ Send check, money order, or credit card number to 

IEEE Computer Society, 10662 Los Vaqueros Circle, 
PO Box 3014, Los Alamitos, CA 90720-1314.

❖ $14 for members of the IEEE Computer or Communi-
cations Societies (membership no: _________________)

❖ $17 for members of other IEEE societies (include mem-
bership number: _________________)

________________________________________________________
Name

________________________________________________________
Company Name

________________________________________________________
Address

________________________________________________________
City State Zip Code

________________________________________________________
Country

®

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

IC Online is a companion webzine that supports 

discussion threads on magazine content 

and links to other useful sites, as well as 

an online archive of back issues.

http://computer.org/internet/

.


