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View Integration: A Step Forward 
in Solving Structural Conflicts 

Stefano. Spaccapietra, Senior Member, IEEEE, and Christine Parent 

Abstract-Thanks to the development of the federated systems 
approach on the one hand and the emphasis on user involvement 
in database design on the other, the interest in schema integration 
techniques is significantly increasing. Theories, methods and 
sometime tools have been proposed. Conflict resolution is the 
key issue. Different perceptions by schema designers may lead to 
different representations. A way must be found to support these 
different representations within a single system. 

Most current integration methodologies rely on modification of 
initial schemas,to solve the conflicts. This approach needs a strong 
interaction with the database administrator, who has authority 
to modify the initial schemas. 

This paper presents an approach to view integration specifi- 
cally intended to support the coexistence of different representa- 
tions of the same real-world objects. The main characteristics of 
this approach are the following: 

l automatic resolution of structural conflicts, 
l conflict resolution performed without modification of initial 

views, 
l use of a formal declarative approach for user (or database 

administrator) definition of interviews correspondences, 
l applicability to a variety of data models, and 
l automatic generation of structural and operational mappings 

between the views and the integrated schema. 
Allowing users’ views to be kept unchanged should result in 

improved user satisfaction. Each user will be able to define his 
own view of the database, without having to conform to some 
other user’s view. 

Moreover, such a feature is essential in database integration 
if existing programs are to be preserved. 

Index Terms-Database design, database management systems, 
data structures, schema integration, data models, view integra- 
tion, entity-relationship modelling. 

I. INTR~DUC~~N 

C 
ONSIDERING the actual trend emphasizing user in- 
volvement in application development, cooperative work, 

and user-oriented data models, view integration is likely to 
become a key issue for future database design methodologies. 

Since 1978, view integration has been identified as the 
design step aimed at producing a global conceptual schema 
of a database from a set of formally defined users’ views 
[ 11. At first, integration was a completely manual process. A 
superman called the database administrator (DBA), who was 
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able to seize the whole complexity of data in the enterprise, 
would produce the correct global image of the data structure. 
Views, at that time, were mainly considered to be an aid to the 
DBA to let him know about user requirements, or as a filter 
to ensure privacy of data. 

Nowadays, it is clear that database design is too complicated 
a task to be performed in a centralized way. Thus, a more 
reasonable approach is to first let the different components in 
the enterprise build their own view of the database (which 
should be a manageable task), and second to integrate these 
views in a global schema using an automated tool directed by 
the DBA. Current view integration methodologies intend to 
rule this second process. 

There also is an increasing interest in federated architec- 
tures, where existing databases are integrated into a single 
distributed database. Assuming the schemas of the existing 
databases to be views over the future distributed database, an 
integration methodology should lead to the automatic design of 
the global schema. This is usually called database integration, 
to emphasize that the integration process has to cope with 
the integration of existing data (and programs), not just with 
metadata in the views. 

There has been a large amount of work in the integration 
area: a detailed survey by Batini et al. [2] discusses 12 
methodologies for view or database integration (or both), 
and new contributions continuously appear in the literature 
PI-WI* 

As view integration is a process in which knowledge of 
the semantics of data is needed, it is no surprise that most of 
the current methodologies rely on a semantic data modelling 
approach. In particular, the entity-relationship (ER) approach, 
in its various extended forms, represents the majority choice. 
This is consistent with the actual state of affairs, in which the 
ER model acts as an almost de facto standard in the area of 
conceptual design methods and tools. 

When using a semantic data model, it is possible that 
different designers (users, in our case) model the same piece 
of reality in different ways. This might happen either because 
the data model supports equivalent constructs, or because 
designers have different perceptions of that reality. Multiplicity 
of possible representations of a given real world is called 
semantic relativism. 

In the ER approach, for instance, the designer is left with 
the responsibility to decide whether a real-world object should 
be represented as an entity, a relationship, or an attribute. 

Supporting semantic relativism is the key to achieving the 
goal of enabling each user to construct his own view, accord- 
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ing solely to his perception of the world and independently 
from other users [7]. To fully support semantic relativism, a 
view integration methodology should cope with all possible 
conflicting representations that may be found among various 
views of a database. 

Conflicting representations have always been a challenge 
for integration methodologies. Naming conflicts (due to 
homonyms and synonyms) have been dealt with from the 
beginning (see, for instance, [l l] and [ 121). The difficulty 
here lies in conflict identification (how to find out that there 
is a conflict), rather than in conflict resolution (usually, one 
view is modified to remove the naming conflict). 

Once the existence of similar object classes in two views 
has been identified (and the possible name conflict resolved), 
a comparison of their semantics may lead to another conflict if 
the classes are not equivalent. For instance, a Student class in 
one view may be found similar to a CS-Student class (grouping 
students majoring in computer science) in another view. In this 
case, view integration should make explicit the fact that one 
class, CS-Student, is a subclass of the other one. 

Mannino and Effelsberg [ 131. first focused on this type of 
conflict, which subsequently became the main topic in most 
later works on view integration. The generalization concept has 
been extensively used as a solution to such conflicts (except 
in works based on the relational model). 

Finally, a structural conflict arises whenever parts of the 
same reality are represented in different views using different 
structural constructs. Typically, the same set of real-world 
objects may be represented as an entity type in one view and 
as an attribute of an entity type in another view. Although 
structural conflicts were the topic of what was possibly the 
first paper on view integration [14], little effort has been put 
into the search of automated strategies to solve this type of 
conflict. Existing methodologies rely on the DBA (purposely in 
[ 151) for conforming of schemas, a process in which views are 
modified by forcing related concepts to be represented by the 
same structural construct. For instance, whenever an attribute 
A, in view VI, corresponds to an entity type E, in view V2, 
the DBA must transform the attribute A into an entity type, 
say EA. After view modification, the correspondence will be 
between EA and E: The structural conflict has been removed 
and integration of EA with E can proceed. 

Consequently, current ER methodologies are restricted to 
integration of entities with entities, relationships with relation- 
ships, and attributes with attributes. This is similar to what a 
relational approach may achieve using various interrelational 
dependencies [ 16]-[ 181. One limited exception may be found 
in [8], where the authors integrate an entity type with a 
relationship type, under the very restrictive hypothesis that 
the key of the entity type is the aggregate of the keys of the 
entity types participating in the relationship. 

This paper proposes an integration methodology, designed 
to be able to do the following: 

l automatically integrate views with (or without) structural 
differences among corresponding objects, 

l perform such an integration without requiring initial 

l provide a formal definition of interviews correspondences 
and of integration rules, 

l offer an algorithm to perform integration in all conceiv- 
able cases, and 

l be model independent. 
Allowing users’ views to be kept unchanged should result in 

improved user satisfaction. Moreover, such a feature is essen- 
tial in database integration, as it allows existing programs to 
continue running after the local databases have been integrated 
into a single, distributed database. Our methodology should 
successfully apply to database integration. 

Finally, we aim at establishing fundamentals of an inte- 
gration methodology, so that the same approach can be used 
whatever data model is used for view definition. To that 
purpose, our rules basically support integration of objects and 
of links, two concepts that can be regarded as underlying 
every conceptual data model. In this paper, we use an ER- 
like model to illustrate our arguments. Corresponding rules for 
object-oriented models are described in [ 191. The methodology 
we propose starts with a manual input from the DBA. This 
input carries the formal description of interrelationships among 
the views, in terms of correspondences between types as 
well as between populations. The methodology automatically 
produces the schema integrating the views, and the mappings 
between the final schema and each of the initial views. 

The next section briefly overviews the ER-like data model 
we use in this paper to support analysis of view integration. A 
few integration examples are then introduced, in Section III, 
using this model. 

The description of our integration methodology follows 
from the next section on. The initial step in any integration 
methodology is the acquisition of knowledge about correspon- 
dences that exist among the views. Section IV proposes a 
formal model to describe that knowledge. Section V defines 
integration rules, used to build the integrated schema according 
to known correspondences. An integration algorithm, enforc- 
ing these rules, is described in Section VI and illustrated in 
three examples in Section VII. Finally, the conclusion points 
out ongoing or future work we plan on this topic. 

II. THE ERC+ MODEL 

Hereinafter, we illustrate our ideas using an extended ER 
model we have defined to support complex object description 
and manipulation. This model is called ERC+: ER for complex 
objects (the + denotes the enrichment of the basic ERC model 
[20], [21] to include generalizations [22]). 

The provision for complex object modelling and manage- 
ment is one of the major goals of data models today. By 
complex object we mean an object represented by a collection 
of informations, its components, such that each of these 
components, in its turn, may be represented by a collection 
of informations, and so on. Supporting complex objects does 
not contradict the basic distinction the ER approach makes 
between entities and attributes: That distinction is based on 
semantic considerations (which are the primary objects of 
interest), not on syntactic properties (i.e., being atomic or not). views to be modified, 
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ERC+ specifically allows for this iterating description of an 
object, up to an arbitrary number of levels. The resulting struc- 
ture is an attribute tree, whose root is the object. Moreover, 
any node in the tree may carry a unique attribute value, or a 
multiset (bag) of attribute values. 

Let us briefly outline ERC+ features. 

1) 

2) 
3) 

4) 

5) 

The structure of an entity type consists of a set of one 
or more attributes. 
Relationship types may have attributes as well. 
Relationship types may connect any number of partic- 
ipating entity types; they are said to be cyclic if the 
same entity type participates more than once in the 
relationship type. 
A ‘role name is associated with each participation of an 
entity type into a relationship type. It is characterized 
by its minimum and maximum cardinalities, specifying 
whether it is a O-l, O-n, l-l, or l-n link from the entity 
type to the relationship type. 
Attributes may be 

1 I  

I  

Department - - - - 

I 
Dname 

Fig. 1. An example of an ERC+ diagram. 

a) either mandatory or optional. An instance of an 
optional attribute may be empty (no value); for 
a mandatory attribute a value must be defined in 
each instance of the attribute. 

Employee 

E# Ename forehames c’k’ 

b) either monovalued or multivalued. An instance 
of a multivalued attribute may include several 
(possibly duplicate) values, while an instance of a 
monovalued attribute is made up of a single value. 

C> either atomic or complex. If atomic, the attribute 
is nondecomposable; its values are atomic. If 
complex, the attribute is made up of a set of other 
attributes, which are said to be the components 
of that attribute. Component attributes may be 
atomic or complex. This nesting can proceed to 
any number of levels (refer to Fig. 2). 

“~~Ojy& 

name beg-date en\d.date sala&history 

Fig. 2. An ERC+ diagram for a complex entity. 

date 

/\ 
month year 

6) 

7) 

-0 

Entity types and relationship types may have zero, 
one, or more sets of attributes serving as identifiers. If 
no identifier is known, the respective population may 
include duplicates (different occurrences with the same 
value). In particular, two or more relationships may 
connect the same entities and have same values for their 
attributes. 
Two generalizations are supported, the “is-a” and the 
“may-be-a” generalizations. The former corresponds to 
the well-known generalization concept; the latter has 
similar semantics but does not require an inclusion 
dependency between the subtype and the type. No au- 
tomatic inheritance is implicitly built in the querying 
mechanism, but an explicit operator provides for the 
desired inheritance effects [22]. 

For instance, the entity type Employee in Fig. 1 is linked 
to itself by a cyclic, binary relationship type, Boss, whose 
semantics is “the employee in the Sup role is the boss of the 
employee in the Inf role” (or, equivalently, “the employee in 
the Inf role is subordinate to the employee in the Sup role”). 
Optionality of Sup and Inf roles states that an employee may 
have no subordinates, and an employee may have no boss. The 
Inf role is monovalued (an employee has at most one boss), 
while the Sup role is multivalued (a boss may have more than 
one subordinate). All salesmen and secretaries are employees. 
Managers may be employees or not. 

In Fig. 2, an employee is mandatorily described by an 
employee number, a name, a forename and a position. Op- 
tionally, the employee record may hold more forenames, more 
(past) positions, and one or more pairs of (diploma, year) 
information. Each position is described by a set of component 
attributes, and so on. 

The ERC+ model is complemented with the definition of 
formal manipulation languages: an associated algebra and an 

rig. 1 shows a simple diagram of a hypothetical ERC+ equivalent calculus [23] for querying an ERC+ database. In 
schema (identifiers and some role names are not shown). An the integration methodology, these languages form the basis 
example of a more complex object type is given in Fig. 2. for building the operational mappings between the views and 

In these figures, a single continuous line represents a 1: 1 link the conceptual schema. These mappings will transform user 
(mandatory monovalued); a single dotted line represents a 0: 1 requests on the views into the equivalent requests on the 
link (optional monovalued); a double dotted line represents conceptual schema. 
a 0:n link (optional multi valued); and a double, dotted plus More complete and formal presentations of ERC+ and its 
continuous line represents a 1:n link (mandatory multival ued). algebra may be found in [21] and [24]. For a discussion of 
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Book 

Fig. 3. 

title ISBN authors name birthdate books 

/\ 
title ISBN 

v3 

Fig. 4. 

name birthdate title ISBN 

the ERC+ approach compared to object-oriented modelling, 
the reader is referred to [25]. 

III. INTEGRATION EXAMPLES 

A. Example 1: Library Information System 

Let us consider some library information system, for which 
the two views below, Vl and V2, have been defined by 
different users. These views correspond to the classical manual 
files maintained in libraries. Vl presents the world of interest 
as composed of books, where each book is described by its 
title, its ISBN number and its authors’ name and birth date 
(one or several authors). V2 presents the world of interest as 
composed of authors, where each author is described by its 
name, its birth date, and its books’ title and ISBN number 
(one or several books). (See Fig. 3.) 

Clearly, these are two alternative representations of the 
same universe. They convey compatible semantics but show 
conflicting perceptions of data structure. The integration of the 
two views first needs an explicit statement, from the DBA, 
that Book+authors in VI, and Author+books in V2, represent 
the same real-world objects and links in between. Afterwards, 
what one would expect from a clever integration methodology 
is to be able to produce the integrated schema, V3, obvious 
to a human DBA (see Fig. 4.) 

Current integration methodologies fail to build V3. They 
only integrate similar objects types, based on object identifiers. 
Here, there is no way the population of books (identifier: 
ISBN) can be directly compared with the population of authors 
(identifier: name). As a book and an author are not compatible 
objects, existing methodologies cannot do anything but carry 
over the two entity types into the integrated schema, which will 
thus be highly redundant (bearing twice the information on 
books, authors, and the link between a book and its authors). 
Alternatively, they will call on the DBA for him to modify 
both views and make them look like V3 (modification of only 
one view would lead to an incorrect result, as seen below). 
Thus, the modified views will no longer show any conflict, 
and the integrator will be able to build the integrated schema. 
In other terms, integration has been done by the DBA and the 
initial views have not been supported. 

name birthdate title ISBN authors 

’ bhhdate name 

Fig. 5. 

Fig. 6. 

I I 
name birthdate 

I 
date 

n&e lo&ion coGtract 

Current methodologies would also fail if the views to be 
integrated would be Vl-V3 (or V2-V3). Directed to integrate 
Vl with V3, they would find out that the two Book entity types 
represent the same object class, and therefore merge these two 
into a single entity type. The resulting schema would be as 
shown in Fig. 5. 

This schema clearly shows an unacceptable redundancy 
(with regard to authors information, which exists twice, as 
well as the author-book link). The redundancy is because 
the integration of the two Book entity types ignores the 
equivalence between the authors attribute in Vl and the Writes 
relationship in V3. 

B. Example 2: Marriages 

The library example showed a conflict based on the rep- 
resentation of the same concept (book, author) as an entity 
type in one view and as an attribute in the other view. A 
marriage example is now used to show a conflict involving 
representation as an entity type versus representation as a 
relationship type. 

Let us consider again two possible views over the same 
universe of discourse (see Fig. 6). 

View V5 has been defined by a user mainly interested 
in persons, but who wants also to know about marriages in 
between. Consequently, V5 describes an entity type Person 
and relates a person (man role) to another person (woman 
role) through the RMarriage relationship. 

View V6, instead, comes from the lawyer’s office. It deals 
with marriages as notarized acts, considered as entities (EMar- 
riage). It also considers persons as entities (Person), to which 
marriages are mandatorily related twice for each marriage 
occurrence (via the relationship type M). 

If the two views see the same set of persons, it is obvious 
that RMarriage and EMarriage describe the same set of real- 
world objects. A smart integrator would then determine that 
V5 must be conformed to V6, and produce an integrated 
schema equal to V6. Again, existing methodologies would in- 
tegrate the two Person entity types and produce the redundant 
schema illustrated in Fig. 7. 
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Fig. 7. 

Fig. 8, 

v7 

Customer C# F 
name 

date 
quantity 

Customer - name 

E 

Places 

I , 

Order -o# 
\- odate 

I 

Ordhe 4ty 

E 

C. Example 3: Customers’ Orders 

I Product l- P# 

Another limitation in current methodologies which provide 
for relationship integration ais that integration is often per- 
formed only if the relationships have the same multiset of 
participating entity types (which implies that they have the 
same arity). This is too strong a restriction, as seen in the next 
example (Fig. 8). 

Here, ordered and ordline are two equivalent relationships, 
linking a product to its destination. In V7 the latter is the 
customer, while in VS it is the order placed by the customer. 
Section VII will show how our methodology integrates the two 
relationships despite the difference in the participating entity 
types. 

IV. A MODEL FOR THE DESCRIPTION 
OF VIEW CORRESPONDENCES 

Only users and the DBA definitely “know” whether and 
to what extent views are (partially) describing the same real- 
world objects, and how to match the descriptions. Of course, 
it is possible to build automated tools to help in identifying 
similarities, based on matching of names and descriptions. 
Simple tools use a data dictionary to find homonyms and syn- 
onyms. More sophisticated tools analyze names and structures 
to evaluate a degree of similarity, from which they derive 
their conclusions [ 121, [ 111, [9]. In any case, the DBA has to 
confirm, or deny, the correspondences proposed by the tool. 

We assume that knowledge of view correspondences is 
provided by users or the DBA to the view integration tool. 
That knowledge may be expressed using either declarative or 
procedural statements. The latter approach is found in [26] and 
[27], in the context of database integration. Following Motro, 
the user specifies his global schema by defining how it is built 
from the set of schemas of existing databases. The mapping 
specification uses a set of restructuring primitives (later called 
schema editing operations). This approach puts the burden of 
mapping definitions on users, and it is far from evident that 
they will be able to master the complexity of programming 
mappings with these operators. 

We prefer to limit the users’ task to point, in each view, 
at elements that describe the same real-world objects, and to 
identify what correspondences hold in between (in terms of 
their structure and instances). The declarative approach allows 
this. Consequently, the mapping between views is described 
by users as a set of declarative statements, hereinafter called 
correspondence assertions. 

A correspondence assertion is a declarative statement, pro- 
vided by users, asserting that the semantics of some piece of 
data structure in one view is somehow related to the semantics 
of some piece of data structure in another view. 

There will be several kinds of correspondence assertions, 
depending on involved data structures and on the nature of 
the correspondence. Their definitions are given in this section. 
All of them express the knowledge ‘tthis is related to this.” 
Before we go into details about assertions, we must precisely 
define what is meant by the semantics of some piece of data 
structure. 

A. About the Underlying Semantics of Data Constructs 

In the ER approach, representation of a real-world object 
depends on the level of perception one has in considering the 
object: Basically, it will be modeled as an entity if perceived 
as self existing, as a relationship if perceived as a link between 
entities, and as an attribute if perceived as a property of some 
other object. Correspondence assertions that have been used 
so far in the ER framework are limited to the definition of 
interrelationships between populations (or domains) of object 
types at the same level of perception. These’ assertions relate 
entity (relationship) types to entity (relationship) types in terms 
of the object classes they describe, and attributes to attributes 
in terms of their domains and instantiation. In [8], for instance, 
attribute comparisons are deeply investigated. The same paper 
also introduces the term real-world state of an object class A, 
denoted RWS(A), defined as the set of real-world instances of 
object class A at a given moment in time. 

We also use the RWS idea to define the semantics of 
an entity type, of a relationship type and of an attribute. 
However, our definitions will allow us to compare object types 
at different levels of perception (entity type versus attribute, 
for instance). Moreover, we extend the scope of the RWS idea 
to also apply to paths, a construct implicit in the ER approach 
that has not received the attention it deserves, as shown below. 

Real-World State of an Entity Type (Definition Dl): Let E 
be an entity type; the real-world state of E, RWS(E), is the 
set of real-world objects that occurrences of E represent. 

There is a 1: 1 mapping between the population of E and 
RWS(E). 

Real-World State of a Relationship Type (Definition 02): 
Let R be a relationship type, linking entity types El, E:!, 
l .*, En; the real-world state of R, RWS(R), is the bag of 
real-world object tuples [ (01~02, l l l , o,)], such that Vi, 0; f 
RWS( Ei) and the objects in a tuple are linked by a real-world 
association represented by R. 

Square brackets denote multisets. 
In definition D2, we are concerned with multisets of tuples, 

not sets, as the ERC+ model allows the same set of entities 
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to participate in several occurrences of the same relationship 
type. There is a 1: 1 mapping between the population of R and 
RWS(R). + 

Real-World State of an Attribute (Definition 03): Let A be 
an attribute; the real-world state of A, RWS(A), is the set of 
real-world objects that the values of A represent. 

RWS(A) is not necessarily a deterministic concept. For 
instance, let us consider a “month” attribute. There are several 
possible interpretations of RWS(month): either as the set 
of integers {1,-e=, 12)) or as the set of character strings 
( “January”,* l 0, “December”), or as the set of months in the 
common language sense, irrespective of the coding of the asso- 
ciated value. On the other hand, a complex attribute describing 
the manager of a project will have its RWS interpreted as the 
set of persons who are actually managing some project. 

Generally speaking, one could think of a lexical RWS, 
where the interpretation is related to the coding of the at- 
tribute values, and a nonlexical RWS, where the interpretation 
abstracts from the actual coding. 

The multiplicity of RWS interpretations is not a problem 
insofar as, once the concept is used in an correspondence 
assertion, its meaning is uniquely determined within that 
context. 

There is a total surjective function from the values of A to 
RWS(A). 

As stated above, we shall now define the concept of a path, 
needed for proper view integration, and the associated real- 
world state. As a path is a sequence of links, we first define 
links. 

Link (Definition 04): Let X and Y be elements in a schema 
(entity type, relationship type, and/or attribute), then X-Y is 
a link if 

Y is an attribute of X (or vice-versa); then X-Y is called 
an attribute link; 
or X is an entity type bound by the relationship type Y 
(or vice-versa); then X-Y is called a role link. In case of 
a cyclic relationship type, the name of the role is required 
and written above the hyphen. 

Path (Definition D5): Let X1, X2,. . l , Xn be elements in a 
schema (entity types, relationship types, and/or attributes) such 

. that& E {l,Z,=*.,n-1}, X; is linked to X;+l,eitherby an 
attribute link or by a role link, then X1-X2-= l O-X, is a path. 

Real-World State of a Path (Definition 06): The real- 
world state of the X1-X2-*. O-X, path, RWS(Xl-X2- 
l l O-X,), is the bag of real-world object pairs [ (01, on)] such 
that 01 E RWS(X1) and o, E RWS(X,), and there exist 
objects 02,03, l l .  ,  on- 1 such that Vi E {1,2,**=,n - l}, 
o; E RWS(X;), with oi and o;+l linked by the real-world 
association represented by the Xi-X;+1 link. 

B. Element Correspondence Assertions 

The RWS concept allows for definition of correspondence 
assertions. The basic ones, given below, deal with object 
classes and refer to usual set relationships (equivalence, in- 
clusion, intersection, and exclusion). 

Let X1, X2 be two elements (entity type, relationship 
type, or attribute), X1 from view V-, X2 from view V2, 

and 01~02 two real-world objects, such that 01 ERWS(X~), 
o2 E RWS(X2). 

Element Equivalence Assertion (Definition D7): The asser- 
tion that X1 and X2 are equivalent, expressed by the statement 

Xl G x2 

states that at any time either 

1) RWS(Xl) = RWS(Xz), or 
2) there is a total bijective function f: RWS(XI) * 

RWS(Xz), such that 02 = f(o1> iff 01 and 02 have 
the same semantics. 

Element Inclusion Assertion (Definition 08): The assertion 
that X1 contains X2, expressed by the statement 

Xl 2 x2 - 

states that at any time either 

1) RWS(X1) 3 RWS(X2) is true, or 
2) there is a-total injective function f: RWS(X2) + 

RWS(Xl), such that 02 = f(ol) iff 01 and 02 have 
the same semantics. 

Element Intersection Assertion (Definition D9): The asser- 
tion that X1 and X2 intersect, expressed by the statement 

x1 nX2, 

states that at some time either 

1) RWS(X,)n RWS(X2) # 8 is true, or 
2) there is a partial injective function f: RWS(X2) + 

RWS(X& such that 02 = f(o1) iff 01 and 02 have 
the same semantics. cl 

Element Exclusion Assertion (Definition DlO): The asserl 
tion that X1 and X2 are disjoint, expressed by the statement 

Xl #X2, 

states that at any time 

1) RWS(X,)n RWS(X2) = 8 is true, and 
2) there is no function f: RWS(X2) + RWS(X& such 

that 02 = f(ol) iff 01 and 02 have the same semantics. 
cl 

This last assertion is meaningful (useful) iff there is a cor- 
responding element X3, in some other view V3, such that 
X3 3 X1 and X3 3 X2. 

In-each case, condition a) is intended to cope with the 
situation in which X1 and X2 are at the same level of 
perception (both entity types, or both relationship types, or 
both attributes). It is worthwhile noting that we do not require 
that corresponding elements have the same identifiers (as in 
[8], for instance). This is consistent with the structural object 
orientation of the ERC+ model and will apply as well for 
object-oriented models. 

Conditions b) are intended to extend the scope of integration 
to heterogeneous perceptions of the same objects, allowing for 
comparisons of attributes with entity types, and so on. 
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Fig. 10. 

Example I: Entity/Attribute Correspondence: Our first ex- 
ample to illustrate the usage of correspondence assertions 
refers to the library information system discussed in Section 
III. 

Suppose the diagrams shown in Fig. 9 are part of two views 
to be integrated: 
RWS(Author) is the set of authors in the library. Clearly, 
from a lexical point of view, RWS(authorsnames) is equal 
to RWS(name), the set of all authors’ names. However, it is 
equally true to state that, from a nonlexical point *of view, 
RWS(authorsnames) is equal to RWS(Author): the names of 
the authors, authorsnames, is nothing but a designation of the 
corresponding authors. Therefore, the following assertions are 
both valid: 
-Authoroname z Bookeauthorsnames (thanks to condition a) 
-Author G Bookaauthorsnames (thanks to condition b). 

The first assertion obviously compares lexical objects (char- 
acter strings), while the second one compares nonlexical 
objects. Which interpretation of RWS(authorsnames) applies 
is determined by the other term in the assertion. 

Example 2: Entity/relationship correspondence: Our sec- 
ond example refers to the marriage views as discussed in 
Section III (see Fig. 10). 

If the two views see the same set of persons, it is obvious 
that the RWS of Person in the two views are equal. For 
the RWS of RMarriage and EMarriage, it is a bit less evi- 
dent: RWS(RMarriage) is the multiset of married couples and 
RWS(EMarriage) might be something else-for instance, the 
set of marriage contracts. Nevertheless, there is a 1: 1 mapping 
between the two RWS’s. Thanks to condition b), it is therefore 
correct to assert: RMarriage G EMarriage. 

C. Correspondences Between Attributes 
of Corresponding Elements 

The above correspondences between RWS are asserted 
independently from what information the views keep on the 
objects: There is no obligation for the views to describe cor- 

responding objects with the same set of properties (attributes, 
in ER terms). However, if it is the case that corresponding 
elements are described, in the different views, with the same, 
or similar, attributes, the integrator should know about these 
similarities. This knowledge is needed to produce a nonre- 
dundant integrated schema, in which common attributes are 
integrated into a single one. 

To that purpose, we introduce assertions about attribute 
correspondences, to be used within the context of an element 
correspondence assertion, as defined below. 

Example: Consider the above Marriage views (VSV6). 
Name of Person and date of Marriage will be identified in the 
two views as corresponding attributes. Equivalence assertions 
(in which the left term refers to V5, the right one to V6) 

Personaname = Personaname 
RMarriageodate = EMarriagedate 

will specify that, whenever two corresponding persons (mar- 
riages) are considered, the name (date) attribute in V5 holds 
the same value as the name (date) attribute in V6. 

Value equality is not the only possible case. Two attributes 
may correspond and nevertheless represent the same property 
in different ways. 

l The coding scheme may differ: salaries in US$ versus the 
same salaries in another currency. 

l One view may carry only a partial record of the property, 
or a resume (like a statistical aggregate). For instance, 
salary in one view versus salary of less than 100000 
in the other view (where perception of salaries may be 
restricted for privacy purposes). Children (multivalued in 
one view) versus number-of-children in the other view 
is an example of resume. 

l Both views may carry only a partial record of the prop- 
erty, with the partial records overlapping or being disjoint: 
children in both views, but restricted to boys on one 
side and to girls on the other side, is an example of 
disjointness. 

The notion of partial record for a property refers to the fact 
that only some of the possible values of this property are of 
interest to the user. Applied to a monovalued attribute, partial 
recording implies that the attribute is described as optional (to 
accept “no value” when the actual value is outside the domain 
of interest). More facets to be considered have been suggested 
in [S], i.e., integrity and security constraints, and allowable 
operations. We will not discuss these additional facets, as they 
do not change the nature of the problem. 

In our model, assertions about corresponding attributes of 
corresponding elements X and Y are stated as part of a 
correspondence assertion between X and Y, using a “with 
corresponding attributes” (WCA) clause. This WCA clause is 
defined below. As in [8], the notation Values(A), where A is 
an attribute, is used to refer to the set of values of A in all the 
actual occurrences (or values) of the parent element. Values(A) 
is a subset of the domain associated with A. 

Corresponding Attributes Assertions (Definition Dl I): Let 
X1 (car) X2, be an element correspondence assertion, 
with (or, 02) being a pair of corresponding objects: 01 E 
RWS(X& o2 E RWS(X2). 



Person1 G Person2 with corresponding attribute 

name = name. 

Other assertions might hold between attributes of Person1 
(name, salary-inUS$, number-of-children, children-under-l 6, 
boys) and attributes of Person-2 (name, salaryinFF, children, 
girls) : v- 

a 

0 

l 

0 

salary-in-US$ = FF-to-US$-exchange (salary-inFF) 
FF-to-US$-exchange is a function transforming an 
amount expressed in French francs into the equivalent (at 
some specified day) amount in US dollars. The inverse 
function may also be specified: US$-toFF-exchange 
(salary-inUS$) = salary-in_FF; 
number-of-children = count(children), where children is 
a multivalued attribute; 
children-under-16 = select 16(children) Both are multival- 
ued attributes, but only children under 16 are recorded 
in the first view; select16 is a function extracting from 
children only those values where age is under 16; 
boys # girls both are multivalued attributes and have the 
same structure, but boys records only male children while 
girls records only female’ children; 
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Let el, e2 be the occurrences representing 01 and 02 in the 
database. Finally, let AlI, A12, + . l , AIn be attributes of X1, 
and A21, A22, l - - , AZ, be attributes of X2 (if X1 or X2 is 
a simple attribute, it is implicitly considered here as having 
itself as unique component). Then, 
X1 (car) X2 with corresponding attributes 

attcon(A11, A21), attcora(42, A22), l l l 7 

a~~m&41,/42,) 

is also a correspondence assertion that states that X1 (cor)X2 
is true, and for each attcori(Al;,Azi), 

l If attcor;(Al;, A24 is Al; = A2i, then for any 01,02 
pair, el l Ali = e2 l A2i; 

l If attcori(Al;, A2i) is A2i = fi(Ali), then fi is a 
surjective function (explicitly defined by the DBA) from 
Values(Al;) onto Vdues(A2i), such that at any time for 
any 01,02 pair, e2 l A2i = fi(el l Ali). In particular, the 
fi function may be bijective, or it may be a subsetting 
function such that Ali 3 A2i. Its explicit definition is - 
required for its implementation in the views to integrated 
schema mappings. 

l If attcori (Ali, A2i) is Ali UAzi,~ then it is possible that for 
some 01,02 pair, el @Ali ne2 l A2i # 8 (for a monovalued 
attribute this reduces to el l Ali = e2 l A2i). 

l If attcori(Ali, A2i) is Ali # A2i, then for any 01,02 

pair, el l Ali n e2 l A2i = 8, but it is possible to define 
a domain D such that at any time D 3 Values(Ali) and - 
D > Values(A2;). cl 

Examples: Assume there are two Person entity types 
asserted to be equivalent: 

Attribute correspondences should not contradict 
dences asserted for their parent elements [8]. 

correspon- 

D. Path Correspondence Assertions 

The analysis of views interrelationships also calls for the 
identification of correspondences among paths in the views. 
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Refer to the first two views, Vl and V2, of the library 
information system. If we suppose that the two views see 
exactly the same objects (books and authors), the element 
correspondence assertions between Vl and V2 are (in each 
assertion, the left term refers to V2, the right term to V2): 

Book = Author l books with corresponding attributes: 

title = title, ISBN =ISBN. 

Bookeauthors = Author with corresponding attributes: 

name = name, birthdate = birthdate. 

These two assertions will generate in the integrated schema 
(IS) two entity types, Book and Author. Nothing in the above 
correspondence assertions states the fact-obvious to a human 
but not to a program- that each time a Book b has an author 
a in Vl, the corresponding a Author has this b Book in V2. 
The integrator will generate in IS two different relationship 
types between Author and Book, each one expressing one of 
the two links: Book-authors in Vl and Author-books in V2. 

In order to allow the integrator to integrate those two links 
into a unique relationship type, the DBA has to state that each 
link is the reverse of the other. In our methodology, the DBA 
will define the following path correspondence assertion (which 
is explained below): 

Book - authors = books - Author. 

Path Equivalence Assertion (DeJinition D12): Let El- 
E2-. . . -En be a path within view V, and Fl-F2-• l l -Fp be 
a path within view V’, such that there is an assertion relating 
El to Fl (via a function f: RWS(E1) --) RWS(F1)) and an 
assertion relating E, to Fp (via a function f’: RWS(E,) ---f 
R~w$)). 

Let RWS’(E1) be the subset of RWS(E1) defined by its 
restriction to El objects, which are involved in the asserted 
correspondence with F1 objects. Let RWS’( Fl), RWS’(E,) 
and RWS’(F,) be similar restrictions of the corresponding 
RWS. 

Let RWS’(E1-E2-=. l -En) be the subbag of RWS(El- 
E2-’ l e-E,), defined by its restriction to object 
pairs in RWS’(El > x R~w%-l) 7 and similarly 
for RWS’(Fl-F2-• l l -Fp). Finally, let (el, e,> E 
RWS’(E1-E2-• . *-En) and (fl, fp) E RWS’(Fl-F2-•. l -Fp). 

The assertion that the two paths are equivalent, expressed 
by the statement 

El-E2- l l l -E, = FI-F2-. . l -Fp 

states that at any time, either 

1) RWS’(El-E2-0. e-E,) = RWS’(Fl-Fz-•. e-F& or 
2) there is a total bijective function g 

RWS’(El-E2-’ l O-E,) w RWS’(Fl-F2-’ l +Fp) 
such tllat (Fl, f*) = g((e1,e,) ) iff fl = f(e1>, 
fp = f’(En) and the Fl-f, and the el-e, paths have 
the same semantics. cl 

The 
0 
0 
0 

other assertions are as follows: 
&E2-. . .- E, z) Fl-F2-’ . ‘-Fp. 
El-E2-’ l e-En 6 Fl-F2-• l a-F*. 
El-E2-’ 9 9 -En # Fl-F2-• l +-Fp. 
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These may be readily defined in the same way as element 
assertions. 

The assertions we have defined above are not the only ones 
that may relate two views. As an example, assertions may 
involve aggregation functions: An attribute in one view may 
represent an average over several attributes in another view; 
an entity may correspond to a set of entities (like in the well- 
known convoy example, where a convoy is a set of ships). 
This type of correspondence will be dealt in future work. We 
also defer dealing with generalization links. 

V. RULES FOR VIEW INTEGRATION 

Once correspondence assertions between views have been 
stated, the integration algorithm can proceed. Analyzing each 
correspondence assertion, it generates one or several constructs 
in the integrated schema, in accordance with the appropriate 
integration rule. These rules are described hereinafter, while 
the algorithm is described in the next section. 

The background to our rule definitions consists of two basic 
principles, which are model independent: 

1) The scope of integration rules should cover both ob- 
jects and links integration. As these two concepts are 
present in any data model (semantic, functional, ER, 
object-oriented, etc.), their integration rules should be 
translatable from one model to another. 

2) Whenever conflicting representations exist in different 
views, the integrated schema will hold the least restric- 
tive representation. This allows us to support all other 
representations, which can be derived through restrictive 
mappings. 

Conflict resolution is not just a matter of schema conform- 
ing. Usage of different modeling concepts usually implies 
different constraints on objects or links in the schema. In 
the ERC+ framework,. entities, relationships, and attributes 
bear different existence dependencies. Entities are free from 
such dependencies (unless constrained by attached roles). Re- 
lationships depend on participating entities (two or more), and 
attributes depend on their (unique) parent element. Therefore, 
entity type is the preferred integrated concept in case of 
conflict. Additional links, and the associated cardinalities, will 
bear the needed existence dependencies. 

Example: Views Vl and V2 (library information system) 
carry an entity type/attribute conflict on representation of 
books. Integration generates an entity type Book in the in- 
tegrated schema (V3), which is complemented with .a rela- 
tionship type to link it to Author. This new relationship type 
represents the two links, Book-authors (V 1) and Author-books 
(V2). Both views state that there does not exist any book 
without at least one author. In VI, this is because authors is 
a mandatory attribute of Book. In V2, books, as an attribute, 
exists only if its parent element, Author, exists. This existence 
dependency of book is expressed in V3 by making mandatory 
the role of Book. 

Applied to the ERC+ model, the above two principles led 
us to define the following six integration rules: 

l The first one governs integration of element correspon- 
dence assertions, except for the case where the two 
corresponding elements are both attributes. 

l The second and third ones cope with path correspondence 
assertions. 

l The fourth and fifth ones govern the case of correspon- 
dence assertions between attributes. 

l The last rule applies to integration of elements that are 
not involved in correspondence assertions. 

A special case when two attributes are asserted to corre- 
spond is made, due to the fact that the ER approach does 
not allow for attribute sharing: An attribute belongs to one 
and only one parent element. Applying the first rule to the 
assertion “attribute A of X is the same as attribute B of Y” 
(without X and Y corresponding to each other) would result 
in generating an attribute AB, son of both X and Y, which 
contradicts model rules. 

A. Integration of Element Correspondence Assertions 

Our first rule applies to correspondence assertions between 
elements as described in Definition D7. The elements may be 
entity types, relationship types or attributes, but not two at- 
tributes. This last case is discussed in Section V-C. Following 
our basic principles, integration rule 1 states that: 

1) corresponding elements of the same modeling concept 
(two entity types or two relationship types) are integrated 
into a similar element (respectively, an entity type or a 
relationship type), and 

2) corresponding elements of different modeling concepts 
(entity types, relationship types, and attributes) are inte- 
grated into an entity type. 

If the existence of one (or both) of the elements to be 
integrated depends upon other elements, integration rule 2 or 
6 will generate, for each existence dependency, a link whose 
cardinalities will express that dependency. 

Integration Rule I: Elements Integration Rule: Let X1, X2 
be two elements in two views, X1 E VI, X2 E V& such that 
Xl E x2. 

If we denote by X the element in the integrated schema 
resulting from the integration of X1, X2, then: 

l If X1 and X2 are not of the same type, X is an entity 
type; 

l If X1 and X2 are of the same type but are not attributes, 
X is of the same type as X1, X2. cl 

This rule considers only equivalence assertions. A detailed 
analysis of how the other element assertions are dealt with 
(compared to equivalence) may be found in [7] or [8]. Our 
approach would be similar to Jardine’s one. 

B. Integration of Links 

Entity types are the only elements whose integration may 
not require additional integration of links. On the contrary, 
relationship type and attributes integration calls for integration 
of role links and attribute links, which express their existence 
dependencies. Correspondences between links are asserted as 
path correspondences, with each path consisting of only two 
elements. According to Definition D12, these elements are 
asserted as corresponding. Obviously, integration of the links 
in between generates a path connecting the IS elements that 
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Fig. 11. 

result from integration of the link ends in the views illustrated 
in Fig. 11. 

The IS path is built to conform to the following ER axioms: 

l If A or B is an attribute, A-B is an attribute link. 
l If A is an entity type and B a relationship type, A-B is 

a role link. 
l If A and B are two entity types, a new relationship 

type-say, X-is inserted, and the A-B link becomes an 
A-X-B path. X acts as a pure link relationship: It has 
no attributes, no significant name, and no other semantics 
that “link A and B.” This case occurs when A (or B) 
results from the integration of elements of different type 
(Rule 1). 

A and B cannot both be relationship types (integration rule 
1). As elements and links are equivalent, cardinalities of the 
two links are necessarily the same, and cardinalities of the 
integrated link are set to the same values. 

Integration Rule 2: Links Integration Rule: Let Al and B1 
be two linked elements in view VI, AZ, and Bz be two 
linked elements in view V& and the following correspondence 
assertions: 

B1 z B2 

Al-Bl = AZ-B2. 

Let A be the integrated element in IS corresponding to Al 
and AZ, let B be the integrated element in IS corresponding to 
B1 and Bz, then the integration of Al-B1 and AZ-B2 links is: 

l a role link, if A and B are an entity type and a relationship 
type; 

l an attribute link, if A and B are any element and an 
attribute; 

l a link relationship type with its two roles (standard name, 
no attribute) if A and B are two entity types. 

The cardinalities of the integrated link, or path, are: 

cardmin( A) = cardmin( Al) = cardmin( AZ) 

cardmax = cardmax = cardmax( AZ) 

cardmin( B) = cardmin(B1) = cardmin( B2) 

cardmax( B) = cardmax( B1) = cardmax( Bz). 

0 

C. Integration of Composite Paths 

Two different cases may involve a composite path in a 
correspondence assertion, i.e., 
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l when a path corresponds with a link, or 
l when two paths, neither one a direct link, correspond with 

each other. 
Let us first consider the case where one of the two paths is 

a direct link. For instance, 

El-& G Fl-Fz-. . l -Fp+Fp. 

In this case, the composite path will be integrated into IS, but 
not the direct link, which would be redundant as it is deducible 
from the composite path. 

Let us assume that Fl , F2, b . l , Fp- 1, Fp elements have been 
integrated as F{ ,  Fi ,  l l . , FL- 1, Fi into IS. 
The integration of the composite path proceeds step by step, 
considering each link in the path. For each i = 1,2, l l . , p - 1 
either a role link, an attribute link, or a link relationship type 
with its two roles is created in IS between F;’ and Fi’_t,, 
according to the concepts modeling F/ and Fz!+l, as in Rule 2. 

Cardinalities of the integrated path are kept unchanged. 
Let us now consider the case where neither of the two 

paths is a direct one (nor may they be decomposed into 
corresponding direct links). This means that the two views 
record alternative ways to go from the same (or corresponding) 
source information to the same (or corresponding) target 
information. 

If the two paths do not have common elements, which is the 
case here, they both have to be recorded in IS. The only thing 
the integrator can do to preserve database consistency would 
be to add an integrity constraint to IS, stating that, for the same 
source element, the element reached through one path must be 
the same as the element reached through the other path. 

Integration Rule 3: Paths Integration Rule: Let El, E2, 
l l 9 E, be elements in view VI. 

Let Fl, F2,**+ Fp be elements in view V2, with the follow- 
ing correspondence assertion: 

El f Fl. 

Let G1 be the integrated element in IS corresponding to El 
and 

l 

0 

Fl. Then: 

The correspondence assertion between a link and a path, 

El 432 s F1-F2-. l . -Fp 

with E2 I Fp generating GP in IS, generates in IS a path 
Gl-Fi-• l l -FLDl-G,, where Fi, l l l , FLwl are elements 
of IS corresponding to F2, l l l , F&l, and each link of 
the path is created according to the concepts modeling 
the linked elements, as in Rule 2. 
The correspondence assertion between two composite 
paths, 

E1-E2-mee-En = Fl-Fz-a*e-F, n > 2,p > 2, 

with E, = Fp generating G, in IS generates in IS two 
paths and an integrity constraint. The two paths are: 

G1-E;- . l +-EL-,-G, 

G1-F;- l . l -F;_,-G, ’ 
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where Ei,. l . , EL-, are elements of IS corresponding 
to E2, . . . , En-l, and Fi, + . . , Fisl are elements corre- 
sponding to F2, l l . , Fp-1, and each link of the paths is 
created according to the modeling concepts of the linked 
elements, as in rule 2. 
The integrity constraint states that the two paths link the 
same occurrences. cl 

D. Integration of Attributes 

Attribute integration, as relationship type integration, re- 
quires the integration of elements and links. As we have 
seen above, integration of two corresponding attributes is not 
managed by Rule 1 because of the peculiarity of the existence 
dependency of attributes: They depend on exactly one object. 

Attribute integration is easily managed if the corresponding 
attributes belong to objects that are themselves involved in 
a correspondence assertion, i.e. the attribute and the attribute 
link correspondence assertions are described by a WCA clause 
(Definition Dl 1). 

The opposite situation is that of two corresponding attributes 
that are not related to any couple of corresponding elements 
in a path correspondence assertion. There is only one cor- 
respondence assertion A = B involving those attributes. In 
that case, A and B cannot be integrated into an attribute 
in the integrated schema. This attribute correspondence only 
expresses a constraint on the domains of the two attributes, 
without any immediate impact on the process of building 
the integrated schema. The integrator will just keep track of 
this kind of correspondence, as it might become useful in 
a subsequent integration step, where these attributes would 
correspond to an entity or relationship type in some other view. 
If no more views are to be integrated, the only thing to do is to 
generate in the integrated schema an integrity constraint stating 
the correspondence between the set of values of A and B. 

An intermediate situation is when corresponding attributes 
relate to some corresponding objects, different from their direct 
parents (otherwise, it would be part of a WCA clause). In 
other words, there is a path correspondence, where the paths 
connect the corresponding attributes to some elements asserted 
to correspond to each other. In this case, the correspondence 
assertions between the attributes and the paths are handled 
together with the same technique as for path integration. 
One or two attributes are created in the integrated schema, 
according to the fact that one path can be deduced from the 
other or not. 

Rules for managing the two cases where integration is 
possible are formally defined below. 

Integration of Attributes of Corresponding Elements: An 
equivalence between two elements generates an element. The 
set of its attributes in the integrated schema will consist of 
one attribute for each pair of corresponding attributes, plus 
one attribute for each attribute belonging to only one view 
(with no corresponding attribute in any other view). As entities 
are equivalent, cardinalities of integrated attributes are the 
strongest. 

Integration Rule 4: Integration of Attributes of Correspond- 
ing Elements: Let El be an element in view VI, E2 an element 

in view V& with the following correspondence assertion: 

El E E2, 

with corresponding attributes 

AlI = A21, A12 = A22, - - - 7 Al, = A2w 

Then, the integrated element E in IS corresponding to El and 
E2 will have: 

l an attribute A; for each attribute correspondence Ali = 
f42i* 

Ai’s domain and cardinalities are equal to those of Ali 
and A2i 7 i.e., 

cardmin( A;) = cardmin( Al;) = cardmin( AZ;) 

cardmax( Ai) = cardmax(Al;) = cardmax( A2i). 

l an attribute B$ for each attribute Bj of El (or of E2) 
that has no correspondent. 
B’j ‘s domain and cardinalities are equal to Bj’s ones: 

cardmin( Bg ) = cardmin( Bi) 

cardmax( Bi) = cardmax . 

Integration of Attributes of Noncorresponding Elements: 
The last case to be considered is the one where two corre- 
sponding attributes terminate corresponding paths. The differ- 
ence with Rule 3 about paths integration is that the attributes 
have not yet been incorporated into the integrated schema 
(as stated in Section V-A), which makes the above rule not 
applicable. 

The purpose of the path correspondence, combined with the 
attribute correspondence, is to avoid attribute duplication in 
IS. Indeed, the semantics of these correspondences states that 
two different paths lead to the same information. Therefore, 
only one of the two paths should be implemented in IS, and 
the attribute inserted at the end of this path. Which path is 
transferred into IS is determined with the same approach as 
for path integration. If one of the paths is a direct link, the other 
path is chosen. If both are composite paths, the two have to be 
kept, with their terminal attributes, and it is not possible for 
the integrator to avoid the redundancy. An integrity constraint 
is added to the integrated schema. 

Integration Rule 5: Attributes with Path Integration Rule: 
Let El,E2,*=*, E, be elements and A an attribute in view 
VI; and let Fl,F2,=*= , Fp be elements and B an attribute in 
view V2, with the following correspondence assertions: 

El E Fl 

A=B’ 

Let G1 be the 
and Fl; then: 

integrated element in IS corresponding to El 

l The correspondence assertion 

El-A = Fl-F2 l l l -F,-B 
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Fig. 12. 

l The correspondence assertion 

El-&-. . . _ E,-A s FI-F2- l l l -Fp-B n>2,p>2 - - 

generates in IS two attributes and an integrity constraint. 
The attributes are: A’, which is an attribute of Ek, where 
EL is the element corresponding to E,; and B’, which is 
an attribute of FL, where FL is the element corresponding 
to Fp. 

Domains and cardinalities of A’ and B’ are, respectively, 
the same as those of A and B. 

The integrity constraint states that the two paths link the 
same values. 

E. Add Rule for Elements and Links without Correspondent 

This last rule takes care of elements and links that exist in 
only one view. It has already been implicitly used in Rule 4, 
where attributes that are defined in only one view are added 
to the integrated schema. 

Integration Rule 6: Add Rule: Any element (entity type or 
relationship type) that exists in a view and has no correspond- 
ing element in any other view is added to the integrated schema 
with all its attributes without modification. 

Let X,--Y, be a link (role or attribute link) that exists in 
view Vl and has no corresponding link nor path in view V2. 
Let X and Y be the elements of IS corresponding to X1 and 
Yl. Then, a link or a link relationship type X-Y is added to 
IS, according to the modeling concepts of X and Y. 

Cardinalities of X-Y are defined as follows: 
If X1 is equivalent to X(X1 E X), then 

cardmin( X) = cardmin(X1) 

cardmax = cardmax( Xl). 

If not (Xl is only a subset of X), then 

cardmin(X) = 0 

cardmax( X) = cardmax( 

Cardinalities of Y are defined in the same way. 

F. Examples 

The following diagrams sketch how integration rules are 
applied to usual cases. Cardinalities of links are not shown. 

Case 1) Equivalence of Two Entity Types: An equivalence 
between two entity types generates an entity type (Rule 1 plus 
Rule 4 for attributes). (See Fig. 12.) 

In every case, each time Rule 1 is run, Rule 4 is also 
activated in order to add attributes to integrated elements. 
Hereinafter we will not repeat it. 

Fig. 1 

Fig. 13. 

v2 

Fig. 15. 

Case 2) Equivalence of an Entity Type and an Attribute: An 
equivalence between an entity type E and an attribute A, of 
some element X, generates an entity type, say EA (Rule 1). 
Rule 6 generates for the X-A attribute link a relationship 
type linking EA to the entity type representing the element to 
which the original attribute is attached in the view (X in our 
example). The name for the generated relationship type may 
be automatically generated by the integrator, or be specified 
by the DBA. (See Fig. 13.) 

Case 3) Equivalence of Two Relationship Types: In this 
case, the correspondence assertions are 

R=R, X=X, ZrZ 

X-R = X-R, Z-R G Z-R. 

(See Fig. 14.) 
An equivalence between relationship types generates a 

relationship type (rule 1). Link integration (Rule 2) generates 
one role link for the two X-R links and one for the two Z-R 
links. Rule 6 adds role links without correspondent: Y-R and 
W-R. The integrated relationship type will therefore link all 
entity types resulting from the integration of the participating 
entity types in the views. 

Case 4) Equivalence of an Entity Type and a Relation- 
shipType: An equivalence between an entity type E and a 
relationship type R generates an entity type, say, ER (Rule 
1). Rule 6 generates, for each role of R, a relationship type 
linking ER with the entity types resulting from the integration 
of the entity types participating in R (here, X and Y). (See 
Fig. 15.) 

Case 5) Equivalence of a Relationship Type and an Attribute. 
An equivalence between an attribute A and a relationship type 
R generates an entity type, say, RA (Rule 1). Rule 6 generates 
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Fig. 16. 

paths. The initial step of the algorithm is intended to isolate 
correspondences whose integration is to be deferred. /* 

Remove from the set of element correspondence assertions 
all attribute correspondences and put them aside; remove these 
attributes from the views (temporarily). 

Remove from the set of path correspondence assertions all 
correspondences where the paths terminate on corresponding 
attributes, and put them aside. 

the same substitution for R as in the immediately previous B. Elements Integration 

case, plus a relationship type linking E and RA. This last */ Phase 1 (Integrate Corresponding elements /*): For each 
relationship type results from adding the E-A attribute link element correspondence assertion X1 (car) X2, do: 
of view VI to the integrated schema. 

(See Fig. 16.) 
Other examples of more complex situations are described 

in Section VII. They will show how paths are integrated. 

0 
VI. VIEW INTEGRATION ALGORITHM 

Different algorithms may be designed to perform view 
integration based on the six rules we have defined in Section V. 
Certainly, algorithms will vary depending on which integration 
processing strategy is chosen: n-ary versus binary. N-ary 
strategies integrate n views in one shot. In this case, the 
integrator will have to sum up all correspondences involving 
the same object through all views. With that global knowledge, 
it will be able to decide which constructs to build in the 
integrated schema, and to generate the appropriate mappings 
between each view and the integrated schema. 

Binary strategies integrate two views at a time. They are 
simpler but must be iterated over the remaining views before 
the integration process terminates. 

Our integration rules implicitly assumed a binary strat- 
egy (they may easily be extended to n views at a time). 
Accordingly, in this section we propose a straightforward 
algorithm that integrates two views. The algorithm is split 
into several steps, shown in Sections A through D below. 
These steps first integrate corresponding elements that are not 
attributes. Then, corresponding paths are integrated. Finally, 
corresponding attributes are processed. 

Once all the views have been integrated, one may want 
to refine the resulting integrated schema. Indeed, integration 
rules may have created constructs that can be simplified 
without semantic loss. Refinement may be performed either 
automatically or interacting with the DBA. Automatic use of 
a refinement rule is shown in Algorithm 2. 

Comments are written in italics. 
Algorithm 1) Integration of Two Views (VI and V2): Input: 

Vl, V2, and the correspondence assertions in between. 
Output: an integrated schema IS and the VI-IS, V2-IS 

correspondences. 

A. Deferring Attribute Correspondences 

*/ As we have seen in the previous section, attribute 
correspondences, other than those included in a “with cor- 
responding attributes” clause of corresponding elements, must 
be processed after integration of the other elements and of the 

Execute Rule 1 (element integration rule). 
Execute Rule 4 (integration of attributes) for the inte- 
grated element. 
Mark as already processed, in V 1 and in V2, X1, X2, 
their attributes and their attribute links. 
Generate the correspondence assertions X1 (cor)X in 
VI-IS and Xz(cor)X in V2-IS. 

enddo 
*I Phase 2 (Add Noncorresponding Elements I*): For each 
Vl element and for each V2 element that has not been marked 
as processed in Phase 1, do: 

l Execute Rule 6 (add rule). 
l Mark this element as processed, and its attributes and its 

attribute links (in Vl or in V2). 
l Generate the correspondence assertions in VI-IS or in 

v2-IS. 

enddo 

C. Path Integration 

*I Phase 1 (Add Path Correspondence Assertions for Roles 
of Equivalent Relationship Types): When the DBA states that 
two 
type 

relationship types are 
s link equivalent entity 

equivalent, and these relationship 
types, this implicitly defines equiv- 

between corresponding ro le links 
implici explicitly declares these 

in the two views. This 
t correspondences, so 

alence 
phase 
that they may be taken into account during the next phase /* 

For each pair of corresponding equivalent relationship types, 
RI in Vl, R2 in V2, such that 

R1 links E1,Fl,--,Gl, R2 lib E2,F2,-**,H2, 

Rl =R2, E1=E2, Fl z F2, l -a. 

do: 

l Add to the set of path 
followin ,g asserti ons: 

correspondence assertions 

El -Rl E E2-R2, F1-R1 = F2-R2, ... . . 

enddo 
*/ Phase 2 (Integrate Corresponding Links and Paths I*): 
For each path correspondence assertion X1-a l l - 

21 (car) X2-a . l --22 , do: 
l Execute the appropriate integration rule: Rule 2 if two 

links are involved, Rule 3 if composite paths are involved. 
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l Mark as processed, in Vl and in V2, the corresponding 
links. 

l Generate the path correspondence assertions in VI-IS 
and in V2-IS. 

enddo 
*/ Phase 3 (Add Noncorresponding Links I*): For each 

/\ 
title ISBN 

Vl link and for each V2 link that has not been marked as Fig. 17. 
processed, do: 

l Execute Rule 6 (add rule). 
l Mark this link as processed (in V2 or in V2). 

and of corresponding attributes of noncorresponding elements. 

l Generate the path correspondence assertion in Vl-IS or 
Last, we discuss a new example, taken from [8], which 

in V2-IS. 
involves integration of an entity type and a relationship type, 
and refinement of the integrated schema. 

enddo 

D. Integration of Attribute Correspondences 

*/ We now consider attribute and path correspondence 
assertions that have been put aside in Section VI-A /* 

For each attribute correspondence assertion, Al (car) AZ, do: 

If there is a path correspondence assertion involving 
Al and A2 then execute Rule 5 (attribute with path 
integration rule) else add both attributes, Al and AZ, to 
IS. 
endif 
Generate the path correspondence assertions in Vl-IS 
and/or in V2-IS. 
enddo 
of Algorithm 1 

Algorithm 2) Refinement of an Integrated Schema: Input: an 
integrated schema IS. 

Output: an equivalent integrated schema IS’ and the* 
IS-IS’correspondences. 

*/ Replace entity types, which are only bound to link 
relationship types, by ERC+ relationship types /* 

For each entity type E in IS such that all its roles are bound 
to link relationship types Rl, R2, 0 l l , Rn, whose cardinalities 
are l:l, do: 

l Substitute a new relationship type (say, R) for E together 
with all its roles and related relationship types. R links 
all entity types that were bound by link relationship types 
to E. R’s attributes are the attributes of E. 

l Generate the following correspondence assertions in 
IS-IS’: 

enddo 
end of Algorithm 2 

VII. EXAMPLES ILLUSTRATING THE 
VIEW INTEGRATION ALGORITHM 

This section is intended to illustrate the main aspects of our 
algorithm. The library information system shows how different 
modeling constructs (entity types and attributes) are integrated 
and the importance of links integration. The second one, about 
customers’ orders, requires integration of a composite path 

A. Example 1: Library Information System 

Let us consider the views Vl, V2 from Section III (see 
Fig. 17). 

The set of correspondence assertions between Vl and V2 
consists of two assertions about elements and one about paths: 
Book G Author l books with corresponding attributes: A 

title = title, ISBN = ISBN 
Book oauthors G Author with corresponding attributes: 

name = name, birthdate = birthdate 
Book-authors = books-Author 

Step 6.1 of the integration algorithm is not required: There 
is no attribute correspondence 

Step 6.2, phase 1, will start integrated schema 

bY 
the 

assertion. 
building the 

the first assertion: Book = considering 
ts are not of the same type, 

Authorabooks. 
an entity type, 

As 
say two elemen 

Book, is generated in IS. Book has title and ISBN as attributes. 
The following correspondences are generated: 

a) Vl-IS: Book = Book with corresponding attributes: title 
= title, ISBN = ISBN. 

b) V2-IS: Authorobooks = Book with corresponding at- 
tributes: title = title, ISBN = ISBN. 

Similarly, the next correspondence will be dealt with: 
Bookeauthors = Author. An entity type, say Author, is 
generated in IS, with name and birthdate as attributes. The 
following correspondences are generated: 

a) V l-IS: Bookoauthors = Author with corresponding 
attributes: name = name, birthdate = birthdate. 

b) V2-IS: Author = Author with corresponding attributes: 
name = name, birthdate = birthdate. 

Step 6.2, phase 2: This phase is not needed. There is no 
noncorresponding element. 

Step 6.3, phase I: This phase is not needed. There is no 
relationship type. 

Step 6.3, phase 2: Deals with the unique path correspon- 
dence: 

Book-authors = books-Author 

Both Book-authors (V 1) and books-Author (V2), are direct 
links. According to Rule 2, their integration consists in insert- 
ing a link in IS between Book and Author. As these are two 
entity types, the new link will conform to the following pattern: 
role-relationship type-role. Assuming the new relationship type 
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name birthdate title ISBN 

Fig. 18. 

l-iGi+name 

Customer C# F 
name 

stu 

P# 

Fig. 19. 

is named BA, two more correspondences are generated: 

-Vl-IS : Book - authors E Book - BA - Author 

-V2-IS : Author - books E Author - BA - Book 

Nothing else is left to be done. The integration has produced 
the integrated schema shown in Fig. 18. 

B. Example 2: Customers’ Orders 

Let us now consider the customers’ orders example. The 
views to be integrated are illustrated in Fig. 19. 

The set of correspondence assertions between V7 and V8 
consists of the following assertions: 
Customer E Customer with corresponding attributes: 

name=name 
ordered 5 ordline with corresponding attributes: 

quantity=qty 
Product E Product with corresponding attributes: 

p# = P# 

ordered-date E Order-Odate 
ordered-date E ordline-Order-Odate 
Customer-ordered E Customer-places-order- ordline 

Step 6.1 puts aside the two correspondences involving 
attributes date and Odate, and removes date and Odate from 
the views. 

Phase 1 of step 6.2 then proceeds with the first three 
assertions, inserting into IS: 

l an entity type Customer, with name and C# attributes, 
l a relationship type, say oline, with an attribute quantity, 
l an entity type Product, with the P# attribute, 

and generating the appropriate correspondence assertions 
V7-IS and VS-IS. 

Phase 2 of step 6.2 adds to IS the places and Order elements 
from V8: 

l a relationship type places, without attributes, 
l an entity type Order, with the 0# attribute, 

and generates additional correspondence assertions V7-IS and 
V8-IS. 

Customer C# 

5 
name 

Places 

Fig. 20. 

Ordline 

Product 

Order 

E 
O# 
Odate 

quantity 

P# 

v9 VlO 

Car 

I I 
SSN Lic# SSN Lic# 

Fig. 21. 

Phase 1 of step 6.3 adds the following path correspondence 
assertion between V7 and V8: 
Product-ordered E Product-ordline. 

Phase 2 of step 6.3 integrates the following paths: 
Customer-ordered = Customer-places-Order-ordline 
and generates in IS three links for the composite path: 
Customer-places, places-Order, Order-oline. 

Then, the paths 
Product-ordered = Product-ordline. 
are integrated, generating in IS the Product-oline link. 
Adequate correspondences are generated for V7-IS and 
V8-IS. 

The next step, 6.4, deals with the correspondences involving 
the date and Odate attributes (which were put aside by step 
6 1) . . . 
orderedodate = OrderoOdate 
ordered-orderedodate = ordline - Order-OrderaOdate. 

The path correspondence includes a direct link: ordered- 
date. Therefore, the other link is chosen for integration in IS. 
The ordline-Order link already is in IS. The algorithm has only 
to add the Order-Odate link, which implies creating Odate in 
IS as attribute of Order. Some more assertions go into V7-IS 
and V8-IS. 

As no refinement is needed, the final integrated schema is 
as shown in Fig. 20. 

C. Example 3: Cars’ Ownerships 

Our last example was proposed by [8] to show a case 
of entity-type/relationship-type integration. It is based on the 
views illustrated in Fig. 21. 

Correspondence assertions are: 

l Person = CarownershipeSSN with corresponding at- 
tributes: SSN = SSN. 

l Car = CarownershipoLic# with corresponding attributes: 
Lic# = Lic#. 

l owns z Carownership. 
l owns-Person = Carownership-SSN. 

l owns-Car = Carownership-Lic#. 
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Car 
I 

facilities, to map initial views into the integrated schema. In 
other words, instead of forcing users to agree on a unique 

Fig. 22. 

I 
Lic# 

representation, we want to support their views as they are, 
and automatically build the underlying schema from which all 
views can be mapped in some way. 

Fig. 23. 

Integration 
types in IS: 

l Person 
SSN. 

We did not discuss how mappings are built. In the ER 
context chosen for this paper, they will basically use the 
functionalities of the ERC+ algebra to modify, queries and 
restructure their results before they are delivered to users. 

To implement a formal declarative approach, we defined 
a model for describing correspondence assertions. Driven by 

1 starts with step 6.2, which generates three entity users’ assertions, the integrator tool acquires the necessary 
knowledge about similarities in the semantics of the views. For 

(integration of Person and SSN), with attribute each assertion, formal rules state how to derive the constructs 
that are to be inserted into the integrated schema. Finally, we 

l Car (integration of Car and Lic#), with attribute Lic#. 
l Ownership (integration of owns and Carownership). 

Path integration, step 6.3, adds the Person-Ownership and 
Car-Ownership links. This process implies that two new 
relationships are added-one, say PO, between Person and 
Ownership and one, say CO, between Car and Ownership. 
Cardinalities for the PO-Ownership and CO-Ownership roles 
are 1: 1. 

After this step, the integrated schema is as shown in Fig. 22. 
In this case, if the refinement algorithm is run, the rule 

applies and the PO-Ownership-CO structure is replaced by 
a simpler Ownership relationship type (see Fig. 23), which is 
the final expected result. 

VIII. CONCLUSION AND FUTURE WORK 

A powerful schema integration ,methodology is the key to 
successful database design and federated systems. For design 
purposes, it should allow users to build their view of the 
database independently of other users’ views. For federated 
environment, it should support reuse of existing databases 
and existing application programs, without contradicting the 
launching of new federated database services. 

We propose an integration methodology, designed to meet 
the above objectives. To that purpose, our approach is based 
on the following. major features: 

l automatic resolution of structural conflicts (arising be- 
cause of different representations of the same real-world 
objects), 

l conflict resolution performed without modification of 
initial views, 

l use of a formal declarative approach for user (or DBA) 
definition of interviews correspondences, 

l applicability to a variety of data models, and 
l automatic generation of structural and operational map- 

pings between the views and the integrated schema. 
Operational mappings provide support to allow users to 
query and update the database through their own view. 

The first two features are essential with respect to the goals. 
They contrast with current methodologies, in which views are 
modified to conform to each other. Our approach relies on the 

proposed an integration algorithm and examples which show 
how the algorithm achieve 

Last of all, in designing 
s the desired resul .t. 
our methodology we had a strong 

concern with identifying the fundamentals of integration, so 
that the methodology could be transposed to major data models 
(semantic, object-oriented, functional, etc.). Whatever the data 
model, schemas can be interpreted as graphs, i.e., sets of 
nodes and edges. We focused on defining integration rules 
for these two sorts, which we called elements and links. This 
paper showed the interpretation of the approach in terms 
of an ER-like data model. ER elements are entity types, 
relationship types, and attributes. ER links we considered 
here are connections between a relationship type and the 
participating entity types (role links), as well as connections 
between attributes and the element they relate to (attribute 
links). In case of an object-oriented model, elements would be 
object classes and attributes, while links would be connections 
between objects and their components. 

This paper highlighted the first three features in the above 
list, with the aim of putting forward the essential ideas of the 
proposed methodology. We plan to discuss the other features 
in forthcoming papers. 

Future work will be devoted to: 

l integration of inclusion, intersection, and exclusion asser- 
tions (we intend to analyze when and how it is appropri- 
ate to build generalization hierarchies in the integrated 
schema); 

l consideration of generalization links in correspondence 
assertions and integration rules; 

l detailed analysis of integration of corresponding attributes 
in corresponding elements; 

l integration of 1 : n correspondences, in which one 
instance or value in one view corresponds to a set of 
instances or values in the other view. 

Our plans also include specification and implementation 
of an intelligent view definition facility, so that most of the 
integration problems in an actual situation are solved at view 
definition time, rather than once the views are defined. 
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