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Abstract

We describe several high—performance prefetching protocols for the transport of VBR
prerecorded video over a shared channel. The protocols are particularly well-suited for the
offering of video-on—demand (VoD) over a residential cable network, a residential ADSL
network, or over a shared satellite channel. We advocate the use of VBR—encoded video
instead of CBR video because, for the same image quality, VBR—-encoded video can have
a significantly lower average rate. However, in order to exploit the efficiency of VBR
encoding, it is necessary that the VBR scheme multiplex and prefetch streams so that near
100% link utilizations are achieved. Our protocols are based on the observation that there
are frequent periods of time during which the networks bandwidth is under utilized. During
these periods the server can prefetch frames from any of the ongoing videos and send the
frames to the buffers in the appropriate clients. Simulation results based on MPEG encoded
traces show that the discussed prefetching protocols compare favorably with other VBR
transport protocols.
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ADSL  Asynchronous Digital Subscriber Line
CBR Constant Bit Rate

JSQ Join—the—Shortest—Queue

MPEG Motion Pictures Expert Group

TCP Transmission Control Protocol

VBR Variable Bit Rate

VoD Video on Demand

Table 1: List of acronyms.

1 Introduction

We discuss high-performance prefetching protocols for the delivery of video on demand (VoD)
from servers to clients across a shared channel. The shared channel could be a cable-TV
plant, an access link to an ADSL switch, or a shared satellite channel. The protocols assume
that the videos are variable-bit-rate (VBR) encoded. Our protocols achieve near 100% link
utilizations. They also allow for immediate commencement of the video upon user request and
near instantaneous response to viewer interactions such as pause, resume and temporal jumps.
To achieve this high performance the protocols require that each client has a moderate amount
of memory dedicated to the VoD application. The client could be a television with a set-top
box capable of performing buffering and decoding, or it could be a household PC.

The protocols explicitly assume that the videos are VBR encoded with high peak—to—mean
ratios. The focus on VBR encoded video is motivated by the fact that for the same perceived
video quality, Constant Bit Rate (CBR) encoding produces an output rate significantly higher
than the average rate of the corresponding VBR encoding for action movies [1]. Therefore
schemes for VBR—encoded video that achieve near 100% channel utilization, while keeping
losses at a negligible level, can allow for significantly more video connections than can CBR~
encoded video.

Our prefetching protocols achieve the constant perceptual quality, responsiveness to user
interactions, and high link utilizations by exploiting two special properties of the prerecorded
video: (1) for each video, the traffic in each video frame is known before the video session
begins; (2) while the video is being played, some of the video can be prefetched into the client
memory. It is this second property — the ability to prefetch a portion of any video — that
is particularly central to the discussed high—performance protocols. Admission control for the
prefetching protocols is rather simple. Initially, we require that all link utilizations do not
exceed 95 %. The prefetching protocols are based on the observation that, due to admission
control and the VBR nature of the multiplexed traffic, there will be frequent periods of time
during which the shared link’s bandwidth is under utilized. During these periods the server
can prefetch video frames from any of the ongoing videos and send the prefetched frames to
the buffers in the appropriate clients. With this prefetching, many of the clients will typically



have some prefetched reserve in their buffers.

The prefetching protocols create a buffer pooling effect so that the system behaves as if the
individual client buffers are aggregated into one large buffer which is shared by all the clients.
Our empirical work with public-domain traces indicates that prefetching gives dramatic re-
ductions in packet loss. In particular, if each client dedicates a small amount of buffer capacity
to the VoD application, this scheme can multiplex a large number of connections over the
shared link and have negligible playback starvation. With the outlined prefetching protocols,
the connections collaborate through buffer pooling. This collaboration among the connections
contributes significantly to the outstanding performance. We also present numerical results
which show that Optimal Smoothing, a non—collaborative prefetching policy, can have packet
loss that is several orders of magnitude higher than that of the discussed collaborative prefetch-
ing protocols for a wide range of buffer sizes.

In this tutorial we present an overview of two classes of prefetching protocols. To fix ideas,
we discuss the two classes in the context of VoD over cable plant. The first class of protocols
assumes that all the video streams emanate from a single server. We survey the Join-the—
Shortest—Queue (JSQ) prefetching protocol and its variants. The second class of protocols
permits the video streams to emanate from multiple independent service providers. We refer
to this latter class of protocols as decentralized protocols. In this tutorial we only present an
overview of the two classes of protocols. A more detailed discussion of the JSQ protocols can
be found in [19], and a more detailed discussion of the decentralized protocols can be found in
[20].

This tutorial is organized as follows. In the following subsection we briefly review the
literature on transmission schemes for VBR Video on Demand. In Section 2 we discuss how
the collaborative prefetching protocols can provide VoD over the cable plant. In Section 3
we focus on the special case where all video streams emanate from one server. We introduce
the Join—the—Shortest—Queue (JSQ) prefetching protocol, discuss some important refinements
and present simulation results. We furthermore discuss how the JSQ protocol handles viewer
interactions such as pause, fast forward and rewind. In Section 4 we introduce the decentralized
prefetching protocol. It can be employed when the video streams emanate from multiple video
servers. We discuss some of the protocols refinements and evaluate its performance through

extensive simulations. We give some concluding remarks in Section 5.

1.1 Literature Review

The traffic management schemes for VBR video in the literature fall into four main categories:
deterministic without smoothing; deterministic with smoothing; probabilistic; and probabilis-
tic with collaborative prefetching; see Figure 1. The deterministic schemes without smoothing
send into the network the original VBR traffic, and admission control ensures that the delays
never exceed a prespecified limit [8, 11, 12, 27]. For highly variable VBR traffic, these de-
terministic schemes typically require large initial delays to achieve moderate link utilizations
[13]. The deterministic schemes with smoothing do not send the original VBR traffic into the
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Figure 1: Transmission Schemes for VBR Video on Demand.

network, but instead send some smoothed version of it. The video traffic is transmitted at
different constant rates over different intervals according to a specific transmission schedule.
The piece-wise constant-rate transmission schedule takes advantage of the the fact that some
of the prerecorded video can be prefetched into the client buffer. (Prefetching is referred to as
work-ahead in [24, 25].) The challenge lies in computing transmission schedules that are as
smooth as possible (i.e., have the smallest peak rate and rate variability) while ensuring that
the client buffer neither overflows nor underflows. Several independent research teams have
proposed algorithms that compute these smooth, piece—wise constant-rate transmission sched-
ules [3, 4, 7, 14, 15, 24, 25]. It has been shown formally that given a specific client buffer size
the Optimal Smoothing algorithm [24, 25] computes the smoothest transmission schedule, that
is, it gives the greatest reduction in peak-rate and rate variability. The Optimal Smoothing
algorithm relies on the insight that transmission at a constant rate is as smooth as possible.
Hence, a smooth transmission schedule consists of constant-rate segments that are as long as
possible. Furthermore, when a rate change is required to avoid overflow or underflow of the
client buffer, the rate change is scheduled as early as possible. This allows for as small a rate
change as possible, resulting in a transmission schedule that is as smooth as possible. How-
ever, none of the deterministic schemes (with or without smoothing) allows for both high link
utilizations (>90%) and consistently high responsiveness (less than a second) to interactivity.

For the probabilistic approaches, [18] considers sending the original VBR encoded video
into an unbuffered multiplexer. This scheme allows for responsive interactivity, but introduces



packet loss whenever the aggregate transmission rate exceeds the link rate. In [5] and [28]
related ideas are explored whereby the original traffic is first smoothed before it is statisti-
cally multiplexed at an unbuffered link; the statistical multiplexing of the smoothed traffic can
substantially increase link utilization at the expense of small packet loss probabilities. In par-
ticular, in [28] the authors demonstrate that statistically multiplexing the optimally smoothed
video traffic can give moderately high link utilizations.

We cover probabilistic transmission schemes with collaborative prefetching in this tutorial.
These protocols determine the transmission schedule of a connection on-line as a function of
the buffer contents at all the clients and are therefore referred to as collaborative. Optimal
Smoothing is non—collaborative; the transmission schedule is computed before the transmission
begins and thus does not take the other ongoing connections into account. The collaborative
prefetching protocols achieve nearly 100 % link utilization, immediate commencement of play-
back and instantaneous response to viewer interactions. It is shown in [19] and [20] that
prefetching protocols with collaborative prefetching have substantially less packet loss than
does Optimal Smoothing for the same link utilization.

2 Prefetching and Residential Broadband Access

In this section we discuss how the prefetching protocols for VoD discussed in this tutorial
tie into the cable modem technology. We begin with a brief overview of the cable modem
technology; for more details see [9, 10, 16].

Coaxial cable was originally installed in residential neighborhoods for the broadcast of
one-way analog TV. Cable is a shared medium; all of the homes attached to the same coaxial
cable must share the channel bandwidth. Medium access control for the downstream video
traffic is particularly simple as there is only one sender, the headend. The upstream control
traffic, however, poses a problem. Carrier sensing fails for cable plants with tree-and-branch
structure, where only the headend hears every source. Remedies for this problem are currently
being developed [9]. As of the writing of this paper, there are no fixed standards that specify
how upstream and downstream bandwidth are allocated to homes. Typically, the upstream
traffic is transmitted in the 5-40 MHz range. The downstream bandwidth from 40 — 750 MHz
is split into 6 MHz channels for analog TV. Each of these channels yields approximately 25
Mbits/sec when 64 Quadrature Amplitude Modulation (QAM) is employed and could thus
carry a couple of video streams.

Figure 2 shows a possible VoD architecture with cable. Multiple video servers attach
directly to the cable headend as do multiple cable trunks. Homes are attached to cable trunks
via cable modems. The video servers could be owned by one video service provider or by
multiple competing service providers (all of whom run their applications over the decentralized
prefetching protocol described in Section 4). The request for a video is relayed from the viewers
home to the headend via the upstream channels. The headend, acting as an Ethernet switch,
ATM switch, or router, forwards the request to the appropriate video server. The video server
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Figure 2: VoD architecture for cable residential access

immediately starts transmitting the video frames. The switch in the headend forwards the
frames to the appropriate output queue. All the videos requested by viewers connected to the
same cable trunk are multiplexed onto the shared channel of capacity, say R bits/sec. The
prefetching protocols discussed next allow for the efficient use of the valuable trunk bandwidth,
R. They achieve transmission with negligible losses and thus constant high video quality for
average trunk bandwidth utilizations of 95%.

3 Centralized Prefetching

It is instructive to start the discussion with a VoD architecture where all video streams emanate
from one video server. This basic model for VoD with one video server is illustrated in Figure 3.
The video server contains a large number of videos in mass storage. For notational simplicity,
assume that each video consists of N frames and has a frame rate of F' frames/sec. The videos
are VBR encoded using MPEG 1, MPEG 2 or some other video compression algorithm. Let J
denote the number of video connections in progress. Although some of the connections might
be transmitting the same video, the phases (i.e., the start times) are typically different. The
server packetizes the frames of the ongoing connections and then statistically multiplexes and
transmits the packets into its link; for simplicity, we assume for the following discussion that
each video frame is transmitted in one packet. (In our numerical work we assume the more
realistic case of fixed size packets.) Let z,(j) denote the number of bits in the nth frame of
the jth connection. (The notation used in this tutorial is summarized in Table 2.) Because the
videos are prerecorded, (z1(j),z2(j),...,zn(j)) is fully known at connection establishment.
When a client requests a specific video, the server makes an admission control decision by
deciding whether or not to grant the request. If it grants the request, a connection is established
and the server immediately begins to transmit the connection’s packets into the network. The
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Figure 3: Centralized Video on Demand (VoD) architecture. One video server multiplexes
prerecorded videos onto a link of capacity R bits/sec.

a;(j) number of frames arriving to connections j’s
prefetch buffer during slot [

j)  number of bits in connection j’s prefetch buffer

(j)  buffer capacity of client j in bits

F frame rate in frames/sec

J number of ongoing video connections

N number of frames in videos

pi(j) number of prefetched frames in connection j’s

prefetch buffer at the beginning of slot [

R bandwidth of shared channel in bits/sec

Zn(j) mnumber of bits in nth frame of video j

w) send window in slot /

Aw;  send window increment in slot [

Table 2: Overview of notation used in this tutorial.



connection’s packets are transmitted in a fixed, predetermined order. When packets arrive at
the client, they are placed in the client’s prefetch buffer. The video is displayed on the user’s
monitor as soon as a few frames have arrived at the client.

Under normal circumstances, every 1/F seconds the client removes a frame from the
prefetch buffer, decompresses it, and displays it. If at one of these epochs there are no complete
frames in its prefetch buffer, the client loses the current frame; the client will try to conceal
the loss by, for instance, redisplaying the previous frame. At the subsequent epoch the client
will attempt to display the next frame of the video.

We denote R (in bit/sec) for the maximum transmission rate of the server. Although
the protocol allows for pause and temporal jumps, we will initially exclude these interactive
features in order to simplify the discussion; thus N/F seconds elapse from when the user begins
to watch the video until when the video ends. We shall also initially assume that all prefetch
buffers are infinite.

To make these ideas a little more precise, we divide time into slots of length 1/F. This
slotted time structure is based on the periodicity of the frame deadlines at the clients; the
clients remove a frame from their buffers every 1/F seconds. Let p;(j) be the number of
frames in the prefetch buffer for connection j at the beginning of slot I. Let a;(j) be the
number of frames of connection j that arrive to the prefetch buffer during the Ith slot. At the
end of each slot, one frame is removed from each prefetch buffer that has one or more frames.
Thus

pie1(f) = () + @) — 17, (1)
where [z]* = max(z,0).

During each slot of length 1/F seconds the server must decide which frames to transmit
from the J ongoing videos. The prefetch policy is the rule that determines which frames are
transmitted in each slot. The maximum number of bits that can be transmitted in a slot is
R/F.

For each ongoing connection j the server keeps track of the number of prefetched frames,
pi(j); this can be done through the recursion (1) without communicating with the client.
Through a similar recursion the server keeps track of the number of bits in the client buffers.

3.1 The JSQ Prefetch Policy

The Join—the—Shortest—Queue (JSQ) prefetch policy attempts to balance the number of frames
across all of the prefetch buffers. In describing this policy, we drop the subscript ! from all
notations. At the beginning of each slot the server determines the j* with the smallest p(j),
transmits one frame from connection j* and increments p(j*). Within this same slot the server
repeats this procedure over and over again, at each iteration finding a new 7* that minimizes
p(j), transmitting a frame from connection j* and incrementing p(j*).

Due to the finite transmission rate of the server, at some point the server must stop trans-
mitting frames within the slot. To this end, let z be a variable that keeps track of the total
number of bits sent within the slot; z is reinitialized to zero at the beginning of every slot.



The stopping rule works as follows. Before transmitting a frame from connection j* we check
to see if
zZ+ x(r(j*)(j*) < R/F7 (2)

where o(j5*) is the frame of connection j* that is being considered for transmission. If this
condition holds, then we transmit the frame and update z; otherwise, we do not transmit the
frame, set p(j) = [p(j) —1]* for j = 1,...,J and recommence the procedure for the subsequent
slot. This is our basic stopping rule; later we shall discuss a slightly more complicated stopping
rule.

Note that the stopping rule (2) ensures that the server never transmits more than R/F
bits in a slot of length 1/F seconds. Thus there is never any loss at the bottleneck link
(see Figure 3). We define the loss probability of the JSQ prefetch policy as the long—run
fraction of frame periods during which one or more clients experience playback starvation.
Playback starvation at one or more clients occurs if the stopping rule forces the server to stop
transmitting for the slot before all of the frames for the clients that had no prefetched frames
at the beginning of the slot (p = 0) have been transmitted. Recall that the server in each
slot transmits first the frames to the clients with the fewest prefetched frames and thus gives
priority to the clients without any prefetched frames. Hence, playback starvation occurs when
the frame sizes of all the frames that the server is supposed to send to the clients with p = 0
add up to more than R/F bits. If this is the case, one or more clients have no prefetched frames
and do not receive any frames during the slot. These clients suffer playback starvation as they
are unable to decode and display a frame at the end of the slot. When playback starvation
occurs the server skips the frames that would not meet their deadlines and sends the next
frames to those clients in the next slot.

Up to now we have measured the length of the queue in a prefetch buffer by the number
of frames present in the buffer. An alternative measure for length is the number of bits in the
buffer. With this measure, the JSQ policy strives to equalize the number of bits in each of the
prefetch buffers. At the beginning of each slot the server determines the connection with the
smallest number of bits in the client buffer, transmits one packet! from this connection and
increments the counter that keeps track of the number of bits in the client buffer. Within this
same slot the server repeats this procedure over and over again, at each iteration finding a
new connection that minimizes the number of bits in the client buffer, transmitting a fixed size
packet from this connection and incrementing the bit counter. For infinite prefetch buffers,
the procedure stops when z (the total number of bits transmitted within the slot) equals R/F.
For finite prefetch buffers, the procedure stops when z = R/F or when all the prefetch buffers
are full.

The drawback of this policy is that it can produce frame levels in the prefetch buffers which
are highly unbalanced; this can occur when one set of connections has a large number of bits
per frame and a second set has a small number of bits per frame. An advantage of this policy
is that it can fill all the prefetch buffers to the brim when drain rate is far below the link rate.

'In defining this bit-based policy, we assume fixed size packets



Throughout the remainder of this paper we use the original frame—based JSQ policy.

3.2 Refinements of the JSQ policy

We now discuss a few important refinements of the JSQ policy. First, we introduce a refined
stopping rule. Recall that during each slot the server transmits a sequence of frames until
condition (2) is violated; once (2) is violated, the server does not transmit any more frames in
the slot. An alternative stopping rule is to try to transmit more frames in the slot by removing
from consideration the connection that violates (2) and finding a new j* that minimizes p(j).
If the condition (2) holds with the frame from the new connection j*, we transmit the frame,
update p(j*), and continue the procedure of transmitting frames from the connections that
minimize the p(j)’s. Whenever a frame violates condition (2), we skip the corresponding
connection and find a new j*. When we have skipped over all of the connections, we set
p(5) = [p(j) — 1]t for j = 1,...,J and move on to the next slot. This is our refined stopping
rule. To reduce the online computational effort we can also, of course, consider rules which
fall between the basic and refined stopping rules. For example we could use a rule which stops
when condition (2) has been violated K times, where 1 < K < J.

The next refinement of the JSQ policy limits the number of bits an ongoing connection
may have in its client’s prefetch buffer. This important refinement is useful when the client for
connection j, 7 = 1,...,J, has a finite buffer capacity of B(j) bits. This refinement works as
follows. Suppose that the server is considering transmitting frame o(5*) from connection j*.
Let b(5*) be the current number of bits in the prefetch buffer for connection j*. It transmits
this frame in the current slot only if condition (2) and the condition

b(3") + z4(+(5") < B() 3)

are satisfied. Condition (3) ensures that the server does not overflow the prefetch buffer for
connection j*. With this additional condition, we extend the definitions of the stopping rules
in the obvious way.

3.3 Experimental Results

In this subsection we present the results of a simulation study for the JSQ prefetch policy
introduced in the previous subsections. Throughout we use the refined stopping rule discussed
in Section 3.2. Our simulation study makes use of MPEG 1 encodings of the four movies in
Table 3. The associated traces, obtained from the public domain [22], give the number of bits
in each frame. (We are aware that these are low resolution traces and some critical frames
are dropped; however, the traces are extremely bursty. We have obtained similar results, not
reported here, for Star Wars and 0z) Each of the movies was compressed with the GOP
pattern IBBPBBPBBPBB at a frame rate of F' = 24 frames/sec. Each of the traces has N =
40,000 frames, corresponding to about 28 minutes. The mean number of bits per frame and the
peak—to—mean ratio are given in Table 3. Table 3 also gives the average and peak bitrates. It

10



Trace Frame size Bitrate
mean | peak/ average peak
bits | mean | kbits/sec | Mbits/sec
lambs 7,312 18.4 175 3.2
bond 24,308 10.1 583 5.8
terminator | 10,904 7.3 262 1.9
mr.bean 17,647 13.0 424 5.9

Table 3: Statistics of MPEG-1 traces.

can be argued that the average rate in bits/sec is lower than what we would expect for digital
compressed video (e.g., MPEG—-2 video); for this reason, we have chosen a relatively small
server transmission rate of 45 Mbits/sec. We expect VoD systems in the future to have videos
with larger average rates and a proportionally larger server transmission rate. In this scaling,
the number of videos that can be multiplexed will be approximately constant. We furthermore
assume that each packet consists of 512 bytes of payload and 40 bytes of overhead; therefore,
R = 81,521 packets/sec.

We define the link utilization as the average number of packets per second, summed over all
connections in progress, divided by R. In our experiments we use a mix of the the four movies
that achieves 95 % link utilization. Specifically, our mix consists of 55 lambs connections,
17 bond connections, 37 terminator connections, and 23 mr.bean connections. With these
numbers, each of the four movies accounts for roughly one fourth of the link load.

In each realization of our simulation, we generate a random starting frame for each of the
J ongoing connections. The starting frames are independent and uniformly distributed over
[1, N]. All connections start with empty prefetch buffers at the beginning of slot 1. When the
Nth frame of a video is removed from a prefetch buffer, we assume that the corresponding
user immediately requests to see the entire movie again. Thus, there are always J connections
in progress. We run each simulation until the 90% confidence interval is less than 10% of the
estimated loss probability. Recall that the loss probability is defined as the long—run fraction
of frame periods during which at least one client experiences starvation.

In Figure 4 we plot the loss probability for client buffer sizes ranging from 2 KBytes to
256 KBytes. Figure 4 shows the dramatic improvement in performance that comes from
prefetching and the JSQ policy. Without any prefetching we have a loss probability of 0.29
for 95 % utilization. By increasing the capacity only to 256 KBytes, the loss probability is
reduced to ~ 4.7 x 1075, By further increasing the buffer to 512 KBytes, no loss was observed
for any of 8000 replications, corresponding to 3.2 x 10® frame periods! Whenever loss occurred,
the buffer contents at each of the clients was nearly zero, confirming the existence of a strong
pooling effect. (The existence of pooling is further justified by the analytical work of Reiman
[17)).

Figure 4 demonstrates that with a small prefetch buffer at each client the JSQ prefetching

11
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Figure 4: Loss probability as a function of client buffer size for 95 % link utilization.

policy will allow for almost 100% utilization with negligible packet loss. Also note that the
scheme allows for near immediate playback of the video upon user request. It can be argued
that for MPEG-2 traces with an order of magnitude larger average rate, the prefetch buffer
will have to be an order of magnitude larger to achieve the same loss probabilities. But even
with this order of magnitude increase, only 5 Mbytes of prefetch buffer is required to give
negligible packet loss.

3.4 Interactivity

In this section we describe how the JSQ prefetch policy can be adapted to account for pauses
as well as forward and backward temporal jumps. The JSQ protocol allows these interactive
actions to be performed with minimal delay. We assume that whenever a user invokes a
interactive action, the client sends a message indicating the interactive action to the server.
Suppose that the user for connection j pauses the movie. Upon receiving notification of
the action, the server can simply remove connection j from consideration until it receives a
resume message from the client; while the connection is in the paused state, its prefetch buffer
remains at a constant level. A slightly more complex policy would be to fill the corresponding
buffer with frames once all the other prefetch buffers are full or reach a prespecified level.
Suppose that the user for connection 7 makes a temporal jump of 6 frames into the future.
If 6 < p(y), we discard § frames from the head of the prefetch buffer and set p(j) = p(j) — ¢.
If 6 > p(j) we set p(j) = 0 and discard all the frames in the prefetch buffer. Finally, suppose
that the user for connection j makes a backward temporal jump. In this case we set p(j) = 0

12
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Figure 5: Loss probability as a function of the average number of temporal jumps per hour for
256 KByte client buffers and 95 % link utilization.

and discard all frames in the prefetch buffer.

In terms of frame loss, pauses actually improve performance because the movies which
remain active have more bandwidth to share. Frequent temporal jumps, however, can degrade
performance since prefetch buffers would be frequently set to zero. Whenever we set a prefetch
buffer to zero, the pool loses some of its total savings, thereby increasing the likelihood of loss.

We now present some numerical results for interactive actions. We consider only forward
and backward temporal jumps and ignore pauses as pauses can only improve performance; we
furthermore assume that ¢ > p(j) for all forward temporal jumps. The presented results give
therefore a conservative estimate of the actual performance. In our simulation, we assume that
each user performs temporal jumps repeatedly, with the time between two successive jumps
being exponentially distributed with constant rate. When a user performs such an action,
her prefetch buffer is set to zero. Figure 5 shows the loss probability for 11, 22, 32 and 43
temporal jumps per hour (on average). This experiment was conducted with a client buffer of
256 KBytes and a 95 % link utilization. As we would expect, loss probabilities increase as the
rate of temporal jumps increase; however, the increase is not significant for a sensible number

of temporal jumps.

13
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4 Decentralized Prefetching

We now return to the VoD architecture with multiple video servers shown in Figure 2. Figure 6
depicts a schematic of this model for VoD?. We assume for the purpose of this study that each
video server feeds one client; thus there are J video servers feeding J clients. In explaining
the client—server interaction, we focus on a particular client—server pair. For simplicity, we
again assume that each video frame is transmitted in one packet. Let z, denote the number
of bits in the nth frame. As in Section 3 we assume that the videos are prerecorded. The
sequence (z1,Z,...,oy) is therefore fully known before the transmission of the video. At the
beginning of each frame period, that is, every 1/F seconds, the server decides according to a
prefetching policy, outlined in the next section, which and how many frames to transmit. The
server sends the frames to the multiplexer buffer. Frames that do not fit into the multiplexer
buffer are lost. The multiplexer buffer of size R/F bits is served at rate R bits/sec. The
maximal delay incurred in the multiplexer is therefore 1/F seconds. For simplicity we assume
that the propagation and processing delays are negligible. The client instantaneously sends a
positive acknowledgment to the server for each frame received.

With these delay assumptions, the server receives acknowledgments for all frames success-
fully received by the client within one frame period. The server therefore knows whether the
frames sent in the previous frame period were received before deciding which frames to send
in the current frame period.

The multiplexer design just described uses a finite buffer of size R/F to ensure that the
multiplexer delay is < 1/F seconds. An alternative implementation with a larger buffer (that
may be built-in by the multiplexer manufacturer) is as follows. The server timestamps each of
the frames it sends. When a frame reaches the front of the multiplexer buffer, the multiplexer
checks to see if the delay of the frame is < 1/F. If the delay exceeds 1/F', the multiplexer

2 Although we discuss the decentralized prefetching protocol in the context of a single shared link, the protocol
applies to arbitrary networks with multiple shared links.
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discards the frame. The multiplexer can also periodically check all the frames in the queue
and purge those that have a delay exceeding 1/F.

When a client requests a specific video, the network accepts the new connection as long as
the average link utilizations are < 95%. The average link utilization is util = F' 23-1:1 Zave(7)/ R,
where ,y,(j) is the average frame size in bits of the jth connection, which is calculated by
averaging the corresponding sequence (z1,...,zy).

The decentralized prefetching protocol employs window flow control; it is inspired by the
Transmission Control Protocol (TCP) [6, 26] widely used in the Internet. The basic decen-
tralized prefetching protocol works roughly as follows. The server maintains a send window,
limiting the number of frames the server is allowed to send in a frame period. The send window
is increased by a small increment when all acknowledgments arrive in time. Due to admission
control and the VBR nature of the traffic, there are periods of time during which the network
is underutilized. The send window grows larger than one during these periods, allowing the
server to prefetch future frames into the client memory. In times of network congestion, frames
are lost or delayed and the corresponding acknowledgments do not arrive at the server before
their timeouts. In this case, the send window is reduced to throttle the server and alleviate
the congestion. The reservoir of prefetched frames in the client buffer allows the client to
continue playback during these periods of congestion. Starvation at the client occurs only if
the reserve of prefetched frames at the client is completely depleted and the current frame is
lost or delayed due to network congestion.

4.1 Basic Decentralized Prefetching Protocol

In this section we give a detailed description of the basic decentralized prefetching protocol that
allows the server to determine how many frames to send in each frame period. This protocol
strives to (1) make efficient use of the buffers at the client and (2) avoid bandwidth “hogging”
by a particular connection and thus give each connection a fair share of the bandwidth. The
protocol attempts to allow each client to build up a reservoir of prefetched frames.

When discussing the server policy we again focus on a particular connection. We divide
time into slots of length 1/F. Let [ denote the current slot; [ is a local variable maintained by
the server. In the course of the transmission of a video with N frames, [ runs from 1 through
N. We do not assume any synchronization of time slots among the client—server pairs.

Of central importance to our policy is the send window, denoted w;, which limits the
amount of traffic the connection can transmit in slot [. Specifically, the server is allowed to
transmit |w;| frames during slot [. (We assume for simplicity that only complete frames are
transmitted.) A new connection starts with a send window of wg = 1. The send window is
increased by a small increment Aw, say 0.1, at the beginning of each slot, i.e. w; = w;_1+ Aw.
After computing the send window the server transmits |w;| frames; see Figure 7. Note that
w > 2 allows for prefetching of future frames. To keep track of the number of prefetched
frames in the client buffer, let p; be the number of frames in the client buffer at the beginning
of slot [. This variable is initialized to p; = 0. Let a; denote the number of frames that are
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Figure 7: Timing diagram of prefetching policy. Server j places |w;| frames in the multiplexer
buffer at the beginning of slot I. The acknowledgments for a; frames arrive from the client by
the end of slot I. The server processes the acknowledgments and puts |w;;1] frames in the
multiplexer buffer at the beginning of slot [ + 1. There is no synchronization of slots between
any distinct servers j and k.

received and acknowledged by the client during slot I. Clearly, 0 < a; < |w;]; a; is equal to
|w; ] if all frames sent are received by the client. If frames (or acknowledgments) are lost we
have a; < |w;]. Figure 7 illustrates the timing of the prefetching protocol. Frame [ is removed
from the client buffer at the end of slot [ if the client buffer contains one or more frames. The
server keeps track of p; through the following recursion:

P = [pr+a —1]7. (4)

Let b; be the number of bits in the client buffer at the beginning of slot /. The server keeps
track of b; trough a recursion similar to (4).

If the server does not receive a positive acknowledgment for a frame sent at the beginning
of the previous slot within one frame period, it assumes that the frame is lost. If a connection
without any prefetched frames in the client buffer (p; = 0) suffers loss, the client experiences
starvation and may apply error concealment techniques to conceal the loss of video information.
If the client has some prefetched frames in its buffer (p; > 0), the server retransmits the lost
frames. Whenever loss occurs, the server resets its send window to w = 1. The loss of frames
is indicative of acute link overload and by reducing the send window we can throttle the server
and thus alleviate the congestion. We refer to the send window policy described in this section
as the basic window policy. It can be summarized as follows. A connection starts with a send
window of one, that is, wg = 1. The window is increased by a small increment Aw (we use Aw
= (.1) at the beginning of each frame period. The number of frames a connection is allowed
to send is limited by the integral part of the send window. If loss occurs, the window is reset
to one.

4.2 Refinements of the Decentralized Prefetching Protocol

Client Buffer Constraint
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Figure 8: Tllustration of the dynamic window policy.

We first introduce a modification of the decentralized prefetching protocol that limits the
number of bits an ongoing connection may have in its client buffer. Suppose that the client has a
finite buffer capacity of B bits. Now, suppose that the server is considering transmitting frame
k. It transmits this frame in the current slot only if the send window allows the transmission
of the frame and the client buffer constraint

bi+zp < B (5)

is satisfied. Condition (5) ensures that the server does not overflow the client buffer.
Dynamic Send Window

We now introduce a refinement of the send window policy. The idea behind this refinement
is to increase the send window by a large increment when the client buffer holds only a small
reserve of prefetched frames and throttle the server when the client buffer contains a large
reserve of prefetched frames. To this end, we compute the window increment as a function of
the amount of prefetched data in the client buffer:

b

Aw; = Awpax(1 — 3

)¢, Awpax >0, € > 0. (6)

Figure 8 illustrates this refined send window policy. When the client buffer is empty at the
beginning of slot I, that is, when b = 0, the send window is incremented by Awpyax. When
the client buffer is full, that is, when b; = B, the send window is not increased at all. We refer
to this send window policy as the dynamic window policy. The dynamic window policy can be
summarized as follows. At the beginning of slot [, the server computes Aw; according to (6),
calculates the new send window, w; = w;_1 + Aw;, and sends |w;| frames. As with the basic
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window policy, a new connection starts with a send window of wy = 1 and resets the window
to w; = 1 if the acknowledgments do not arrive by the end of slot [.

The parameters Awpax and e are used to tune the policy. We provide a detailed numerical
study of the impact of these parameters on the performance of the decentralized prefetching
protocol in [20]. Because of page limitation we give here only a brief qualitative discussion
of these parameters. A large Awpyay gives large increments Aw and thus allows the server to
send more frames. The parameter Awyay has to be large enough to allow for prefetching of
future frames. If Awpyay is too large, however, a few connections can “swamp” the multiplexer
and degrade the protocols’ performance.

The parameter e can be set to give a connection with a nearly empty client buffer an
increased chance of filling its client buffer. To see this, note that for ¢ = 1, the window
increment decreases linearly as the client buffer contents increase. For e > 1, connections with
fairly large buffer contents are allowed substantially smaller increments (compared to when
e = 1), while a connection with small client buffer contents has still a large window increment.
This gives a connection with a small reserve of prefetched frames a better chance of filling its
client buffer.

We found that the decentralized prefetching protocol works well for a wide range of param-
eters. In particular, Awpn,x values between 2 and 8 and e values between 4 and 10 give good
performance [20]. We choose Awpax = 5 and e = 6 for the numerical work in this paper.
Randomized Transmission
We now add a refinement that helps to ensure fair bandwidth distribution among the ongoing
connections. In the protocol described so far, the server transmits the first |wj | frames of the
video immediately after the request of the client has been processed. Subsequent transmis-
sions are scheduled [/F seconds, [ = 1,..., N — 1, after the initial transmission. The relative
slot phases remain fixed for the entire duration of a video. To see how this can lead to un-
fair bandwidth distribution consider the phase alignment with #; > #; depicted in Figure 9.
Suppose connections j and k are the only connections in progress. Now consider a scenario
where connection j fills the multiplexer buffer completely at the beginning of its slot . Con-
nection k is then able to fit Rty bits into the multiplexer buffer at the beginning of its slot /.
When connection j is up for transmission again, at the beginning of its slot [ + 1, it can fit
Rt; bits into the multiplexer buffer. With the depicted phase alignment (¢; > t;), connection
k has clearly a disadvantage since it can transmit only Rt bits in a frame period as long as
connection j keeps on filling the multiplexer buffer to capacity.

To avoid this unfair bandwidth distribution we introduce randomized transmission: The
server transmits the first |wj]| frames of the video immediately after the request of the client
has been processed. The server draws a random phase ¢;, [ = 1,..., N — 1 from a uniform
distribution over [-1/2F, 1/2F] in each frame period. The subsequent transmissions are
scheduled I/ F+6; seconds, [ = 1,..., N—1 after the initial transmission. With this transmission
rule, the slot phases are constantly re-shuffled. Unfair phase alignments can therefore not
persist for extended periods of time.
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Figure 9: Phase alignment favoring connection j. If both connections fill the multiplexer buffer
to capacity whenever they transmit, connection j can transmit Rt; bits in a frame period, while
connection k£ can transmit only Rt bits.

4.3 Experimental Results

In this section we present the results of a simulation study of the decentralized prefetching
protocol. The study is based on the same MPEG 1 traces used in Section 3.3. As in Section 3.3
we assume that the video frames are transported in packets consisting of 512 bytes of payload
and 40 bytes of overhead. Again, we fix the link rate at R = 45 Mbits/sec; the corresponding
multiplexer buffer holds 234,375 bytes (= R/F').

In each realization of the simulation we generate random starting frames as described in
Section 3.3. For each replication of the simulation we also draw random (non-synchronized)
slot phases t(j) for each of the J connections. The #(j)’s are independent and are drawn from
a uniform distribution over [0, 1/F]. The t(j)’s determine the relative starting times of the
slots for the J connections. Note that the frames of connection j scheduled for transmission
in slot [ are placed in the multiplexer buffer at the beginning of the slot (see Figure 7),
that is, server j puts its traffic into the queue at instants ¢(j) + (I — 1)/F, Il = 1,...,N
(t(j)+(U—-1)/F + 6;—1, I =1,..., N with randomized transmission). In all our simulations
we assume that all clients have the same buffering capacity of B bits.

In Figures 10, 11 and 12 we show typical plots of the client buffer contents, b;, the window
increment, Aw;, and the send window, w;, versus slot time, [, for four arbitrarily chosen con-
nections. Figure 13 gives the number of frames that are successfully placed in the multiplexer
buffer by each of the four connections.  For this simulation run we have set the client buffer
capacity to B = 1 MBit. We employ the dynamic window policy without randomized trans-
mission with Awmax = 5 and e = 2. The plots illustrate how the client buffer contents control
the window increment. The left part of Figure 10 shows that the client buffer of connection 2
is drained. This is due to a high action scene in the video. We see from Figure 11 that the
window increment of connection 2 increases as the client buffer is depleted. By the end of
time slot 41,274 the client buffer is empty and the window increment has risen to Awpyax = 5.
This allows connection 2 to transmit very aggressively. We observe from Figure 12 that the
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Figure 10: Client buffer contents in bits versus slot time of four arbitrarily chosen connections
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Figure 13: Number of frames successfully placed in the multiplexer buffer versus slot time.
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Figure 14: Loss probability as a function of client buffer size for the basic decentralized prefetch-
ing protocol and its refinements.

send window becomes as large as 17.9 in time slot 41,363. Figure 13 shows that the first 14
frames of the 17 frames sent in time slot 41,363 can be accommodated by the multiplexer
buffer. The remaining 3 frames are lost. The send window is therefore reset to w41 363 = 1 at
the end of slot 41,363. At the beginning of slot 41,364 the new send window is computed as
W41 364 = Wia1,363 + Awar 364 = 1+ 2.9 = 3.9, allowing connection 2 to send 3 frames. We see
from Figure 13 that all 3 frames fit into the multiplexer buffer and the send window increases
to w4365 = 3.9 + 3.1 = 7.0 in slot 41,365. The right part of Figure 10 shows that the large
send windows enable connection 2 to fill its client buffer again. By time slot 41380 the client
buffer is filled to 90% of its capacity.

Figure 14 shows the performance of the basic decentralized prefetching protocol, and its
various refinements. We plot the loss probability as a function of the client buffer size for 95%
link utilization. The loss probability is again defined as the long—run fraction of frame periods
during which one or more clients suffer playback starvation. For the basic window policy we
use a fixed window increment of Aw = (0.1. The parameters of the dynamic window policy are
set to Awmax = 5 and e = 6. The figure shows that the basic window policy has unacceptably
high losses. The loss probability is about 8 x 1073 for 1 MByte of client buffer. We also see
that the dynamic window policy brings significant improvement over the basic window policy.
The loss probability for the dynamic window policy is almost one order of magnitude smaller.
Adding randomized transmission further reduces the loss probability significantly. The loss
probability for the dynamic window policy with randomized transmission for 1 MByte of client
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Figure 15: Loss probability as a function of client buffer size for optimal smoothing, decentral-
ized prefetching and JSQ prefetching.

buffer is about 1.5 x 1075,
further reduce the loss probability significantly (see [20] for details).

By allowing a short start—up latency of 2 frame periods we can

In Figure 15 we compare the decentralized prefetching protocols with Join—the-Shortest—
Queue (JSQ) Prefetching and Optimal Smoothing [24, 25, 28]. The plot gives the loss prob-
ability as a function of the client buffer size for 95% link utilization. The optimal smoothing
curves are obtained by applying the optimal smoothing algorithm [24, 25, 28] to the traces
used for the simulation of the prefetching protocols. We then compute the loss probability for
statistically multiplexing the smoothed traces on a bufferless 45 Mbits/sec link with the Large
Deviation approximation [2, 18, 21, 28]. We do this for two versions of optimal smoothing:
no initiation delay and a 10 frame initiation delay [24, 25, 28]. The decentralized prefetching
results are for the dynamic window policy with randomized transmission and 2 frames start—
up latency. The JSQ prefetching results are from Section 3.3. The collaborative prefetching
protocols clearly outperform Optimal Smoothing. Optimal Smoothing has unacceptably high
loss probabilities for all buffer sizes shown. For 1 MByte of client buffer the loss probability
for decentralized prefetching is over 2 orders of magnitude smaller than the loss probability for
Optimal Smoothing. The performance of decentralized prefetching is remarkable given the fact
that each server faces the classical congestion control problem of having to decide on a trans-
mission schedule without any direct knowledge of the other ongoing connections. The JSQ
protocol assumes that the server has perfect knowledge of all ongoing connections and gives
outstanding performance for this centralized VoD architecture. We note that JSQ prefetching
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is inspired by the least-loaded routing algorithm for circuit—switched loss networks, which is
known to give excellent performance and to be extremely robust over a wide range of traffic
conditions [23].

5 Conclusion

Prerecorded video has two special properties: (1) for each video, the traffic in each video frame
is known before the video session begins; (2) while the video is being played, some of the video
can be prefetched into the client memory. In this paper we have shown how these two properties
can be exploited to achieve high performance when one or more servers transmit VBR video
across a packet switched network to clients. The results should be useful for designing VoD
systems that connect servers to residential broadband networks using cable or ADSL, or for
VoD systems that connect the server to its clients through a satellite channel or a Local Area
Network (LAN). The presented client—server protocols can be part of a larger Internet solution
to VoD, whereby the prerecorded videos are multicast to local servers at off-peak hours with
the best effort service.

We conclude by mentioning that an alternative approach for the delivery of the video traffic
is to use the Transmission Control Protocol (TCP) [6, 26]. This TCP approach would roughly
work as follows. The entire video file is passed to a TCP socket and TCP moves the video
data as quickly as possible to the client. The rate of the data transfer is limited by TCP’s
congestion and receive windows. The client removes one frame from its receive buffer every
1/F seconds and decodes and displays it. There are, however, a number of drawbacks to this
TCP approach. First, the TCP receive window is relatively small, allowing TCP to build up
only a small reserve of prefetched frames. Secondly, TCP is a reliable transmission protocol.
It retransmits every lost segment, even though the retransmitted segment may have already
missed its deadline at the client. Furthermore, TCP has no implicit JSQ mechanism, that is,
it does not strive to keep the client buffers full by transmitting more aggressively to the buffers
that are nearly empty. For these reasons we expect the TCP approach to perform poorly.
Nevertheless, it would be of interest to (1) compare the prefetching protocols to TCP; and
(2) adapt the prefetching protocols so that they can run on top of TCP. These issues are the
subject of ongoing research.
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