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Efficient Mining of Association Rules 
in Distributed Databases 

David W. Cheung, Member, /€E€, Vincent T. Ng, Ada W. Fu, Member, /€E€, and Yongjian Fu 

Abstract-Many sequential algorithms have been proposed for mining of association rules. However, very little work has been done 
in mining association rules in distributed databases. A direct application of sequential algorithms to distributed databases is not 
effective, because it requires a large amount of communication overhead. In this study, an efficient algorithm, DMA, is proposed. It 
generates a small number of candidate sets and requires only O(n) messages for support count exchange for each candidate set, 
where n is the number of sites in a distributed database. The algorithm has been implemented on an experimental test bed and its 
performance is studied. The results show that DMA has superior performance when comparing with the direct application of a 
popular sequential algorithm in distributed databases. 

Index Terms-Data mining, knowledge discovery, distributed data mining, association rule, distributed database, distributed 
algorithm, partitioned database. 

1 INTRODUCTION 
ATABASE MINING has recently attracted tremendous I3 amount of attention in database research because of its 

applicability in many areas, including decision support, 
marketing strategy and financial forecast. The research 
community has observed that data mining, together with 
data warehousing and data repositories are three new uses 
of database technology, which are considered as important 
areas in database research [20]. 

Many interesting and efficient data mining algorithms 
have been proposed (e.g., see t21, 131, [41, 151, [61, [71, [SI, 
[lo], 1121, 1131, [151, [161, 1171, 1191, [211 ). These database- 
oriented mining algorithms can be classified into two cate- 
gories: concept generalization-based discovery and discovery at 
the primitive concept levels. The former relies on the generali- 
zation of concepts (attribute values) stored in databases. 
One such example is the DBMiner system [71, [12]. The lat- 
ter discovers strong regularities (rules) from the database 
wil hout concept generalization. Association rule [4], [61, 
[16] is an important type of rules in the latter approach. 

Most of the algorithms for mining association rules pro- 
posed so far are sequential algorithms. An algorithm PDM 
hac5 been proposed recently for parallel mining of association 
rules [17]. It is an adaptation of the DHP algorithm in the 
parallel environment [16]. Another algorithm Count Distri- 
bution (CD), which is an adaptation of the Apriori algorithm, 
hais also been proposed for the same parallel mining envi- 
ronment with an implementation on the IBM SP2 [51. To the 
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best of our knowledge, very little work has been done on the 
mining of association rules in a distributed database envi- 
ronment. In this paper, we have developed a distributed al- 
gorithm DMA (Distributed Mining of Association rules), which 
can be used to solve this problem. 

The distributed database in our model is a horizontally 
partitioned database. The database schema of all the parti- 
tions are the same, i.e., their records are transactions on the 
same set of items. (DMA can be modified for the case in 
which the schema at different sites are not completely 
identical.) Many distributed databases are horizontally 
partitioned. For example, a retail chain may have several 
regional data centers, each manages the transaction records 
in its own region. It is important to mine the association 
rules based on data from all the centers. Distributed mining 
can be applied to many applications which have their data 
sources located at different places. 

In the sequential environment, many algorithms have 
been proposed for mining association rules. The most 
popular are the Apriori, DHP, and PARTITION algorithms 
[6], [16], [19]. A candidate set generation function Apriori- 
gen is adopted in the Apriori algorithm which supports an 
efficient method for candidate set generation. DHP applies 
a hashing technique to prune away some size-2 candidate 
sets to improve its efficiency. PARTITION divides the data- 
base into small partitions such that they can be processed 
efficiently in memory independently to find out their large 
itemsets. The large itemsets from the partitions are then 
combined to form a set of candidate sets. Following that, 
only one scan of the database is required to find out the 
large itemsets from the candidates. 

In the parallel environment, the PDM algorithm pro- 
posed in [17] tries to parallelize the DHP algorithm. Each 
node computes the globally large itemsets by exchanging 
their support counts (or counts, as referred in some litera- 
tures) of the candidate sets. In order to apply the hashing 
technique, all nodes have to broadcast the hashing result, 
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which causes a huge amount of communication. In [17], a 
technique has been proposed to decrease the number of 
messages. Among all the hash buckets, only those in which 
the total count are larger than a threshold are selected for 
bucket count exchange, so that not all buckets have to be 
broadcasted. After a node receives these partial count for 
the selected buckets, it polls the other sites to get the total 
counts. However, there are two unfavorable features in this 
proposal. Firstly, the reduction of candidate sets is only 
done in the second iteration. The number of candidate sets 
in some other iterations could also be quite large. Secondly, 
to find the large candidate sets, O(n2) messages are required 
for support count exchange for each candidate set, where n 
is the number of nodes. 

Another algorithm proposed for parallel mining of asso- 
ciation rules is the CD algorithm [5]. It is an adaptation of 
the Apriori algorithm in the parallel case. At each iteration, 
it generates the candidate sets at every site by applying the 
Apriori-gen function on the set of large itemsets found at 
the previous iteration. Every site then computes the local 
support counts of all these candidate sets and broadcasts 
them to all the other sites. Subsequently, all the sites can 
find the globally large itemsets for that iteration, and then 
proceed to the next iteration. This algorithm has a simple 
communication scheme for count exchange. However, it 
also has the similar problems of higher number of candi- 
date sets and larger amount of communication overhea 

The efficiency of the a1 thm DMA that we have de- 
veloped is attributed main the following two features. 

1) Both Apriori and DHP generate the candidate sets by 
applying the Apriori-gen function on the large item- 
sets found in the previous iteration. CD and PDM use 
the same technique in the parallel environment. DMA 
uses a new technique to generate a much smaller set 
of candidate sets than either Apriori or DHP. (This 
will be explained in Section 3.2). 

2) In DMA, to determine whether a candidate set is 
large, only O(n) messages are needed for support 
count exchange. This is much less than a straight ad- 
aptation of Apriori, which requires O(n ) messages for 
support count exchange. 

Distributed database has an intrinsic data skewness prop- 
erty. The distribution of the itemsets in different partitions 
are not identical, and many items occur more frequently in 
some partitions than the others. For example, in a distrib- 
uted database of a national supermarket chain, it is ex- 
pected the consumers’ purchasing patterns in New York 
City will be quite different from that in Los Angeles. As a 
result, many itemsets may be large locally at some sites but 
not necessarily in the other sites. This skewness property 
poses a new requirement in the design of mining algorithm. 

Furthermore, DMA can be applied to the mining of asso- 
ciation rules in a large centralized database by partitioning 
the database to the nodes of a distributed system. This is 
particularly useful if the data set is too large for sequential 
mining. 

Extensive experiments have been conducted to study the 
performance of DMA and compare it against the algorithm 
Count Distribution (CD), which is a direct application of 

2 

the Apriori algorithm to distributed databases. The re- 
maining of the paper is organized as follows. A brief sum- 
mary of mining association rules in the sequential envi- 
ronment will be discussed in Section 2. In Section 3, the 
problem of mining association rules in a distributed data- 
base i s  defined and some important results are discussed. 
The algorithm DMA is presented in Section 4. A perform- 
ance study is discussed in Section 5. Some discussion and 
conclusions are presented in Sections 6 and Section 7. 

EQUENTIAL MIN~NG OF ASSO 

2.1 Association Rules 
Let I = {z,,i,, ..., zm) be a set of items. Let DB be a database of 
transactions, where each transaction T is a set of items such 
that T c I. Given an itemset X c_ transaction T contains X 
if and only if X T. An associat rule is an implication of 
the form X Y, where X c I ,  Y c I ,  and X f’ Y = 0 . The 
association rule X j Y holds in DB with confidence c if e% of 
the transactions in DB that contain X also contain Y.  The 
association rule X * Y has support s in DB if S% of the 
transactions in DB contain X U Y. 

Given a minimum confidence threshold mznconf and a 
minimum support threshold minsup, the problem of mining 
association rules is to find all the association rules whose 
confidence and support are larger than the respective 
thresholds. We also call an association rule a strong rule to 
distinguish it from the weak ones, i.e., those that do not 
meet the thresholds [13]. 

For an itemset X, its support is defined similarly as the 
percentage of transactions in DB which contains X. We also 
use X s u p ,  to denote its support count, which is the number 
of transactions in DB containing X. Given a minimum sup- 
port threshold mznsup, an itemset X is large if its support is 
no less than minsup. Moreover, for presentation purpose, 
we will call an itemset of size-k a k-itemset. It has been 
shown that the problem of mining association rules can be 
reduced to two subproblems [4]. 

1) Find all large itemsets for a predetermined minimum 

2) Generate the association rules from the large itemsets 

The most crucial factor that affects the performance of 
mining association rules is to find efficient method to re- 
solve the first problem [6]. 

support. 

found. 

The Apriori algorithm is one of the most popular algorithm 
in the mining of association rules in a centralized database. 
The main idea of Apriori is outlined in the following [61. 

1) The large itemsets are computed through iterations. 
In each iteration, the database is scanned once and all 
large itemsets of the same size are computed. The 
large itemsets are computed in the ascending order of 
their sizes. 

2) In the first iteration, the size-1 large itemsets are com- 
puted by scanning the database once. Subsequently, 
in the lcth iteration ( k  > l), a set of candidate sets Ck is 
created by applying the candidate set generating 
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function Apriori-gen on L,-,, where LkUl is the set 
of all large (k - 1)-itemsets found in iteration k - 1. 
Apriori-gen generates only those k-itemset whose 
every (k - 1)-itemset subset is in The support 
counts of the candidate itemsets in Ck are then com- 
puted by scanning the database once and the size-k 
large itemsets are extracted from the candidates. 

Two interesting extensions of the Apriori algorithm are 
the DHP [17] and PARTITION algorithms [19]. In the first 
iteration, while it is computing the support counts of the 
size-1 itemsets, DHP stores the support counts of the size-2 
candidate itemsets in a hash table. Upper bounds of the 
support counts of the size-2 candidates can be deduced 
from the hash table and are used to prune away some size-2 
candidates in the second iteration. As a result of the hash- 
ing and pruning, the cost of computing the support counts 
of the size-2 candidate sets is reduced substantially in DHP. 

The PARTITION algorithm divides the database into 
partitions such that each of them can be processed effi- 
ciently in memory to find the itemsets which are large in it. 
The set consists of all these itemsets becomes a candidate 
set for finding the large itemsets in the database. The ad- 
vaniage of the PARTITION algorithm is that only one scan 
of the database is required after the candidate sets are 
found in the partitions. 

3 MINING OF ASSOCIATION RULES IN DISTRIBUTED 
DATABASES 

3.1 Problem Description 
Let DB be a partitioned database located at n sites S', S2, . . ./ 
S". The database partitions at these sites are {DB', DB', ..., 
DBn}. (In the following, we will adopt the convention of 
attaching a superscript i on a notation to denote the corre- 
sponding distributed notation for site S'.) 

L,et the size of DB and the partitions DB' be D and D', re- 
specitively. For a given itemset x, let X.sup and X.sup' be the 
respective support counts of X in DB and DB'. We will call 
X s u p  the global support count and X.sup' the local support 
count of X at site S'. For a given minimum support s, X is 
globally large if X.mp 2 s x D; correspondingly, X is locally 
large at site S', if X.sup' 2 s x D'. In the following, we will use 
L to denote all the globally large itemsets in DB and L k  to 
denote all globally large k-itemsets in L. The problem of 
mining association rules in a distributed database DB can 
be reduced to the finding of all globally large itemsets. 

3.2 Generate a Smaller Set of Candidate Sets 
Before we discuss how to generate a small set of candidate 
sets, we first present a few interesting and useful observa- 
tions. First of all, we have found that many candidate sets 
generated by applying the Apriori-gen function are not 
needed in the search of large itemsets. In fact, there is a 
natural and effective method for every site to generate its 
own set of candidate sets, which is typically much smaller 
than the set of all the candidate sets. Following that, every 
site only needs to find the large itemsets among these can- 
didde sets. By using this technique, we have achieved an 
effective division of the mining task amongst the sites in the 

database. In the following, several lemmas and theorem are 
described to illustrate the above observations. 
LEMMA 1. If an itemset X is locally large at a site S', then all its 

subsets are also locally large at site S'. 

PROOF. This follows from the definition of locally large. U 

A similar result as Lemma 1 for centralized database first 
appeared in 141. 
LEMMA 2. If an itemset X is globally large, then there exists a site 

S', (1 I i I n), such that X and all its subsets are locally 
large at site s'. 

PROOF. If X.sup' < s x D' for all i = 1, ..., n, then X.sup < s x 
D, and X cannot be globally large. Therefore, X must 
be locally large at some site S'. It follows from Lemma 
1 that all the subsets of X must be locally large at S'. 0 

For a site S', if an itemset X is both locally large at site S' 
and globally large, then we say that X is heavy at site S'. We 
use HL' to denote the set of heavy itemsets at site S', and 
HL; to denote the set of heavy k-itemsets at site S'. In DMA, 
the heavy itemsets at each site play an important role in the 
generation of candidate sets. 
LEMMA 3. If an itemset X is globally large, then there exists a site 

S', (1 I i I n), suck that X is heavy at site S'. 
PROOF. Since X is globally large, it follows from Lemma 2 

that X must be locally large at some site S', (1 4 i < n). 
0 

LEMMA 4. If an itemset X is heavy at a site S', (1 I i 5 n), then all 

PROOF. If X is heavy at site SI, then it must be globally large, 
therefore, all its subsets are globally large. Moreover, 
since X is locally large at site S', it follows from 
Lemma 1 that all the subsets of X must be locally 
large at site S'. Hence, all its subsets are heavy at site 
S'. 0 

Lemma 4 is a very interesting property; it shows that the 
heavy itemsets at each site have a monotonic subset rela- 
tionship among them. This relationship also exists among 
the large itemsets in the centralized case, and it is a neces- 
sary condition such that large itemsets can be computed 
iteratively. 
LEMMA 5. If X E L ,  (z.e., X is a globally large k-itemset), then 

there exists a site i, (1 5 i I n), such that X and all its size 
(k - 1) subsets aye heavy at site S'. 

Hence, X is heavy at site S'. 

its subsets are also heavy a t  site S'. 

PROOF. This follows from Lemma 3 and Lemma 4. 
Lemma 5 i s  equivalent to the combination of Lemma 3 

and Lemma 4. It is a basis to design an effective method to 
generate a smaller set of candidate sets in the distributed 
environment. 

In general, in a straightforward adaptation of Apriori, in 
the kth iteration, the set of candidate sets would be gener- 
ated by applying the Apriori-gen function on Lk-l. We de- 
note this set of candidate sets by CAk, (which stands for 
size-k candidate sets from Apriori). In order words, 

0 
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CA,  = Apriori_gen(Lic-,). 

At each site Si, let CHL be the set of candidates sets gen- 
erated by applying Apriori-gen on HLi-l, i.e., 

CH; = Apriori-gen(HZ,-,), 

(CH stands for candidate sets generated from heavy item- 
sets). Hence CH; is generated from HLi-,, which is only a 
subset of Lrc-,. 

According to Lemma 5, for every large itemset X E Lk, 
there exists a site S', such that all the size-(k - 1) subsets of 
X are heavy at site S'; hence, X E CH; for some site S'. 
Therefore 

L, c U CH; = U Apriori _gen(Hzk-,). 
n n 

'=I 1=1 

We use CH, to denote the set U:=, CH;. 

THEOREM 1. For e v e y  k > 1, the set of all large k-itemsets L, is a 
subset of CH, = U:=, CH;, where 

CH; = Apriori-gen(HL',-,). 

Hence, CHIC is a set of candidate sets for the size-k large 
itemsets. 

PROOF. The proof follows from Lemma 5 and the above 
discussion. 0 

Since every Hzlc-l in Theorem 1 is a subset of L,-l, the 
number of candidate sets in CH, is in general smaller than 
that in CAL. In DMA, we use the result in Theorem 1 to gen- 
erate a set of candidate sets CH; for each site s' in each 
iteration. It can be seen that this set of candidate sets is 
typically much smaller than that in a direct application of 
Apriori-gen on Lk. 

In the following, Example 1 is used to illustrate the re- 
duction of candidate sets by using Theorem 1. 
EXAMPLE 1. Assuming there are three sites in a database 

DB with partitions DB1, DB', and DB3. After the first 
iteration, suppose the set of large 1-itemsets L,  = 
{A, B,  C, D, E, F, GI, in which A, B, C are locally large 
at site S', B,  C, D are locally large at site S2, and E, F ,  G 
are locally large at site S . Therefore, HL: = {A, B, C}, 
HL: = {B, C, D), and HL: = { E ,  F ,  G}. 

It follows from Theorem 1 that the set of size-2 
candidate sets at site S1 is equal to CH;,  where CH: = 

Apriori-gen(HLi) = {AB,  BC, A C } .  Similarly, CH; = 

{BC, CD, BD}, and CH," = {EF, FG, EG]. Hence, the set 
of candidate sets for large two-itemsets 1s 
CH,  = CH: U CH; U CH:, and it only has eight 
candidates. 

However, if Apriori-gen is applied to L,, the set of 
candidate sets CA,  = Apriori-gen(L1) would have 21 
candidates. This shows that the technique in Theorem 
1 is very effective in reducing the candidate sets. 

3 

3.3 Local Pruning of Candidate Sets 
In the previous subsection, we have shown that the set CHk 
is typically a much smaller set of candidate sets than CA,. 
To find the globally large itemsets, subsequent to the gen- 
eration of CH,, support count exchange should be done. 
However, we have observed that some candidate sets in 
CH, can be pruned away by using some local information 
before the count exchange starts. 

there must exist a site S', such that X E CH; and X is heavy 

at site S'. As a consequence, X must be locally large at site 
S'. Therefore, a site S' can prune away those candidates in 
CH; which are not locally large at Si. In other words, to 
compute all the large k-itemsets, at each site S', DMA can 
restrict its search domain on all the sets X E CH; which are 
locally large at site S'. For convenience, we use LL; to de- 
note those candidate sets in CH; which are locally large at 

site SI. 
Follows from the above discussion, in every iteration, 

(loop counter = k) ,  DMA computes the heavy k-itemsets at 
each site Sz according to the following procedure. 

1) Candidate Sets Generation. Generate the candidate 
sets CH; = Apriori-gen(HL\-l), based on the heavy 
itemsets found at site S' in the k - 1 iteration. (By do- 
ing so, each site actually is responsible for generating 
its own set of candidate sets, and hence 
own set of large itemsets.) 

2) Local Partition Scanning. For each X E CH;, scan the 
partition DB' to compute the local support count Xsup'. 

3) Local Pruning. For each X E CH;, if X is not locally 

large at site S', then it is pruned away; the remaining 
candidate sets are stored in LL\ . (The above pruning 
only removes X from the candidate set at site S'. X 
could still be a candidate set at some other site.) 

4) Support Count Exchange. Broadcast the candidate sets 
in LCk to other sites to collect support counts; compute 
their global support counts and find all the heavy 
k-itemsets in site S'. (A site SI, ( j  # i), which has received 
a request from S' for support counts, does not need to 
scan its partition again to compute the support counts. 
The counts can be c n advance in Step 2 A 
detail discussion of thi 

5) Broadcast Mining 
k-itemsets found to a1 

In the following, we extend Example 1 to Example 2 to 
illustrate the execution of the above procedure. Before that, 
for clarity purpose, we list the notations used so far in our 
discussion in Table 1. 
EXAMPLE 2. In Example 1, assume the database has 150 

transactions and each one of the three partitions has 
50 transactions. Also assume that the support thresh- 
old s = 10%. Moreover, as has been illustrated in Ex- 
ample 1, in the second iteration, the candidate sets 

From Lemma 5, if X is a globally large k 
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S’ 

~ 

915 

S‘ s3 

1 2 generated at site S are CH; = {AB,  BC, ACI; at site S 

are CH; = {BC, BD, CD);  and at site S3 are CH; = 
{EF,  E G ,  F G } .  

BC 
AC 

D 
S 

Lk 

x. sup 

D’ 

HLk 

LLk 
x. supl 

CH; 

10 CD 8 FG 3 
2 BD 4 EG 3 

TABLE 1 
NOTATION TABLE 

The number of transactions in database DB 
The support threshold minsup 
The set of globally large k-itemsets 
The set of candidate sets generated from Lk 

The global support count of an itemset X 

The number of transactions in the partition DB’ 

The set of heavy k-itemsets at site S’ 

The set of candidate sets generated from Hzk-’ 

The set of locally large k-itemsets in CHk 
The local support count of an itemset X at site S’ 

locally large 
candidate 

sets 

A B  

BC 

CD 

EF 

In order to compute the large 2-itemsets, DMA first 
computes the local support counts at each site. The re- 
sult is recorded in Table 2. The last three rows are the 
local support counts of the candidate sets at the corre- 
s ondin sites. For example, the candidate sets at site 
S are listed in the first column, and their local sup- 
port counts are listed in the second column. 

From Table 2, it can be seen that AC.su$ = 2 < s x 

D’ = 5, therefore, A C  is not locally large. Hence, the 
candidate set A C  is pruned away at site S’. On the 
other hand, both AB and BC have enough local sup- 
port counts and they survive the local pruning. 
Hence, LL; = {AB, BCJ. Similarly, BD is pruned away 

at site S2 and LL; = {BC, C D J .  The only remaining 

candidate set at site S3 is EF,  i.e., LL: = { E F } .  After the 
local pruning, the number of size-2 candidate sets has 
been reduced to half of the original size. 

Once the local pruning is completed, each site 
broadcasts messages containing all the remaining 
candidate sets to the other sites to collect their sup- 
port counts. The result of this count support exchange 
is recorded in Table 3. 

The request for support count for AB is broadcast 
from S’ to site S2 and S3, and the counts sent back are 
recorded at site S1 as in the second row of Table 3 The 
other rows record similar count exchange activities at 
the other sites. At the end of the iteration, site S1 finds 
out that only BC is heavy, because BC.sup = 22 > s x D 
= 15, and AB.sup = 13 < s x D = 15. Hence the heavy 2- 
itemset at site S’ is HL: = {BCI. Similarly, HL: = 

{BC, CD) and HL; = (EF) .  After the broadcast of the 
heavy itemsets, all sites return the large 2-itemsets 
L2 = {BC, CD,  EF} .  

In terms of message communication, in this exam- 
ple, most of the candidate sets are locally large at one 
site. For each one of them, only one broadcast and re- 

P .g 

1 , I  * I  3 l  request 
broadcast 
from sites Xsup Xsup Xsup Xsup 

S’ 5 4 4 13 

S‘ 4 8 4 16 

s3 4 3 8 15 

s’, s2 10 10 2 22 

ceive are needed. However, for the candidate set BC, 
messages are broadcast from both S’ and S2, which is 
not as efficient as in the single broadcast case. In Sec- 
tion 3.4, an optimization technique to eliminate this 
duplication will be discussed. 

TABLE 2 
LOCALLY LARGE ITEMSETS 

TABLE 3 
GLOBALLY LARGE ITEMSETS 
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being divided into groups according to their polling 
sites), the local support counts of the candidate sets 
are also stored in the corresponding set Lzi i ;  sends 
each LL!il to the corresponding polling site SI. 

2) Polling Site send Polling Requests. S' acts as a poll- 
ing site; s' receives all LL;' sent to it from the other 
sites; for every candidate set X received, S' finds the 
list of originating sites from which X is being sent; S' 
then broadcasts the polling requests to the other sites 
not on the list to collect the support counts. 

3) Remote Site reply Polling Requests. S' acts as a re- 
mote site to reply polling requests sent to it; for every 
polling request LL;' from polling site Sp, S' sends the 
local support counts of the candidates in LL;' back to 
Sp. (There is no need to scan the partition D' again to 
find the local support counts. It is found already 
during the local pruning. Please see Section 4.1 for 
details.) 

4) Polling Site Compute Heavy Itemsets. S' acts as a 
polling site to compute the heavy itemsets; S' receives 
the support counts from the other sites; computes the 
global support counts for its candidates in LCk and 
finds the heavy itemsets; eventually, S' broadcasts the 
heavy itemsets together with their global support 
counts to all the sites. 

EXAMPLE 3. In Example 2, assuming that S' is assigned as 
the polling site of AB and BC, S2 is assigned as the 
polling site of CD, and S3 is assigned as the polling 
site of EF. 

Following from the assignment, site S' is responsi- 
ble for the polling of AB and BC. In the simple case of 
AB, S1 sends polling requests to S2 and S3 to collect 
the support counts. As for BC, it is locally large at 
both S' and S2, the pair (BC, BC.su$) = (BC, 10) is sent 
to S' by S2. After S' receives the message, it sends a 
polling request to the remaining site S . Once the 
support count BC.sup = 2 is received from S3, S1 finds 
out that BC.sup = 10 + 10 + 2 = 22 > 15. Hence, BC is a 
heavy itemset at S1. By using a polling site, DMA has 
eliminated the double polling messages for BC. 

3 

3 

In this section, we present the DMA algorithm (DMA) in 
detail based on the above discussion. Before the descr 
of the algorithm, we will discuss a technique for com 
the local support counts of all the candidate itemsets at dif- 
ferent sites by performing only one single scan on each 
partition. 

Partition Scanning for Count 

MA has to find two sets of support counts 
in order to do local pruning and count exchange. The first 
set is the local support counts of all the candidate sets gen- 
erated at site s'. (These candidate sets are the sets in CH,' 
described in Theorem 1). A hash tree can be used to store 
the support counts of these candidate sets 161. A scan on the 
partition DB' is needed to compute the counts to store in the 
hash tree. On the other hand, in order to answer the polling 
requests from the other sites, a second set of support counts 
of the candidate sets generated at the other sites is needed. 
If these counts are computed after the requests are received, 
a second scan on the partition is unavoidable. 

In order to avoid doing two scans, DMA is required to find 
the two sets of support counts by one scan on the partition and 
store the counts on the same hash tree. This is possible because 
the heavy sets for candidate set generation are available to all 
the sites at the end of each iteration. According to Theorem 1, 
at a site S', the set of candidate sets generated in the kth itera- 
tion is CH; = Apriori-gen '). On the other hand, those 
generated in any other site CH; = Apriorizen (HLi-'). 
Since HL;<-, and HLi-', ( j  = 1, . . ., iz, I f i), are available at S', S' 
can compute all these candidate sets and put them in the same 
hash tree before the scan for their local support counts starts. 
In other words, every site only needs to scan its partition once 
to find the local support counts of the itemsets in CHk = U:=, 
Apriorisen (HLk-' 1. With tlus technique, the two sets of sup- 
port counts required for local pruning and count exchange can 
be found in a single scan of the partition. Therefore, the num- 
ber of scam in DMA is minimized and is comparable to that in 
the sequential case. 

Furthermore, since every site will have the same set of 
candidate sets C H ,  there is no need to send the itemset 
names in a polling request, only their positions in the or- 
dered list of the itemsets in CH, is required. This would 
optimize the message size needed for count exchange. 

4.2 The lgorithm 
In this section, we present the DMA algorithm in details. 

Algorithm 1 DMA. Distributed Mining of Association 

Input: 
rules algorithm 

1) DB'. the database partition at each site, (its size is 

2) s: the minimum support threshold; both submitted at 

Output: L: the set of all large itemsets in DB, returned at 
every site; 

Method: iterates the following program fragment distribu- 
tively at each site Sz starting from k = 1, where k is the it- 
eration loop counter; the algorithm terminates when ei- 
ther Li, returned is empty or the set of candidate sets CH, 
is empty 

equal to D'); 

each site S', (i = 1, . . ., n); 

/" Local Pruning */ 
if k = 1 then 
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scan DB' to compute q'; 
/ * T,' is an array containing all size-1 itemsets in DB' 

/ ' their local support counts in site S' */ 

C X ,  = U:=, CH; = U:=, Apriori-gen (HEk-l); 
/ * generate size-k candidate sets */ 
scan DB' to built the hash tree Ti; 1 
/*  Ti contains all candidate sets in CH, and */ 
/*  their support counts in site S' */ 

if X.sup' 2 s x D' then 
forj=1 tondo 

into LE;'; 

and */ 

e l s e  { 

for-all X E  'TL do 

if poZling-site(X) = SI then add ( X ,  X.su$) 

/" compute the locally large candidates and divide them 
axording to their polling sites */ , 

/*end Candidates to Polling Sites */ 
f o r j = 1 ,  ..., ndo 

send L2i1 to site SI; 

/*Receive Candidates as a Polling Site*/ 
for j = 1, . . ., n do { 

receive LL;'; 
f or-all x E LL:" do { 

store X in LPL; 
update X.lauge-sites in LP,' to record the sites at which 

X is locally large; 1 
I 
/*Send Polling Requests as a Polling S i t e  to 

f Ior-all x E Lp,' do ( 
bi*oadcast polling requests for X to the sites SI, where 
S' P X.Zavge_sites; 

receive X.sup' from the sites SI, where SI P X.lavge-sites; 

Collect Support Counts "/ 

I; 
/*Compute Global Support Counts and Heavy 

f or--all x E L p i  do { 
t emse t s 

x.sup = E:=, x.supl; 
if X.sup 2 s x D then insert X into HL; 
/' filter out the heavy k-itemsets; 

1; 
broadcast H;; 
receive HL from all other sites SI, ( j  # i); 
return Lk = U:=, H i .  

5 PERFORMANCE STUDY OF DMA 
We have done an in-depth performance study on DMA to 
confirm our analysis of its efficiency. DMA is implemented 
on EL share-nothing distributed system by using PVM 
(Parallel Virtual Machine) [ll]. A 10 Mb LAN is used to 

connect six RS/6000 workstations running the AIX system 
to perform the study. The database in the experiment is 
composed of synthetic data. 

In order to study the performance of DMA, we have also 
implemented the algorithm CD in our test bed. In each it- 
eration, CD generates the candidate sets at every site by 
applying the Apriori-gen function on the set of large item- 
sets found in the previous iteration. Every site computes the 
local support counts of all these candidate sets and broad- 
casts them to the other sites. All the sites can then find the 
globally large itemsets for that iteration. 

We have performed two experiments to compare the 
" performance of DMA and CD. In the first experiment, the 

test bed has a fixed number of sites. The aim is to perform 
the comparison with respect to different support thresholds 
and database sizes. In the second experiment, the threshold 
and database size are fixed, and the performance of the two 
algorithms are compared with respect to different number 
of sites. The result of the first experiment is described in 
detail in Section 5.1, and those of the second experiment is 
presented in Section 5.2. 

The databases used in our experiments are synthetic 
data generated using the same techniques introduced in 
[6], [16]. The parameters used are similar to those in [16]. 
Table 4 is a list of the parameters and their values used in 
our synthetic databases. Readers not familiar with these 
parameters can refer to [6], [161. In the following, we use 
the notation Tx.Iy.Dm to denote a database in which D = m 
(in thousands), IT( = x, and (I( = y. 

TABLE 4 
PARAMETER INTERPRETATION VALUE 

Parameter 
D 

IT1 
1 1 1  

ILI 

N 
sq 

ps 
cr 
Mf 

Interpretation 
The number of transactions in 
database DB 
Mean size of the transactions 
Mean size of the maximal 
potentially large itemsets 
Number of potentially large 
itemsets 
Number of items 
Clustering size 
Pool size 
Correlation level 
Multiplying factor 

Value 7 
4 

2000 

50-70 

5.1 Performance Comparison with Different 
Thresholds and Database Sizes 

In the first experiment, the test bed consists of three sites. 
The purpose of this experiment is to compare the perform- 
ance between DMA and CD with respect to different 
thresholds and database sizes. Each site has its own local 
disk, and its partition is loaded on its local disk before the 
experiments start. 

The three partitions are generated separately using the 
parameters and the values in Table 4. In order to control the 
skewness of the partitions, two more control parameters are 
introduced. These two parameters are pvima y vange vP and 
secondary vange Y,. The primary range is an interval of items, 
and the secondary range is a subinterval of the primary 
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range. If the items range from 1 to 1000, a possible pair of 
primary and secondary ranges could be y P  = [l, 10001, and 
Y, = [1700]. As described in [16], itemsets are generated as 
groups of similar itemsets. The size of each group is con- 
trolled by the clustering size s,, and the size of the itemsets is 
a Poisson distribution. In our synthesizing model, the first item- 
set in a group is picked randomly from the primary range Y ~ ,  

and the other itemsets in the group contain two parts, the 
head and the tad. The head is a random extraction from the 
first itemset that has been generated. If the head cannot fill 
up the itemset size, then the tail is picked randomly from the 
secondary range Y,. By doing this, most itemsets generated 
are within the primary range, with some clustering in the 
secondary range. Therefore, we can generate databases that 
have certain skewness towards the secondary range. 

The data skewness of a distributed database can be con- 
trolled by using different primary and secondary ranges for 
different partitions. In Table 5, the primary and secondary 
ranges of the three partitions in the first experiment are 
listed. The first two partitions are skewed towards the 
ranges [1700] and [300, 10001, respectively. The third parti- 
tion DB3 is generated with two clustering ranges. Two 
disjoint pools of large itemsets are used in synthesizing 
DB3. The first one is from the range pair 115501 and [1400], 
while the second one is from the range pair [450,10001 and 
[600, 10001. Half of the transactions are picked from the first 
pool, and the other half from the second pool. Together, 
these three partitions exhibit a certain degree of skewness. 

TABLE 5 
PARTITION PRIMARY AND SECONDARY RANGES 

In this experiment, the sizes of the databases range from 
100K to 900K transactions, and the minimum support 
threshold ranges from 0.75% to 2%. While the number of 
candidate sets in DMA are different at each site; the num- 
ber in CD remains the same at all sites. 

When comparing DMA against CD, we experienced, on 
65% reduction of the number of candidate sets at 
In Fig. 1, the average number of candidate sets 

generated by DMA and CD at each site for a database of 
size 500K transactions are plotted inst the support 
thresholds. DMA has much less cand sets in all cases, 
and the difference increases as the support decreases. For 
the same database, the ratios of the number of candidate 
sets between DMA and CD are presented also in Fig. 1. The 
figure shows that the reduction in the number of candidate 
sets in DMA against CD is about 65% to 70% 

The above comparison is on the number o 
per site. The result has direct implication on the reduction in 
the total number of messages required, because only one site 
will generate messages for a candidate set to do polling. 

The reduction in the total messages required is bigger 
than that in candidate sets when comparing DMA against 

CD. We have experienced a reduction of about 90% in total 
message size in all cases. In Fig. 2, for the database of 500K, 
the total message size needed by DMA and CD are plotted 
against the support thresholds. Moreover, the ratios of the 
total message sizes between DMA and CD are presented in 
the same figure. The reduction is larger when the support 
threshold is smaller, (i.e., when there are more large item- 
sets). In the bar chart of Fig. 2, it can be seen that DMA re- 
quires 6% to 12% of the messages of CD. 

We have also compared the execution time between 
DMA and CD. With the database of 500K, DMA is about 
7% to 25% faster than CD, depending on the support 
threshold. In Fig. 3, the execution time of DMA and CD are 
plotted against the thresholds for the 500K database. The 
ratios of speed-up are presented in the same figure in bar 
chart. For some other database sizes in this experiment, the 
best speed-up can reach about 55%. 

Even though the speed-up in our experiment is substan- 
tial, it does not seem to be as significant as the reduction in 
message size. The main reason is that the overhead in com- 
munication is relatively small in our test bed. If DMA is run- 
ning in a distributed database, whose partitions are placed in 
far apart locations, the speed-up will be more significant. 

In this experiment, we have also compared DMA against 
CD on a series of five databases from 1OOK to 900K transac- 
tions. In terms of candidate sets and total message size re- 
duction, the improvement in DMA against CD is very 
steady. In Fig. 4, the average number of candidate sets per 
site in DMA is compared to that in CD over all the five da- 
tabases, for the threshold s = 0.75%. The ratios between 
them are plotted in the figure. The result shows that the 
percentage of reduction is about 70% in all cases. 

In Fig. 5, the total size of message communication in 
DMA is compared to that in CD over all the five databases, 
for the threshold s = 0.75%. The ratios between them are 
presented in the figure, and it shows that the reduction is 
between 88% to 89% in all cases. 

In Fig. 6, the execution time of DMA is compared to that 
of CD over all the five databases, for the same threshold 
s = 0.75%. The ratios between them are plotted in the figure 
and DMA is about 18% to 55% faster than CD. 

5.2 Performance Comparison wit Different Number 

In the second experiment/ the test bed consists of six 
RS/6000 workstations. The synthetic database is generated 

periment is to compare DMA against CD when the number 
of sites changes. In the following, we will describe the re- 
sult of a comparison in which the number of sites varies 
from three to six. The size of the database is 200K transac- 
tions, and it is partitioned equally across all the sites. The 
minimum support threshold is 3%. 

Similar to the first experiment, we found significant re- 
duction in both the number of candidate sets and the total 
message sizes in all the cases in which the number of sites 
are 3,4,5, and 6, respectively. In Fig. 7, the average number 
of candidate sets per sites is compared between DMA and 
CD. A reduction of about 75% to 90% is witnessed in DMA. 
In Fig. 8 the ratios of the total message sizes of the two 

of Sites 

similar to that in the first experiment The arm of thls ex- 
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Fig. 2.  Message size reduction. 
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Fig. 6. Execution time speed up. 
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Fig. 7. Candidate sets reduction (n = 3, 4, 5, 6). 
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Fig. 8. Message size reduction (n = 3, 4, 5,  6).  
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Fig. 9. Execution time (n = 3, 4, 5,  6).  

algorithms is presented. DMA has about 85%-90% reduc- 
tion in message sizes in all the cases. Lastly, the execution 
time ratios are described in Fig. 9, again, DMA is shown to 
be about 25%-35% faster than CD in all the cases. 

In general, the performance of DMA depends on the 
distribution of the data across the partitions. If the itemsets 
are distributed with a higher skewness among the parti- 
tions, the techniques of local pruning and candidate set 
generation reduction in DMA would be more powerful. 
When comparing the results of the above two different ex- 
periments, it can be observed that DMA performs better 
when the number of nodes is higher. This could be the con- 
sequence of a higher data skewness due to the increased 
number of partitions. 

6 DiscussioN 
The efficiency of DMA is attributed to three techniques: 1) 
candidate sets generation, 2) local pruning, and 3) messages 
optimization. In the described DMA, only local information 
available in each partition is considered in the local prun- 
ing. Can we take advantage of the global information avail- 
able to do more pruning before support count exchange 
starts? In fact, at the end of each iteration, the polling site of 
a candidate set X not only knows the global support count 
of X but also all the local support counts of X .  The set of 
local support counts can be broadcasted to all the sites to- 
gether with X at the end of each iteration. We now discuss 
an optimization technique which makes use of this global 
information to prune candidate sets. 

If X is a k-itemset, with respect to each partition DB', 
(1 5 z 5 n), we use maxsup'(X) to denote the minimum value 
of the local support counts of all the size (k  - 1) subsets of X, 
i.e., maxsup'(X) = min{Y.sup' I Y c X and I Y I = k - 1). It 
follows from the subset relationship that maxsup'(X) is an 
upper bound of the local support count Xsup'. Hence, the 
sum of these upper bounds over all partitions, denoted 
by maxsup(X), is an upper bound of X.sup; i.e., X.sup i 
maxsup(X) = c:=, maxsu<(X). Note that maxsup(X) can be 
computed at every site at the beginning of the kth iteration. 
Since maxsup(X) is an upper bound of its global support 
count, it can be used for pruning, i.e., if maxsup(X) < s x D, 
then X cannot be a candidate set. We call this technique 
global pruning. Global pruning can be combined with local 
pruning to form different pruning strategies. In the follow- 
ing, we outline three possible strategies. 

1) Local Pruning followed by Global Pruning. After the local 

Since X.sup' is available during the local pruning, the 
above upper bound can be computed at site S', and it 
is more effective than the value maxsup(X) in global 
pruning. 
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2 )  Global Pruning followed by Local Pruning: Use the upper 
bound maxsup(X) to prune away some candidate sets 
at site S', and then apply local pruning on the re- 
maining candidate sets. (In the extreme case, we may 
use global pruning without local pruning). 

3) Global Pruning at Polling Site. Only local pruning is done 
at a site during the pruning phase. For a candidate set 
X, additional pruning is being done at its polling site. 
Let S p  be the polling site of X and r be the set of or@- 
nating sites from which the requests to do polling on X 
are being sent. For the sites in r, the local support 
counts of X have been sent to S p  already. For a site SI 
not in r, since X is not locally large at S I ,  the polling 
site can deduce that its local support count X.sup' is 
bounded by the value min(maxsup'(X), s x 0). There- 
fore, an upper bound of X.sup can be computed by 

C X. sup' + C min (maxsup] (x), s x D')  . 
n 

lcr ]=1,]er 

The above upper bound for X can be used to prune 
away some candidate sets at a polling site before it 
starts to collect support counts. 

The effectiveness of global pruning depends on the data 
distribution. For example, let AB be a candidate set and its 
size-1 subset A is locally large in S but small (not locally 
large) in S2, while the size-1 subset B is small in S but large 
in S2. By global pruning, it can be deduced that AB is not 
globally large. On the other hand, if A and B are both large 
on 5 ,  and small on S , then it cannot be deduced from 
glohal pruning that AB is small. In fact, the choice of an 
appropriate global pruning strategy will depend on the 
data distribution. 

The additional cost in doing global pruning is the stor- 
age required to store the local support counts and the mes- 
sage communication to broadcast the support counts. There 
is a trade-off between the cost and the reduction of candi- 
date sets. It will depend on the data distribution as well as 
the number of partitions. We believe that global-pruning 
will pay off when the distribution of the data has certain 
degree of skewness. Additional performance study is re- 
quired in order to investigate this technique further. 

The hashing technique and relaxation factor proposed in 
PDM can be integrated with the techniques in DMA 1171. 
For example, in the selection of hash buckets for broad- 
casting, the local pruning technique can be used. Also, a 
relaxation factor on the support threshold can be used to 
increase the amount of information available at the polling 
site for global pruning. 

Another point worthy to mention here is that the origi- 
nal Count Distribution algorithm as proposed in [5] ,  which 
is designed for high performance parallel environment, can 
be improved by introducing polling sites to decrease the 
amount of message communication required. Its merit is 
that it requires less synchronization. In fact, in a high per- 
formance parallel environment, DMA and CD can be com- 
bined to form a hybrid algorithm which has less candidate 
sets than CD, a slightly more message communication than 
DMA, but less synchronization. We will investigate this 
further in our future study. 

1 

1 

1 2 

Another issue related to the performance of the mining of 
association rules in a distributed database is the difference 
between the partition sizes. The algorithms such as DMA and 
CD require some synchronization in each iteration. A large 
size difference between the partitions would not be favour- 
able to the performance. A possible solution would be to di- 
vide some large partitions further to equalize their sizes. This 
would reduce the time in synchronization. However, the 
trade-off would be more message communication. 

7 CONCLUSION 
We studied an efficient algorithm for mining association 
rules in distributed databases. The developed method re- 
duces the number of candidate sets at each partition effec- 
tively by using local pruning. The communication scheme 
for count exchange is optimized by using polling sites. The 
method is implemented and its performance is studied and 
compared with a direct application of a popular sequential 
algorithm. The study shows that the proposed technique 
has superior performance on the mining of association rules 
in distributed databases. 

The efficiency of local pruning can be enhanced by 
global pruning if local support counts are stored at the sites. 
We have also discussed the possibility of integrating the 
techniques in DMA with those in PDM. 

Recently, there have been some interesting studies at 
finding multiple-level or generalized association rules in 
large transaction databases 1131, [21]. An extension of the 
techniques in DMA to the mining of multiple-level or gen- 
eralized association rules in distributed database are inter- 
esting problems for further research. For experimental pur- 
poses, we are planning to implement the DMA and other 
related algorithms on an IBM SP2 system with 32 nodes to 
study the problem of mining association rules in a parallel 
system with high speed communication. 
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