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Abstract : In this paper an approach to automated 
deduction under uncertainty ,based on possibilistic 
logic, is proposed ; for that purpose we deal with 
clauses weighted by a degree which is a lower bound 
of a necessity or a possibility measure, according to 
the nature of the uncertainty. Two resolution rules are 
used for coping with the different situations, and the 
refutation method can be generalized. Besides the 
lower bounds are allowed to be functions of variables 
involved in the clause, which gives hypothetical 
reasoning capabilities. The relation between our 
approach and the idea of minimizing abnormality is 
briefly discussed. In case where only lower bounds of 
necessity measures are involved, a semantics is 
proposed, in which the completeness of the extended 
resolution principle is proved. Moreover deduction 
from a partially inconsistent knowledge base can be 
managed in this approach and displays some form of 
non-monotonicity. 

1. Introduction 

Several approaches have been recently proposed 
for automated theorem proving under uncertainty 
and/or vagueness. Some of them (Shen et al. [21], 
Orci [19], Martinet al. [17], Ishizuka and Kanai [14]) 
are more or less based on Lee's resolution method for 
vague predicates [16] which is also applied without 
caution to uncertainty degrees attached to ordinary 
predicates. Hinde [13] and Umano (22] use fuzzy 
truth-values but do not give any axiomatic basis to 
the underlying logic and cannot manage the use of 
certainty degrees. Shapiro [20] gives a more general 
framework for theorem proving with uncertainties. 
Van Emden [23] uses such a model with a MYCIN­
Iike propagation of uncertainty degrees in the 
resolution process. Baldwin [1] uses formulas valued 
by a pair of lower and upper probabilities; some other 
approaches are based on probabilistic logic (Nilsson 
[18], Grosof [12]). Our approach (see Dubois, Prade 
[6], [7]) ; Dubois, Lang, Prade [41) is based on an 
extension of the resolution principle in possibilistic 
logic, where we handle clauses weighted by a degree 
which is a lower bound of a necessity or a possibility 
measure. Thus the uncertainty degrees have a clear 
meaning in the framework of incomplete information 
systems as recalled in the next section and a 
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distinction is made as in modal logic between what is 
(somewhat) certain and what is only (more or less) 
possible. Here we show how our approach can 
manage gradual rules such as "the truer P(x), the 
more certain (or possible) Q(x)", where P is a vague 
predicate which can be satisfied to an intermediary 
degree and Q is an ordinary predicate, (e.g. "the 
younger the person, the more certain he/she is a 
single"). We make a strong distinction between 
degrees of uncertainty due to a state of incomplete 
knowledge, and intermediary degrees of truth due to 
the presence of vague predicates (see Dubois, Prade 
[8]). Then we will discuss the links between 
possibilistic reasoning and minimization of 
abnormality. Lastly, we will define a semantics for 
possibilistic logic and we show how, by defining 
inconsistency as a gradual notion, it enables us to 
make a non-trivial use of partially inconsistent 
knowledge bases, displaying some form of non­
monotonicity. 

2. Background 

Possibilistic logic manipulates propositional 
calculus formulas or first-order logic closed formulas, 
to which a possibility degree or a necessity degree, 
between 0 and 1, is attached. Let be [J(p) 
(respectively N(p)) the possibility (resp. necessity) 
degree of p. We adopt the following relations and 
conventions: 

• 1:1 p,IT(p): I-N( ,p), i.e. to say that ,p is all the 
more certainly true as p is more impossible and 
conversely. This is the numerical counterpart of a 
well-known relation in modal logic. 

• N(p):l means that, given the available knowledge, 
pis certainly true; IT(p)=O, that it is impossible for 
p to be true. This contrasts with 

• IT(p):IT(,p)=l (equivalent to N(p)=N(,p)=O) which 
expresses that, from the available knowledge, 
nothing can infirm nor confirm p (this is the case 
of total ignorance). 

• I1(0)=N(0)=0; I1(1)=N(1)=1 where 0 and 1 denote 
the contradiction and the tautology respectively. 

• l:lp,l:lq,I1(pvq)=max(Il(p),I1(q)). This is the basic 
axiom of possibility measures (Zadeh[24] ; Dubois, 



Prade [5]), which supposes that the imprecise or 
vague knowledge upon which the attribution of 
possibility or necessity degrees is based, can be 
described in terms of fuzzy sets (or equivalently in 
terms of a nested family of ordinary subsets); see 
(5]. This is equivalent to N(p ..... q)=min(N(p),N(q)). 
However we only have ll(p ..... q)Smin(fi(p),ll(q)) 
(no equality in the general case), and similarly, we 
have only N(pvq)�ax(N(p),N(q)). 

Besides, we have max(ll(p),fl(,p)) = 1 for any 
classical formula p, i.e. which does not involve any 
vague predicate or vague quantifier, (indeed pv,p = 1 
in this case) ; this implies that N(p)>O ==> fJ(p)=1 
(i.e. N(,p)=O), which means that a formula is 
completely possible before being somewhat certain. 

This contrasts with fuzzy logic, as in Lee [16], 
where the degree of truth v satisfies both 
v@ ..... Q)=min(v<P), v(Q)) and v(:Pvq) =mx(v<P),v(Q)) as 
well as v@ = 1 - v(-,p) for any vague propositions p 
and q. Note that these vague propositions no longer 
obey excluded-middle or contradiction laws. 

Possibilistic logic is well-adapted to the 
representation of states of incomplete knowledge, 
since we can distinguish between the complete lack 
of certainty in the falsity of a proposition p 
(N ( ,p)=O) and the total certainty that p is true 
(N(p)=l). N(p)==l entails N(,p)=O but the converse is 
false. It contrasts with probability measures where 
Prob(p)=1 is equivalent to Probbp)=O. 

3. Possibilistic resolution 

Lee [16] proposed a deduction method in fuzzy 
logic, which is a generalization of the resolution 
principle; the resolution rules we present here are not 
in the framework of fuzzy logic, but in possibilistic 
logic ; the latter, closer to classical logic than fuzzy 
logic, enables us to represent knowledge whose truth 
or falsity is uncertain, but whose content is not 
vague. The classical rule for propositional clauses is 
generalized by 

(1) 

N(pvq) 2: <X 
N(,pvr).?: � 

N(qvr).?: min(«.�) 

in case of lower bounds on necessity measures 
(Dubois, Prade (6]) ; and the particularization rule is 
extended by 

N(l:fx. p(x)) 2: 0: 
(2) 

N(p(a)).?: oc 

This pattern holds for any substitution applied to a 
clause. Besides the following rule (Dubois, Prade (7J) 
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(3) 

N(pvq).?: OC 
n(,pvr�(l 

Il(qvr).?: 0: 1m (I 

(I if « +tJ> 1 
where « 1m Cl "' { 

0 if oc +CIS1, 

holds when one of the lower bounds qualifies a 
possibility measure, as well as the counterpart of (2) 

(4} 
fl(l::lx p(x)) 2: oc 

ll(p(a)).?:: « 

It can be shown that the lower bounds obtained by 
these rules are the best possible ones. Besides the 
similarity between (1)-(3) and resolution patterns 
existing in modal logics has been pointed out [7]; the 
reader is referred to [10] for a preliminary study of the 
links between possibility theory and modal logic. 

An uncertain clause is a frrst-order logic clause to 
which a valuation is attached ; it is a lower bound of 
its necessity or possibility measure.Thus, in the 
following we shall write (c (N o:)) (resp. (c (ll «))) 
as soon as the inequality N(c).?: oc (resp.JI(c).?:: oc) is 
known. Since N(p)>O implies O(p)=l, it is sufficient 
to consider clauses which are weighted either in terms 
of necessity or in terms of possibility. Possibilistic 
resolution only handles conjunctions of uncertain 
clauses. However, it can also handle general formulas 
valued by a lower bound of a necessity measure, since 
the formulas can be put in conjunctive normal form 
and we can apply N(p ..... q)=min(N(p),N(q)). 

The refutation method can be extended to 
possibilistic logic (Dubois, Prade (6], [7]). Indeed if 
we are interested in proving that p is true, necessarily 
or possibly to some degree, we add in the knowledge 
base ;!e. the assumption 

N(,p) == 1 

i.e. that p is false (with total certainty). Let ;Je' be 
the new knowledge base. Then it can be proved (see 
[6],[7]) that any valuation attached to the empty 
clause produced by extended resolution using patterns 
(1}-(4) from !f.e' is a lower bound oc of the necessity 
(resp. possibility) measure of the conclusion p, 
if its form is (N oc) (resp. (II oc )) . It entails the 
existence of "optimal refutations", i.e. derivations of 
an empty clause with a maximal valuation, the 
valuations being ordered by 

(N 0:) S (N Cl) if and only if ocs (! 
(0 o:) S (ll (!)if and only if ocs (I 
(Il 0:} s (N Cl) for any{«,(!) E [0,1[ x ]0,1}. 



In order to find an optimal refutation from a set of 
weighted clauses without expanding a too large 
number of nodes, resolution strategies have been 
proposed (see Dubois, Lang, Prade [4]). 

lY.....fL : Possibilistic reasoning and the minimization 
of abnormality. 

Possibilistic reasoning is in agreement with the 
idea of minimizing abnormality in commensense 
reasoning: a clause like (,p(x)vq(x) (N «)). once 
instanciated with a particular x, say a, means that 
there is a possibility at most equal to 1-« (i.e. 
Il(p(a) ..... ,q(a))�1-«) that this particular x is an 
exception of the rule "if x satisfies p, then it satisfies 
q". Another way of handling a rule with (potential) 
exceptions is to introduce an abnormality predicate, 
say "ab", specific of the rule, and to state the totally 
certain rule (,p(x)vq(x)vab(x) (N 1)) and to add to 
the knowledge base the default assumption 
( ,ab(x) (N «)), i.e., we are at least certain at a degree 
« that a given x is not a priori abnormal. Then the 
search for the largest weight attached to an empty 
clause derived from a set of clauses without 
abnormality predicates corresponds to try to obtain 
the empty clause using only the most cenain clauses 
of the form (, abj(x) (N 0: j)). now i.e. minimizing 
the abnormality. For example, let � be the 
knowledge base 

C 1 ,bird(x) v flies(x) v abl (x) (N 1) 
C2 ,lives-in-Antarctica(x) v ,bird(x) v ,flies(x) ..., 

ab2(x) (N l )  
C3 ,abl(x) (N 0.8) 
C4 ,ab2(x) (N 0.9) 

The abnormality predicate ab 1 will be true for each 
bird which does not fly, while ab2 will be true for 
each bird living in Antarctica which flies. If we add 
bird(Tweety) to the knowledge base, then using C l  
and the abnormality predicate ab l ,  w e  deduce 
flies(Tweety) with the cenainty degree 0.8. Then, if 
we add bird(Tweety} and lives-in-Antartica(Tweety), 
then we have to choose between using C3 and using 
C4 ; then we minimize the abnormality, i.e. we 
choose the most certain non-abnormality clause, 
which is C4, and then we deduce ,flies(Tweety) with 
the certainty degree 0.9. Note that the levels of 
uncertainty introduce some priority between the 
clauses; if we want to give priority to the most 
specific rule about birds living in Antarctica (when it 
applies}, the exceptions to this rule should be more 
abnormal than the exceptions to the rule concerning 
general birds (as it is the case in our example). These 
abnormality predicates are reminiscent of those used 
in circumscription, e.g., [15]. 

4. Semantic aspects 

A semantics has been defined for clauses weighted 
by lower bounds of a necessity measure. If p is a 
closed formula, M(p) the set of the models of p, then 
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the models of (p (N a.)) will be defined by a fuzzy set 
M(p (N « )) with a membership function 

Jl.M(p (N a))(I) = 1 if I e M(p) 
= 1 - a ifl e M(-,p). 

Then the fuzzy set of the models of a knowledge base 
;Je, = {C1,C2, .. . ,Cnl. where Ci is a closed formula 
with its weight, will be the intersection of the fuzzy 
sets M(Ci) , i.e. 

J.lM(�)(I) = mini=l, ... ,n llM(Ci)(I)· 

The consistency degree of � will be defined by 
c(�) =max I Jl.M(�)(I); it estimates the degree to 
which the set of models of � is not empty. The 
quantity Inc (:!e)= 1 - c(3e) will be called degree of 
inconsistency of �. 

Finally we say that fF is a logical consequence of 
3-e if and only if l:fl, Jl.M(ff){I)� llM(;re)(I). Let us 
note that all these definitions subsume those of 
classical logic. We shall use the following notations: 

• � 1- C with C = (C* (N «)) if and only if from 
the set of necessity-valued clauses equivalent to 
�· = � U [,C (N 1)} we can produce an 
ex -refutation (i.e. a deduction of (0 (N 0:))). 

• � 1= C if and only if C is a logical consequence 
of �. 

Then the following theorems hold: 

Theorem I : For any necessity-valued clauses C = 

(C* (N «)) and C' = (C'* (N (1)), C,C' 1- C" implies 
C, C' 1= C", where C" is a weighted clause. 

E.rQ.Q1 : we have to prove that l:f I, llM(C")(I) � 

Jl.M(c ..... c)CI). 

• If I is a model of the classical formula C* ..... c·•, 
then Jl.M(C ..... C')(I) = l and the soundness of the 
classical resolution principle enables us to say that 
IEM(C"*), where C"* is the resolvant of (C*,C'*). 
Thus we have Jl.M(C")CI) = I� llM(C ..... c')(I). 

• If I is not a model of C* ..... C'*, then 
Jl.M(C ..... C')(l)E{l-«,1-«'}, and llM(C,..C')(I) :S 
max (1 -« ,1 -« ') = 1-min ( «, « '). Besides, by 
definition we have Jl.M(C")(I) = 1-min (o:,«') and 
then Jl.M(C")(I)�Jl.M( c,..C')(I). Q.E.D. 

Corollary: let H be a set of necessity-valued clauses, 
then any necessity-valued clause C derived from � is 
a logical consequence of � ,  i.e. the resolution 
principle for necessity-valued clauses is sound. 

rrQQf : by induction on the refutation, using theorem 
1. 



Theorem 2 : Let 3!e be a set of necessity-valued 
clauses. If :Fe Is oc -inconsistent ( oc >0) then  
there is an oc -refutation from � , i.e. the 
resolution principle for necessity-valued clauses is 
complete for the refutation. 

Sketch of the proof : (the proof of the lemmas is 
omitted for the sake of brevity) 

Lemma 2.1: 
;!e is o: -inconsistent � (0 (N o: )) is a logical 
consequence of �. 

Let us note V o: = (0 (N o:)). 

Lemma 2.2.: 
V o: is a logical consequence of � ( o:>O) :::) V o: is 
a logical consequence of ::!eo:, where ::!eo: is the 
subset of the clauses of 3!e whose valuations are 
greater than or equal to (N o:). 

Lemma 2.3.: 
V o: is a logical consequence of � o: => � o: * is 
inconsistent in classical logic, where �oe * is the 
set of clauses of ::Je o: without their weights. 

Lemma 2.4. : (0 (N «)) is a logical consequence of 
�o: =>there is a (N «)-refutation from �. 

Remark : By contrast, let us notice that the 
probabilistic resolution principle is not complete. 
The resolution rule analogous to (1), for probabilistic 
logic (in terms of probability measures on a Boolean 
algebra of formulas, see Nilsson [18]), is 

Prob{pv-q) � 0: 
Prob(,pv-r) � (I 

(5) 
Prob(qvr) � max(O,o:+(l-1) 

Let q and r be two ordinary propositions and let us 
take the following assignments 

Prob( ,r"'q) :?! 0. 7 (i) 
Prob(r) � 0.6 (ii) 
Prob( ""�V � 0.5 (iii) 

Now let us find the best lower bound of Prob( ,q...,.r). 
Let o:, (1, lS', & be respectively Prob(,q ..... ,r), 
Prob(q ..... ,r), Prob(,q ..... r) and Prob(q ..... r). The three 
last inequalities become 

o:+(l+& � 0.7 (j) 
lf+ ' � 0.6 (ij) 
oe+lS'�O.s UiD 

Prob(,qvr) = oe + lS' + & = 1- (I = 2- (1- (o: +(I 
+ 6)) - (1 - (lS + 6)) - (1 - ( 0: + lS')). 

84 

Using G).(jj) and (jjj) we obtain Prob(,qvr) � 0.8. 
The best lower bound ofProb(,qvr) computed using 
(1),(2),(3) is 0.8 and by resolution, the best lower 
bound obtained (equal to the weight attached to the 
optimal refutation using pattern (5)) is only 0.6. 
Hence the resolution principle for probabilistic logic 
is not complete. 

S. Extension to variable certainty weights · 

The lower bounds can be allowed to depend on 
variables involved in the clause. For instance 

c(x) (N Jlp(x)) 

means that for any x, we are certain that c(x) is true 
at least with a necessity degree equal to Jlp(x). If Jlp 
is the characteristic function of a vague predicate P, it 
enables us to express that the more x satisfies P, the 
more certain the clause c(x). This would apply as 
well to a lower bound of a possibility measure. Note 
that the predicates involved in the clause c(x) are 
supposed to be non- vague. Although patterns (1) and 
(3) have been generalized to the case of vague 
predicates (see Dubois and Prade [7]), the clauses are 
supposed here to involve ordinary predicates only. 

The instantiation of a variable certainty weight 
will be made with the instantiation of the involved 
variable, e.g. from (,p(x)"'q(x) (N cp(x))) and 
(p(a) (No:)) we infer (q(a) min(o:,cp(a))), or as soon 
the involved variable is eliminated : e.g., from 
(,p(t)vq(y) (N cp{y,t))) and (p(x) (N 'V(x))) we can 
infer (q(y) (N min(<p(y,t), 'l'(t})) for every value oft; 
hence we infer the uncertain clause (q(y) (N SUPte T 
min(cp(y,l), lt'(t))) where T is the domain of the 
variable t 

Besides, it is possible to transform a predicate in a 
clause into a variable certainty weight and conversely. 
Indeed, suppose we have the certain clause C : 
(,p(x)"'q(x) (N 1)), then C is equivalent to Cl : 
(,p(x) (N Jl,Q(x))) where Jl,Q is the characteristic 

function attached to the predicate ,q, i.e. Jl,Q(x) = 1 
if x does not satisfy q, and Jl,Q(x) == 0 if x satisfies q; 
thus Cl means that we are certain that x satisfies ,P 
as soon as it satisfies ,q. Note that Cl can be 
obtained by resolution from C and the clause 
( ,q(x) (N Jl,Q(x)) which obviously holds. C is also 
equivalent to C2 : (q(x) (N Jlp(x))), and to C3 : 
(0 (N min(Jlp(x), Jl,Q(x)))). It is easy to check that 
Cl, C2 and C3 contain exactly the same information 
as C in the sense of the semantics introduced in 
section 4. For instance, C3 expresses that it is 
incoherent for an x to satisfy p and ,q. Thus, variable 
certainty weights offer a kind of bridge between 
syntax and semantics. Similarly, from the uncertain 
clause C' : (,p(x)"'q(x) (N o:)) we can, in the same 



way, infer C'l: (,p(x) (N min (o:,J..L,Q(x)))). Thus, 
each time we have not enough information for 
obtaining a refutation, or more generally each time 
we want to consider some predicates as hypotheses 
(i.e. the user may decide of their truth or falsity), we 
shall pass the subpart of the initial clause containing 
the involved predicates into the weight attached to the 
clause. Such a way of processing is close to the 
functionality of De Kleer's A.T.M.S. (2] since 
finding all the proof paths leading to a conclusion 
comes down to compute all environments where this 
conclusion holds. Each proof path corresponds to one 
environment that is captured by the final variable 
certainty weight. 

6. Illustrative example 

Let ;J.e be the following knowledge base : 

1. If Bob attends a meeting, then Mary does not 
2. Bob comes to the meeting to-morrow. 
3. Someone will come almost certainly to the 

meeting to-morrow, whose presence may (highly 
possibly, but not certainly at all) make the 
meeting not quiet. 

4. If Alben comes to-morrow and Mary does not, 
then it is almost certain that the meeting will not 
be quiet 

5. It is likely that Mary or John wiil come to­
morrow. 

6. If John comes to-morrow, it is rather likely that 
Albert will come. 

7. The later John will arrive to the meeting to­
morrow, the more certain we are that the meeting 
will be quiet, and if he does not come at all, it is 
certain that the meeting will be quiet. 

We note that the third sentence is translated into two 
clauses, C3 and C4, by introducing the Skolem 
constant "a" . The first part of the 7th sentence will 
be expressed in possibilistic logic by a clause whose 
valuation depends on the time John will arrive; we 
will denote by Jllate(t) the membership function of 
the fuzzy set "late", pictured on Figure 1. The 7th 
sentence is represented by means of clause C8 and 

cq_______ ---- cs 

comes(Mary,m)·,, comes(Albert,m) (N 0.8) 

� 
, comes{Albert,m) (N 0.8) 

C7--__ / 
-. comes(John,m) (N 0.6) 

C9. Clause CIO expresses the relationship between 
''arrives" and "comes". 

.11 lote (t) 

0.75 

I I 

0 �----�------����----� .. � 

8 11 12 t 

Figure 1 

The knowledge base can be represented by the 
following weighted clauses : 

Cl ,comes(Bob,x) .., ,comes(Mary,x) (N 1) 
C2 comes(Bob,m) (N 1) 
C3 ,comes (a,m) v ,quiet(m) (IT 0.8) 
C4 comes (a,m) (N 0.7) 
C5 comes(Mary,m) v ,comes(Albert,m) 

v ,quiet(m) (N 0.8) 
C6 comes(John,m)..., comes(Mary,m) (N 0.7) 
C7 comes(John,m)v comes(Albert,m) (N 0.6) 
C8 ,arrives(John,m,t) v quiet(m) (N JllateCt)) 
C9 comes(John,m) v quiet (m) (N 1) 
C10 -.arrives(x,y,z) v comes(x,y) (N 1) 

If we want try to prove that the meeting to-morrow 
will not be quiet, we add the clause CO : 
quiet(m) (N 1). Then it can be checked that there exist 
two possible refutations, represented on figures 2 and 
3.The second refutation is the optimal one. We 
proved that N(, quiet(m))?:0.6, i.e. it is rather likely 
that the meeting to-morrow will not be quiet. 

CO C3 

� -----
-. comes�)� C4 

0(IT0.8) 

Figure 2 

Cl
----

----C2 

, comes(Mary,m) (N I) 

� -----C6 

comes(John,m) (N 0.7) 

-----
0 (N0.6) 

Figure 3 
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Suppose we want to consider comes (Bob,x) 
as an hypothesis (in the sense of the section 
4) ; then C2 disappears and C 1 becomes 
(,comes(Mary,x) (N J.lcomes(Bob)(x)) ; the two 
refutations lead u to conclude that the meeting to­
morrow will not be quiet with a weight equal to 
max((fl 0.8), (N min(0.6,1J.rornes(Bob)(m))); then, 
if we choose not to fix comes(Bob,m) to true or 
false, or if we fix it to false, then we can only deduce 
fl( ,quiet(m))�.8 ; whereas if we fix it to true, we 
can deduce N( ,quiet(m))�.6. 

7. Updating uncertain knowledge bases 

It is possible to work with a partially inconsistent 
knowledge base �. Let « be the inconsistency 
degree of�- From � we want to prove c wilh some 
necessity degree. Let (I be the necessity degree of the 
optimal empty clause derived from �' ;; ire u 
{ ( ,c (N 1))} .We always have (I :2: o:. More precisely, 
we have min {(!, (J ') "" 0: where Cl' is the degree 
attached to the optimal empty clause derived 
from� u {(c (N 1)}. Having min ((1,(1') > 0 may 
seem contradictory with possibility theory where 
min(N(p),N(,p)) == 0 holds for any p. But we must 
not forget that this situation happens only if the 
knowledge base is (partially) inconsistent, i.e. 
violates the axioms of possibility theory; moreover, 
at most one of the two conclusions p or ,p will be 
taken as valid. 

Noticeably, if (I > « , there exists a consistent 
sub-base $of ;Je from which we can infer (c (N (!)) 
by resolution, and then we will consider the 
proof of {c (N (!)) as valid. Indeed, the (!-refutation 
uses only clauses with a necessity degree greater or 
equal to (!, i.e. strictly g reater than 0: ; $ is the 
subset of fie containing the clauses of � used in this 
(!-refutation. We cannot produce any refutation from 
$only, since this refutation would have a valuation 
strictly greater to (N 0:), and then� would have an 
inconsistency degree greater !han o:. 

Moreover, adding to a consistent knowledge base 
�, a clause (c (N o: )) that makes it partially 
inconsistent, produces what is similar to a non­
monotonic behavior. Namely, if from ;:J:e a 
conclusion (p (N (!)) can be obtained by refutation, it 
may happen that from ;J.€,'= ;J.e u{(c (No:))). an 
opposite conclusion (-,p {N �)) with � > 1 -
c(�') 2': Cl can be derived, where 1 - c(�') is the 
degree of inconsistency of �·. 

Exa� : we work again with the knowledge base of 
Sec.6. Suppose we add to ;Je the clause 
(arrives(John,m,ll) {N 1)) i.e. o; = l, e7.:pressing that 
we are now certain that John comes to-morrow at 11 
o'clock. Let �' be the new knowledge base. The 
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inconsistency degree of �· is 0.6 , i.e. 1-c(�') = 

0.6. 
Now the proof of (,quiet(m) {N 0.6)) (it corresponds 
to (1=0.6) is no longer valid ; but we can prove 
(quiet(m) (N 0.75) ) ,  i.e. � = 0.75, since 
J.1Jate(ll)=0.75 : 

,quie�l�C8 

,arrives(John,m,t) (N J.liate(t)) arrives(John,ll) (N 1) 

���� 
using only a consistent part of iR- v 
{ (arrives(J ohn,m,ll) (N l))). Thus a non-monotonic 
behaviour can be captured in this framework. 

Indeed our approach to partially inconsistent 
knowledge consists in selecting a particular extension 
(in the sense of default logic) on the basis of the 
certainty weights attached to the clauses. For 
example, if we work with the partially inconsistent 
base 3= ((u (N 0:)), (,uvv (N (J)), (,v (N If))]. we 
will prefer the extension 

- (,u,w] if min(o;,� .�) == o: 
- {u,,v} if rnin(o:,(l,lf) = (! 
- (u,v} if min(o:,(l,ll') = lS" 

Thus, if o;>(l>ll', we will prefer [u,v) to [u,,v] and 
{ u, ,v} to [,u, ,v}. The order on the valuations leads 
to a partial ordering on the consistent sub-bases of 8. 

It becomes clear from this paper that what is 
important is more the ordering among the possibility 
or necessity degrees than their precise value. See 
Dubois (3) which discusses qualitative possibility 
measures (defined in terms of a relation "at least as 
possible as"), as well as qualitative necessity 
measures. as natural counterparts of numerical 
possibility and necessity measures. It can be checked 
that the required properties of the relation underlying 
a qualitative necessity measure are strictly equivalent 
to the properties characterizing a relation of epistemic 
entrenchment in the sense of G&-denfors [11]. See 
Dubois, Prade [9]. Thus the updating process offered 
by the possibilistic framework may appear less 
surprising, as being in agreement with more general 
theories of revision. 

8. Concluding remarks 

Possibilistic logic offers a convenient and 
rigorous framework for handling uncertainty in 
automated deduction. Possibility theory enables us 
to represent states of partial ignorance. The results are 
only sensitive to the ordering of numbers, which is 
quite in agreement with a rather poor quality of the 
available knowledge about certainty levels. Besides 



the use of variable certainty weights enables us to 
accommodate hypothetical reasoning. 

The resolution patterns and the refutation strategy 
presented in this paper are implemented in the system 
POSLOG (for POSsibilistic LOGic) on a micro­
computer. 
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