
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 6, DECEMBER 1996 91 1

Efficient Mining of Association Rules
in Distributed Databases

David W. Cheung, Member, /€E€, Vincent T. Ng, Ada W. Fu, Member, /€E€, and Yongjian Fu

Abstract-Many sequential algorithms have been proposed for mining of association rules. However, very little work has been done
in mining association rules in distributed databases. A direct application of sequential algorithms to distributed databases is not
effective, because it requires a large amount of communication overhead. In this study, an efficient algorithm, DMA, is proposed. It
generates a small number of candidate sets and requires only O(n) messages for support count exchange for each candidate set,
where n is the number of sites in a distributed database. The algorithm has been implemented on an experimental test bed and its
performance is studied. The results show that DMA has superior performance when comparing with the direct application of a
popular sequential algorithm in distributed databases.

Index Terms-Data mining, knowledge discovery, distributed data mining, association rule, distributed database, distributed
algorithm, partitioned database.

1 INTRODUCTION
ATABASE MINING has recently attracted tremendous I3 amount of attention in database research because of its

applicability in many areas, including decision support,
marketing strategy and financial forecast. The research
community has observed that data mining, together with
data warehousing and data repositories are three new uses
of database technology, which are considered as important
areas in database research [20].

Many interesting and efficient data mining algorithms
have been proposed (e.g., see t21, 131, [41, 151, [61, [71, [SI,
[lo], 1121, 1131, [151, [161, 1171, 1191, [211). These database-
oriented mining algorithms can be classified into two cate-
gories: concept generalization-based discovery and discovery at
the primitive concept levels. The former relies on the generali-
zation of concepts (attribute values) stored in databases.
One such example is the DBMiner system [71, [12]. The lat-
ter discovers strong regularities (rules) from the database
wil hout concept generalization. Association rule [4], [61,
[16] is an important type of rules in the latter approach.

Most of the algorithms for mining association rules pro-
posed so far are sequential algorithms. An algorithm PDM
hac5 been proposed recently for parallel mining of association
rules [17]. It is an adaptation of the DHP algorithm in the
parallel environment [16]. Another algorithm Count Distri-
bution (CD), which is an adaptation of the Apriori algorithm,
hais also been proposed for the same parallel mining envi-
ronment with an implementation on the IBM SP2 [51. To the

11. W. Cheung is with the Department of Computer Science, Unzversity of

17.T. N g is with the Department of Computing, Hong Kong Polytechnic

12 W. Fu is with the Department of Computer Science and Engineering,

Y Fu is with the School of Computzng Science, Simon Fraser University,

Manuscript accepted Aug, 28,1996
For informatton on obtaintug reprints of this artzcle, please send e-mail to.
tra iskdeQcomputer org, and reference IEEECS Log NumberK96078

I-long Kong, Hong Kong E-mail dcheung8cs.hku.hk.

University, Hong Kong

Chinese Unzversity of Hong Kong, Hong Kong.

lhunaby, Canada.

best of our knowledge, very little work has been done on the
mining of association rules in a distributed database envi-
ronment. In this paper, we have developed a distributed al-
gorithm DMA (Distributed Mining of Association rules), which
can be used to solve this problem.

The distributed database in our model is a horizontally
partitioned database. The database schema of all the parti-
tions are the same, i.e., their records are transactions on the
same set of items. (DMA can be modified for the case in
which the schema at different sites are not completely
identical.) Many distributed databases are horizontally
partitioned. For example, a retail chain may have several
regional data centers, each manages the transaction records
in its own region. It is important to mine the association
rules based on data from all the centers. Distributed mining
can be applied to many applications which have their data
sources located at different places.

In the sequential environment, many algorithms have
been proposed for mining association rules. The most
popular are the Apriori, DHP, and PARTITION algorithms
[6], [16], [19]. A candidate set generation function Apriori-
gen is adopted in the Apriori algorithm which supports an
efficient method for candidate set generation. DHP applies
a hashing technique to prune away some size-2 candidate
sets to improve its efficiency. PARTITION divides the data-
base into small partitions such that they can be processed
efficiently in memory independently to find out their large
itemsets. The large itemsets from the partitions are then
combined to form a set of candidate sets. Following that,
only one scan of the database is required to find out the
large itemsets from the candidates.

In the parallel environment, the PDM algorithm pro-
posed in [17] tries to parallelize the DHP algorithm. Each
node computes the globally large itemsets by exchanging
their support counts (or counts, as referred in some litera-
tures) of the candidate sets. In order to apply the hashing
technique, all nodes have to broadcast the hashing result,

1041-4347/96505.00 01996 IEEE

91 2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 6, DECEMBER 1996

which causes a huge amount of communication. In [17], a
technique has been proposed to decrease the number of
messages. Among all the hash buckets, only those in which
the total count are larger than a threshold are selected for
bucket count exchange, so that not all buckets have to be
broadcasted. After a node receives these partial count for
the selected buckets, it polls the other sites to get the total
counts. However, there are two unfavorable features in this
proposal. Firstly, the reduction of candidate sets is only
done in the second iteration. The number of candidate sets
in some other iterations could also be quite large. Secondly,
to find the large candidate sets, O(n2) messages are required
for support count exchange for each candidate set, where n
is the number of nodes.

Another algorithm proposed for parallel mining of asso-
ciation rules is the CD algorithm [5]. It is an adaptation of
the Apriori algorithm in the parallel case. At each iteration,
it generates the candidate sets at every site by applying the
Apriori-gen function on the set of large itemsets found at
the previous iteration. Every site then computes the local
support counts of all these candidate sets and broadcasts
them to all the other sites. Subsequently, all the sites can
find the globally large itemsets for that iteration, and then
proceed to the next iteration. This algorithm has a simple
communication scheme for count exchange. However, it
also has the similar problems of higher number of candi-
date sets and larger amount of communication overhea

The efficiency of the a1 thm DMA that we have de-
veloped is attributed main the following two features.

1) Both Apriori and DHP generate the candidate sets by
applying the Apriori-gen function on the large item-
sets found in the previous iteration. CD and PDM use
the same technique in the parallel environment. DMA
uses a new technique to generate a much smaller set
of candidate sets than either Apriori or DHP. (This
will be explained in Section 3.2).

2) In DMA, to determine whether a candidate set is
large, only O(n) messages are needed for support
count exchange. This is much less than a straight ad-
aptation of Apriori, which requires O(n) messages for
support count exchange.

Distributed database has an intrinsic data skewness prop-
erty. The distribution of the itemsets in different partitions
are not identical, and many items occur more frequently in
some partitions than the others. For example, in a distrib-
uted database of a national supermarket chain, it is ex-
pected the consumers’ purchasing patterns in New York
City will be quite different from that in Los Angeles. As a
result, many itemsets may be large locally at some sites but
not necessarily in the other sites. This skewness property
poses a new requirement in the design of mining algorithm.

Furthermore, DMA can be applied to the mining of asso-
ciation rules in a large centralized database by partitioning
the database to the nodes of a distributed system. This is
particularly useful if the data set is too large for sequential
mining.

Extensive experiments have been conducted to study the
performance of DMA and compare it against the algorithm
Count Distribution (CD), which is a direct application of

2

the Apriori algorithm to distributed databases. The re-
maining of the paper is organized as follows. A brief sum-
mary of mining association rules in the sequential envi-
ronment will be discussed in Section 2. In Section 3, the
problem of mining association rules in a distributed data-
base i s defined and some important results are discussed.
The algorithm DMA is presented in Section 4. A perform-
ance study is discussed in Section 5. Some discussion and
conclusions are presented in Sections 6 and Section 7.

EQUENTIAL MIN~NG OF ASSO

2.1 Association Rules
Let I = {z,,i,, ..., zm) be a set of items. Let DB be a database of
transactions, where each transaction T is a set of items such
that T c I. Given an itemset X c_ transaction T contains X
if and only if X T. An associat rule is an implication of
the form X Y, where X c I , Y c I , and X f’ Y = 0 . The
association rule X j Y holds in DB with confidence c if e% of
the transactions in DB that contain X also contain Y. The
association rule X * Y has support s in DB if S% of the
transactions in DB contain X U Y.

Given a minimum confidence threshold mznconf and a
minimum support threshold minsup, the problem of mining
association rules is to find all the association rules whose
confidence and support are larger than the respective
thresholds. We also call an association rule a strong rule to
distinguish it from the weak ones, i.e., those that do not
meet the thresholds [13].

For an itemset X, its support is defined similarly as the
percentage of transactions in DB which contains X. We also
use X s u p , to denote its support count, which is the number
of transactions in DB containing X. Given a minimum sup-
port threshold mznsup, an itemset X is large if its support is
no less than minsup. Moreover, for presentation purpose,
we will call an itemset of size-k a k-itemset. It has been
shown that the problem of mining association rules can be
reduced to two subproblems [4].

1) Find all large itemsets for a predetermined minimum

2) Generate the association rules from the large itemsets

The most crucial factor that affects the performance of
mining association rules is to find efficient method to re-
solve the first problem [6].

support.

found.

The Apriori algorithm is one of the most popular algorithm
in the mining of association rules in a centralized database.
The main idea of Apriori is outlined in the following [61.

1) The large itemsets are computed through iterations.
In each iteration, the database is scanned once and all
large itemsets of the same size are computed. The
large itemsets are computed in the ascending order of
their sizes.

2) In the first iteration, the size-1 large itemsets are com-
puted by scanning the database once. Subsequently,
in the lcth iteration (k > l), a set of candidate sets Ck is
created by applying the candidate set generating

CHEUNG ET AL.: EFFICIENT MINING OF ASSOCIATION RULES IN DISTRIBUTED DATABASES 913

function Apriori-gen on L,-,, where LkUl is the set
of all large (k - 1)-itemsets found in iteration k - 1.
Apriori-gen generates only those k-itemset whose
every (k - 1)-itemset subset is in The support
counts of the candidate itemsets in Ck are then com-
puted by scanning the database once and the size-k
large itemsets are extracted from the candidates.

Two interesting extensions of the Apriori algorithm are
the DHP [17] and PARTITION algorithms [19]. In the first
iteration, while it is computing the support counts of the
size-1 itemsets, DHP stores the support counts of the size-2
candidate itemsets in a hash table. Upper bounds of the
support counts of the size-2 candidates can be deduced
from the hash table and are used to prune away some size-2
candidates in the second iteration. As a result of the hash-
ing and pruning, the cost of computing the support counts
of the size-2 candidate sets is reduced substantially in DHP.

The PARTITION algorithm divides the database into
partitions such that each of them can be processed effi-
ciently in memory to find the itemsets which are large in it.
The set consists of all these itemsets becomes a candidate
set for finding the large itemsets in the database. The ad-
vaniage of the PARTITION algorithm is that only one scan
of the database is required after the candidate sets are
found in the partitions.

3 MINING OF ASSOCIATION RULES IN DISTRIBUTED
DATABASES

3.1 Problem Description
Let DB be a partitioned database located at n sites S', S2, . . ./
S". The database partitions at these sites are {DB', DB', ...,
DBn}. (In the following, we will adopt the convention of
attaching a superscript i on a notation to denote the corre-
sponding distributed notation for site S'.)

L,et the size of DB and the partitions DB' be D and D', re-
specitively. For a given itemset x, let X.sup and X.sup' be the
respective support counts of X in DB and DB'. We will call
X s u p the global support count and X.sup' the local support
count of X at site S'. For a given minimum support s, X is
globally large if X.mp 2 s x D; correspondingly, X is locally
large at site S', if X.sup' 2 s x D'. In the following, we will use
L to denote all the globally large itemsets in DB and L k to
denote all globally large k-itemsets in L. The problem of
mining association rules in a distributed database DB can
be reduced to the finding of all globally large itemsets.

3.2 Generate a Smaller Set of Candidate Sets
Before we discuss how to generate a small set of candidate
sets, we first present a few interesting and useful observa-
tions. First of all, we have found that many candidate sets
generated by applying the Apriori-gen function are not
needed in the search of large itemsets. In fact, there is a
natural and effective method for every site to generate its
own set of candidate sets, which is typically much smaller
than the set of all the candidate sets. Following that, every
site only needs to find the large itemsets among these can-
didde sets. By using this technique, we have achieved an
effective division of the mining task amongst the sites in the

database. In the following, several lemmas and theorem are
described to illustrate the above observations.
LEMMA 1. If an itemset X is locally large at a site S', then all its

subsets are also locally large at site S'.

PROOF. This follows from the definition of locally large. U

A similar result as Lemma 1 for centralized database first
appeared in 141.
LEMMA 2. If an itemset X is globally large, then there exists a site

S', (1 I i I n), such that X and all its subsets are locally
large at site s'.

PROOF. If X.sup' < s x D' for all i = 1, ..., n, then X.sup < s x
D, and X cannot be globally large. Therefore, X must
be locally large at some site S'. It follows from Lemma
1 that all the subsets of X must be locally large at S'. 0

For a site S', if an itemset X is both locally large at site S'
and globally large, then we say that X is heavy at site S'. We
use HL' to denote the set of heavy itemsets at site S', and
HL; to denote the set of heavy k-itemsets at site S'. In DMA,
the heavy itemsets at each site play an important role in the
generation of candidate sets.
LEMMA 3. If an itemset X is globally large, then there exists a site

S', (1 I i I n), suck that X is heavy at site S'.
PROOF. Since X is globally large, it follows from Lemma 2

that X must be locally large at some site S', (1 4 i < n).
0

LEMMA 4. If an itemset X is heavy at a site S', (1 I i 5 n), then all

PROOF. If X is heavy at site SI, then it must be globally large,
therefore, all its subsets are globally large. Moreover,
since X is locally large at site S', it follows from
Lemma 1 that all the subsets of X must be locally
large at site S'. Hence, all its subsets are heavy at site
S'. 0

Lemma 4 is a very interesting property; it shows that the
heavy itemsets at each site have a monotonic subset rela-
tionship among them. This relationship also exists among
the large itemsets in the centralized case, and it is a neces-
sary condition such that large itemsets can be computed
iteratively.
LEMMA 5. If X E L , (z.e., X is a globally large k-itemset), then

there exists a site i, (1 5 i I n), such that X and all its size
(k - 1) subsets aye heavy at site S'.

Hence, X is heavy at site S'.

its subsets are also heavy a t site S'.

PROOF. This follows from Lemma 3 and Lemma 4.
Lemma 5 i s equivalent to the combination of Lemma 3

and Lemma 4. It is a basis to design an effective method to
generate a smaller set of candidate sets in the distributed
environment.

In general, in a straightforward adaptation of Apriori, in
the kth iteration, the set of candidate sets would be gener-
ated by applying the Apriori-gen function on Lk-l. We de-
note this set of candidate sets by CAk, (which stands for
size-k candidate sets from Apriori). In order words,

0

914 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 8, NO. 6, DECEMBER 1996

CA, = Apriori_gen(Lic-,).

At each site Si, let CHL be the set of candidates sets gen-
erated by applying Apriori-gen on HLi-l, i.e.,

CH; = Apriori-gen(HZ,-,),

(CH stands for candidate sets generated from heavy item-
sets). Hence CH; is generated from HLi-,, which is only a
subset of Lrc-,.

According to Lemma 5, for every large itemset X E Lk,
there exists a site S', such that all the size-(k - 1) subsets of
X are heavy at site S'; hence, X E CH; for some site S'.
Therefore

L, c U CH; = U Apriori _gen(Hzk-,).
n n

'=I 1=1

We use CH, to denote the set U:=, CH;.

THEOREM 1. For e v e y k > 1, the set of all large k-itemsets L, is a
subset of CH, = U:=, CH;, where

CH; = Apriori-gen(HL',-,).

Hence, CHIC is a set of candidate sets for the size-k large
itemsets.

PROOF. The proof follows from Lemma 5 and the above
discussion. 0

Since every Hzlc-l in Theorem 1 is a subset of L,-l, the
number of candidate sets in CH, is in general smaller than
that in CAL. In DMA, we use the result in Theorem 1 to gen-
erate a set of candidate sets CH; for each site s' in each
iteration. It can be seen that this set of candidate sets is
typically much smaller than that in a direct application of
Apriori-gen on Lk.

In the following, Example 1 is used to illustrate the re-
duction of candidate sets by using Theorem 1.
EXAMPLE 1. Assuming there are three sites in a database

DB with partitions DB1, DB', and DB3. After the first
iteration, suppose the set of large 1-itemsets L, =
{A, B, C, D, E, F, GI, in which A, B, C are locally large
at site S', B, C, D are locally large at site S2, and E, F , G
are locally large at site S . Therefore, HL: = {A, B, C},
HL: = {B, C, D), and HL: = { E , F , G}.

It follows from Theorem 1 that the set of size-2
candidate sets at site S1 is equal to CH;, where CH: =

Apriori-gen(HLi) = {AB, BC, A C } . Similarly, CH; =

{BC, CD, BD}, and CH," = {EF, FG, EG]. Hence, the set
of candidate sets for large two-itemsets 1s
CH, = CH: U CH; U CH:, and it only has eight
candidates.

However, if Apriori-gen is applied to L,, the set of
candidate sets CA, = Apriori-gen(L1) would have 21
candidates. This shows that the technique in Theorem
1 is very effective in reducing the candidate sets.

3

3.3 Local Pruning of Candidate Sets
In the previous subsection, we have shown that the set CHk
is typically a much smaller set of candidate sets than CA,.
To find the globally large itemsets, subsequent to the gen-
eration of CH,, support count exchange should be done.
However, we have observed that some candidate sets in
CH, can be pruned away by using some local information
before the count exchange starts.

there must exist a site S', such that X E CH; and X is heavy

at site S'. As a consequence, X must be locally large at site
S'. Therefore, a site S' can prune away those candidates in
CH; which are not locally large at Si. In other words, to
compute all the large k-itemsets, at each site S', DMA can
restrict its search domain on all the sets X E CH; which are
locally large at site S'. For convenience, we use LL; to de-
note those candidate sets in CH; which are locally large at

site SI.
Follows from the above discussion, in every iteration,

(loop counter = k) , DMA computes the heavy k-itemsets at
each site Sz according to the following procedure.

1) Candidate Sets Generation. Generate the candidate
sets CH; = Apriori-gen(HL\-l), based on the heavy
itemsets found at site S' in the k - 1 iteration. (By do-
ing so, each site actually is responsible for generating
its own set of candidate sets, and hence
own set of large itemsets.)

2) Local Partition Scanning. For each X E CH;, scan the
partition DB' to compute the local support count Xsup'.

3) Local Pruning. For each X E CH;, if X is not locally

large at site S', then it is pruned away; the remaining
candidate sets are stored in LL\ . (The above pruning
only removes X from the candidate set at site S'. X
could still be a candidate set at some other site.)

4) Support Count Exchange. Broadcast the candidate sets
in LCk to other sites to collect support counts; compute
their global support counts and find all the heavy
k-itemsets in site S'. (A site SI, (j # i), which has received
a request from S' for support counts, does not need to
scan its partition again to compute the support counts.
The counts can be c n advance in Step 2 A
detail discussion of thi

5) Broadcast Mining
k-itemsets found to a1

In the following, we extend Example 1 to Example 2 to
illustrate the execution of the above procedure. Before that,
for clarity purpose, we list the notations used so far in our
discussion in Table 1.
EXAMPLE 2. In Example 1, assume the database has 150

transactions and each one of the three partitions has
50 transactions. Also assume that the support thresh-
old s = 10%. Moreover, as has been illustrated in Ex-
ample 1, in the second iteration, the candidate sets

From Lemma 5, if X is a globally large k

CHEUNG ET AL.: EFFICIENT MINING OF ASSOCIATION RULES IN DISTRIBUTED DATABASES

S’

~

915

S‘ s3

1 2 generated at site S are CH; = {AB, BC, ACI; at site S

are CH; = {BC, BD, CD); and at site S3 are CH; =
{EF, E G , F G } .

BC
AC

D
S

Lk

x. sup

D’

HLk

LLk
x. supl

CH;

10 CD 8 FG 3
2 BD 4 EG 3

TABLE 1
NOTATION TABLE

The number of transactions in database DB
The support threshold minsup
The set of globally large k-itemsets
The set of candidate sets generated from Lk

The global support count of an itemset X

The number of transactions in the partition DB’

The set of heavy k-itemsets at site S’

The set of candidate sets generated from Hzk-’

The set of locally large k-itemsets in CHk
The local support count of an itemset X at site S’

locally large
candidate

sets

A B

BC

CD

EF

In order to compute the large 2-itemsets, DMA first
computes the local support counts at each site. The re-
sult is recorded in Table 2. The last three rows are the
local support counts of the candidate sets at the corre-
s ondin sites. For example, the candidate sets at site
S are listed in the first column, and their local sup-
port counts are listed in the second column.

From Table 2, it can be seen that AC.su$ = 2 < s x

D’ = 5, therefore, A C is not locally large. Hence, the
candidate set A C is pruned away at site S’. On the
other hand, both AB and BC have enough local sup-
port counts and they survive the local pruning.
Hence, LL; = {AB, BCJ. Similarly, BD is pruned away

at site S2 and LL; = {BC, C D J . The only remaining

candidate set at site S3 is EF, i.e., LL: = { E F } . After the
local pruning, the number of size-2 candidate sets has
been reduced to half of the original size.

Once the local pruning is completed, each site
broadcasts messages containing all the remaining
candidate sets to the other sites to collect their sup-
port counts. The result of this count support exchange
is recorded in Table 3.

The request for support count for AB is broadcast
from S’ to site S2 and S3, and the counts sent back are
recorded at site S1 as in the second row of Table 3 The
other rows record similar count exchange activities at
the other sites. At the end of the iteration, site S1 finds
out that only BC is heavy, because BC.sup = 22 > s x D
= 15, and AB.sup = 13 < s x D = 15. Hence the heavy 2-
itemset at site S’ is HL: = {BCI. Similarly, HL: =

{BC, CD) and HL; = (EF) . After the broadcast of the
heavy itemsets, all sites return the large 2-itemsets
L2 = {BC, CD, EF} .

In terms of message communication, in this exam-
ple, most of the candidate sets are locally large at one
site. For each one of them, only one broadcast and re-

P .g

1 , I * I 3 l request
broadcast
from sites Xsup Xsup Xsup Xsup

S’ 5 4 4 13

S‘ 4 8 4 16

s3 4 3 8 15

s’, s2 10 10 2 22

ceive are needed. However, for the candidate set BC,
messages are broadcast from both S’ and S2, which is
not as efficient as in the single broadcast case. In Sec-
tion 3.4, an optimization technique to eliminate this
duplication will be discussed.

TABLE 2
LOCALLY LARGE ITEMSETS

TABLE 3
GLOBALLY LARGE ITEMSETS

916 IEEE TRANSACTIONS 01 4 KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 6, DECEMBER 1996

being divided into groups according to their polling
sites), the local support counts of the candidate sets
are also stored in the corresponding set Lzi i ; sends
each LL!il to the corresponding polling site SI.

2) Polling Site send Polling Requests. S' acts as a poll-
ing site; s' receives all LL;' sent to it from the other
sites; for every candidate set X received, S' finds the
list of originating sites from which X is being sent; S'
then broadcasts the polling requests to the other sites
not on the list to collect the support counts.

3) Remote Site reply Polling Requests. S' acts as a re-
mote site to reply polling requests sent to it; for every
polling request LL;' from polling site Sp, S' sends the
local support counts of the candidates in LL;' back to
Sp. (There is no need to scan the partition D' again to
find the local support counts. It is found already
during the local pruning. Please see Section 4.1 for
details.)

4) Polling Site Compute Heavy Itemsets. S' acts as a
polling site to compute the heavy itemsets; S' receives
the support counts from the other sites; computes the
global support counts for its candidates in LCk and
finds the heavy itemsets; eventually, S' broadcasts the
heavy itemsets together with their global support
counts to all the sites.

EXAMPLE 3. In Example 2, assuming that S' is assigned as
the polling site of AB and BC, S2 is assigned as the
polling site of CD, and S3 is assigned as the polling
site of EF.

Following from the assignment, site S' is responsi-
ble for the polling of AB and BC. In the simple case of
AB, S1 sends polling requests to S2 and S3 to collect
the support counts. As for BC, it is locally large at
both S' and S2, the pair (BC, BC.su$) = (BC, 10) is sent
to S' by S2. After S' receives the message, it sends a
polling request to the remaining site S . Once the
support count BC.sup = 2 is received from S3, S1 finds
out that BC.sup = 10 + 10 + 2 = 22 > 15. Hence, BC is a
heavy itemset at S1. By using a polling site, DMA has
eliminated the double polling messages for BC.

3

3

In this section, we present the DMA algorithm (DMA) in
detail based on the above discussion. Before the descr
of the algorithm, we will discuss a technique for com
the local support counts of all the candidate itemsets at dif-
ferent sites by performing only one single scan on each
partition.

Partition Scanning for Count

MA has to find two sets of support counts
in order to do local pruning and count exchange. The first
set is the local support counts of all the candidate sets gen-
erated at site s'. (These candidate sets are the sets in CH,'
described in Theorem 1). A hash tree can be used to store
the support counts of these candidate sets 161. A scan on the
partition DB' is needed to compute the counts to store in the
hash tree. On the other hand, in order to answer the polling
requests from the other sites, a second set of support counts
of the candidate sets generated at the other sites is needed.
If these counts are computed after the requests are received,
a second scan on the partition is unavoidable.

In order to avoid doing two scans, DMA is required to find
the two sets of support counts by one scan on the partition and
store the counts on the same hash tree. This is possible because
the heavy sets for candidate set generation are available to all
the sites at the end of each iteration. According to Theorem 1,
at a site S', the set of candidate sets generated in the kth itera-
tion is CH; = Apriori-gen '). On the other hand, those
generated in any other site CH; = Apriorizen (HLi-').
Since HL;<-, and HLi-', (j = 1, . . ., iz, I f i), are available at S', S'
can compute all these candidate sets and put them in the same
hash tree before the scan for their local support counts starts.
In other words, every site only needs to scan its partition once
to find the local support counts of the itemsets in CHk = U:=,
Apriorisen (HLk-' 1. With tlus technique, the two sets of sup-
port counts required for local pruning and count exchange can
be found in a single scan of the partition. Therefore, the num-
ber of scam in DMA is minimized and is comparable to that in
the sequential case.

Furthermore, since every site will have the same set of
candidate sets C H , there is no need to send the itemset
names in a polling request, only their positions in the or-
dered list of the itemsets in CH, is required. This would
optimize the message size needed for count exchange.

4.2 The lgorithm
In this section, we present the DMA algorithm in details.

Algorithm 1 DMA. Distributed Mining of Association

Input:
rules algorithm

1) DB'. the database partition at each site, (its size is

2) s: the minimum support threshold; both submitted at

Output: L: the set of all large itemsets in DB, returned at
every site;

Method: iterates the following program fragment distribu-
tively at each site Sz starting from k = 1, where k is the it-
eration loop counter; the algorithm terminates when ei-
ther Li, returned is empty or the set of candidate sets CH,
is empty

equal to D');

each site S', (i = 1, . . ., n);

/" Local Pruning */
if k = 1 then

CHEUNG ET AL.: EFFICIENT MINING OF ASSOCIATION RULES IN DISTRIBUTED DATABASES 91 7

scan DB' to compute q';
/ * T,' is an array containing all size-1 itemsets in DB'

/ ' their local support counts in site S' */

C X , = U:=, CH; = U:=, Apriori-gen (HEk-l);
/ * generate size-k candidate sets */
scan DB' to built the hash tree Ti; 1
/* Ti contains all candidate sets in CH, and */
/* their support counts in site S' */

if X.sup' 2 s x D' then
forj=1 tondo

into LE;';

and */

e l s e {

for-all X E 'TL do

if poZling-site(X) = SI then add (X , X.su$)

/" compute the locally large candidates and divide them
axording to their polling sites */ ,

/*end Candidates to Polling Sites */
f o r j = 1 , ..., ndo

send L2i1 to site SI;

/*Receive Candidates as a Polling Site*/
for j = 1, . . ., n do {

receive LL;';
f or-all x E LL:" do {

store X in LPL;
update X.lauge-sites in LP,' to record the sites at which

X is locally large; 1
I
/*Send Polling Requests as a Polling S i t e to

f Ior-all x E Lp,' do (
bi*oadcast polling requests for X to the sites SI, where
S' P X.Zavge_sites;

receive X.sup' from the sites SI, where SI P X.lavge-sites;

Collect Support Counts "/

I;
/*Compute Global Support Counts and Heavy

f or--all x E L p i do {
t emse t s

x.sup = E:=, x.supl;
if X.sup 2 s x D then insert X into HL;
/' filter out the heavy k-itemsets;

1;
broadcast H;;
receive HL from all other sites SI, (j # i);
return Lk = U:=, H i .

5 PERFORMANCE STUDY OF DMA
We have done an in-depth performance study on DMA to
confirm our analysis of its efficiency. DMA is implemented
on EL share-nothing distributed system by using PVM
(Parallel Virtual Machine) [ll]. A 10 Mb LAN is used to

connect six RS/6000 workstations running the AIX system
to perform the study. The database in the experiment is
composed of synthetic data.

In order to study the performance of DMA, we have also
implemented the algorithm CD in our test bed. In each it-
eration, CD generates the candidate sets at every site by
applying the Apriori-gen function on the set of large item-
sets found in the previous iteration. Every site computes the
local support counts of all these candidate sets and broad-
casts them to the other sites. All the sites can then find the
globally large itemsets for that iteration.

We have performed two experiments to compare the
" performance of DMA and CD. In the first experiment, the

test bed has a fixed number of sites. The aim is to perform
the comparison with respect to different support thresholds
and database sizes. In the second experiment, the threshold
and database size are fixed, and the performance of the two
algorithms are compared with respect to different number
of sites. The result of the first experiment is described in
detail in Section 5.1, and those of the second experiment is
presented in Section 5.2.

The databases used in our experiments are synthetic
data generated using the same techniques introduced in
[6], [16]. The parameters used are similar to those in [16].
Table 4 is a list of the parameters and their values used in
our synthetic databases. Readers not familiar with these
parameters can refer to [6], [161. In the following, we use
the notation Tx.Iy.Dm to denote a database in which D = m
(in thousands), IT(= x, and (I(= y.

TABLE 4
PARAMETER INTERPRETATION VALUE

Parameter
D

IT1
1 1 1

ILI

N
sq

ps
cr
Mf

Interpretation
The number of transactions in
database DB
Mean size of the transactions
Mean size of the maximal
potentially large itemsets
Number of potentially large
itemsets
Number of items
Clustering size
Pool size
Correlation level
Multiplying factor

Value 7
4

2000

50-70

5.1 Performance Comparison with Different
Thresholds and Database Sizes

In the first experiment, the test bed consists of three sites.
The purpose of this experiment is to compare the perform-
ance between DMA and CD with respect to different
thresholds and database sizes. Each site has its own local
disk, and its partition is loaded on its local disk before the
experiments start.

The three partitions are generated separately using the
parameters and the values in Table 4. In order to control the
skewness of the partitions, two more control parameters are
introduced. These two parameters are pvima y vange vP and
secondary vange Y,. The primary range is an interval of items,
and the secondary range is a subinterval of the primary

91 8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 8, NO 6, DECEMBER 1996

range. If the items range from 1 to 1000, a possible pair of
primary and secondary ranges could be y P = [l, 10001, and
Y, = [1700]. As described in [16], itemsets are generated as
groups of similar itemsets. The size of each group is con-
trolled by the clustering size s,, and the size of the itemsets is
a Poisson distribution. In our synthesizing model, the first item-
set in a group is picked randomly from the primary range Y ~ ,

and the other itemsets in the group contain two parts, the
head and the tad. The head is a random extraction from the
first itemset that has been generated. If the head cannot fill
up the itemset size, then the tail is picked randomly from the
secondary range Y,. By doing this, most itemsets generated
are within the primary range, with some clustering in the
secondary range. Therefore, we can generate databases that
have certain skewness towards the secondary range.

The data skewness of a distributed database can be con-
trolled by using different primary and secondary ranges for
different partitions. In Table 5, the primary and secondary
ranges of the three partitions in the first experiment are
listed. The first two partitions are skewed towards the
ranges [1700] and [300, 10001, respectively. The third parti-
tion DB3 is generated with two clustering ranges. Two
disjoint pools of large itemsets are used in synthesizing
DB3. The first one is from the range pair 115501 and [1400],
while the second one is from the range pair [450,10001 and
[600, 10001. Half of the transactions are picked from the first
pool, and the other half from the second pool. Together,
these three partitions exhibit a certain degree of skewness.

TABLE 5
PARTITION PRIMARY AND SECONDARY RANGES

In this experiment, the sizes of the databases range from
100K to 900K transactions, and the minimum support
threshold ranges from 0.75% to 2%. While the number of
candidate sets in DMA are different at each site; the num-
ber in CD remains the same at all sites.

When comparing DMA against CD, we experienced, on
65% reduction of the number of candidate sets at
In Fig. 1, the average number of candidate sets

generated by DMA and CD at each site for a database of
size 500K transactions are plotted inst the support
thresholds. DMA has much less cand sets in all cases,
and the difference increases as the support decreases. For
the same database, the ratios of the number of candidate
sets between DMA and CD are presented also in Fig. 1. The
figure shows that the reduction in the number of candidate
sets in DMA against CD is about 65% to 70%

The above comparison is on the number o
per site. The result has direct implication on the reduction in
the total number of messages required, because only one site
will generate messages for a candidate set to do polling.

The reduction in the total messages required is bigger
than that in candidate sets when comparing DMA against

CD. We have experienced a reduction of about 90% in total
message size in all cases. In Fig. 2, for the database of 500K,
the total message size needed by DMA and CD are plotted
against the support thresholds. Moreover, the ratios of the
total message sizes between DMA and CD are presented in
the same figure. The reduction is larger when the support
threshold is smaller, (i.e., when there are more large item-
sets). In the bar chart of Fig. 2, it can be seen that DMA re-
quires 6% to 12% of the messages of CD.

We have also compared the execution time between
DMA and CD. With the database of 500K, DMA is about
7% to 25% faster than CD, depending on the support
threshold. In Fig. 3, the execution time of DMA and CD are
plotted against the thresholds for the 500K database. The
ratios of speed-up are presented in the same figure in bar
chart. For some other database sizes in this experiment, the
best speed-up can reach about 55%.

Even though the speed-up in our experiment is substan-
tial, it does not seem to be as significant as the reduction in
message size. The main reason is that the overhead in com-
munication is relatively small in our test bed. If DMA is run-
ning in a distributed database, whose partitions are placed in
far apart locations, the speed-up will be more significant.

In this experiment, we have also compared DMA against
CD on a series of five databases from 1OOK to 900K transac-
tions. In terms of candidate sets and total message size re-
duction, the improvement in DMA against CD is very
steady. In Fig. 4, the average number of candidate sets per
site in DMA is compared to that in CD over all the five da-
tabases, for the threshold s = 0.75%. The ratios between
them are plotted in the figure. The result shows that the
percentage of reduction is about 70% in all cases.

In Fig. 5, the total size of message communication in
DMA is compared to that in CD over all the five databases,
for the threshold s = 0.75%. The ratios between them are
presented in the figure, and it shows that the reduction is
between 88% to 89% in all cases.

In Fig. 6, the execution time of DMA is compared to that
of CD over all the five databases, for the same threshold
s = 0.75%. The ratios between them are plotted in the figure
and DMA is about 18% to 55% faster than CD.

5.2 Performance Comparison wit Different Number

In the second experiment/ the test bed consists of six
RS/6000 workstations. The synthetic database is generated

periment is to compare DMA against CD when the number
of sites changes. In the following, we will describe the re-
sult of a comparison in which the number of sites varies
from three to six. The size of the database is 200K transac-
tions, and it is partitioned equally across all the sites. The
minimum support threshold is 3%.

Similar to the first experiment, we found significant re-
duction in both the number of candidate sets and the total
message sizes in all the cases in which the number of sites
are 3,4,5, and 6, respectively. In Fig. 7, the average number
of candidate sets per sites is compared between DMA and
CD. A reduction of about 75% to 90% is witnessed in DMA.
In Fig. 8 the ratios of the total message sizes of the two

of Sites

similar to that in the first experiment The arm of thls ex-

CHEUNG ET AL.: EFFICIENT MINING OF ASSOCIATION RULES IN DISTRIBUTED DATABASES 91 9

0
2% 150% 1% 075%

Minimum support

+DMA +CD

(a)

Fig. I . Candidate sets reduction.

TI0 14.D500K

lL"" I

2% 1 50% 1% 0 75%

Minimum support

+DMA +CD
(a)

Fig. 2. Message size reduction.

TI0 14 D500K

1600 1 I

0'
2% 150% 1% 075%

Minimum support

+DMA -A-CD
(a)

Fig. 3. Execution time speed up.

T I 0 14.DlOOK-lM, s=O 75%
2 0.316 7 I ii 0 3 1 4 - m

& 0.312

o 0.31

2 0.308

5 %
P B
c

LT
100K 300K 500K 700K 900K

Database size

W DMNCD

Fig. 4. Candidate sets reduction

T10.14.D500K

036 7
0 34

0.32

03

0 28
2% 1.5036 1% 0.75%

Minimum support

(b)

W DMAICD

T10.14.D500K

O.I6 7

2% 150% 1% 075%

._ E

Minimum support

(b)
W DMAlCO

1 2

1 1

1

0 9
2% 1.50% 1% 075%

Minimum support

(b)
W CDIDMA

$ % 0 1 2
m z
8 E 0115
E $ c m
O b 0 1 1
o_

d 0105
c

100K 300K 500K 7W)K 900K
Database size

W DMAlCD
Fig. 5. Message size reduction.

920 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 6, DECEMBER 1996

T I 0 14 D100K-IM, s=O 75%

c

100K 300K 500K 700K 900K

Database size

CDiDMA

Fig. 6. Execution time speed up.

T10.14 D200K, s = 3%
0 3 _I I

3 4 5 6
Number of Nodes

W DMAICD

Fig. 7. Candidate sets reduction (n = 3, 4, 5, 6).

T10.14.D200K, s = 3%

3 4 5 6

Number of Nodes
DMAICD

Fig. 8. Message size reduction (n = 3, 4, 5, 6).

T10 14 D200K, s = 3%

0.8

3 4 5 6
Number of Nodes

DMAICD

Fig. 9. Execution time (n = 3, 4, 5, 6).

algorithms is presented. DMA has about 85%-90% reduc-
tion in message sizes in all the cases. Lastly, the execution
time ratios are described in Fig. 9, again, DMA is shown to
be about 25%-35% faster than CD in all the cases.

In general, the performance of DMA depends on the
distribution of the data across the partitions. If the itemsets
are distributed with a higher skewness among the parti-
tions, the techniques of local pruning and candidate set
generation reduction in DMA would be more powerful.
When comparing the results of the above two different ex-
periments, it can be observed that DMA performs better
when the number of nodes is higher. This could be the con-
sequence of a higher data skewness due to the increased
number of partitions.

6 DiscussioN
The efficiency of DMA is attributed to three techniques: 1)
candidate sets generation, 2) local pruning, and 3) messages
optimization. In the described DMA, only local information
available in each partition is considered in the local prun-
ing. Can we take advantage of the global information avail-
able to do more pruning before support count exchange
starts? In fact, at the end of each iteration, the polling site of
a candidate set X not only knows the global support count
of X but also all the local support counts of X . The set of
local support counts can be broadcasted to all the sites to-
gether with X at the end of each iteration. We now discuss
an optimization technique which makes use of this global
information to prune candidate sets.

If X is a k-itemset, with respect to each partition DB',
(1 5 z 5 n), we use maxsup'(X) to denote the minimum value
of the local support counts of all the size (k - 1) subsets of X,
i.e., maxsup'(X) = min{Y.sup' I Y c X and I Y I = k - 1). It
follows from the subset relationship that maxsup'(X) is an
upper bound of the local support count Xsup'. Hence, the
sum of these upper bounds over all partitions, denoted
by maxsup(X), is an upper bound of X.sup; i.e., X.sup i
maxsup(X) = c:=, maxsu<(X). Note that maxsup(X) can be
computed at every site at the beginning of the kth iteration.
Since maxsup(X) is an upper bound of its global support
count, it can be used for pruning, i.e., if maxsup(X) < s x D,
then X cannot be a candidate set. We call this technique
global pruning. Global pruning can be combined with local
pruning to form different pruning strategies. In the follow-
ing, we outline three possible strategies.

1) Local Pruning followed by Global Pruning. After the local

Since X.sup' is available during the local pruning, the
above upper bound can be computed at site S', and it
is more effective than the value maxsup(X) in global
pruning.

CHEIJNG ET AL. EFFICIENT MINING OF ASSOCIATION RULES IN DISTRIBUTED DATABASES 921

2) Global Pruning followed by Local Pruning: Use the upper
bound maxsup(X) to prune away some candidate sets
at site S', and then apply local pruning on the re-
maining candidate sets. (In the extreme case, we may
use global pruning without local pruning).

3) Global Pruning at Polling Site. Only local pruning is done
at a site during the pruning phase. For a candidate set
X, additional pruning is being done at its polling site.
Let S p be the polling site of X and r be the set of or@-
nating sites from which the requests to do polling on X
are being sent. For the sites in r, the local support
counts of X have been sent to S p already. For a site SI
not in r, since X is not locally large at S I , the polling
site can deduce that its local support count X.sup' is
bounded by the value min(maxsup'(X), s x 0). There-
fore, an upper bound of X.sup can be computed by

C X. sup' + C min (maxsup] (x), s x D') .
n

lcr]=1,]er

The above upper bound for X can be used to prune
away some candidate sets at a polling site before it
starts to collect support counts.

The effectiveness of global pruning depends on the data
distribution. For example, let AB be a candidate set and its
size-1 subset A is locally large in S but small (not locally
large) in S2, while the size-1 subset B is small in S but large
in S2. By global pruning, it can be deduced that AB is not
globally large. On the other hand, if A and B are both large
on 5 , and small on S , then it cannot be deduced from
glohal pruning that AB is small. In fact, the choice of an
appropriate global pruning strategy will depend on the
data distribution.

The additional cost in doing global pruning is the stor-
age required to store the local support counts and the mes-
sage communication to broadcast the support counts. There
is a trade-off between the cost and the reduction of candi-
date sets. It will depend on the data distribution as well as
the number of partitions. We believe that global-pruning
will pay off when the distribution of the data has certain
degree of skewness. Additional performance study is re-
quired in order to investigate this technique further.

The hashing technique and relaxation factor proposed in
PDM can be integrated with the techniques in DMA 1171.
For example, in the selection of hash buckets for broad-
casting, the local pruning technique can be used. Also, a
relaxation factor on the support threshold can be used to
increase the amount of information available at the polling
site for global pruning.

Another point worthy to mention here is that the origi-
nal Count Distribution algorithm as proposed in [5] , which
is designed for high performance parallel environment, can
be improved by introducing polling sites to decrease the
amount of message communication required. Its merit is
that it requires less synchronization. In fact, in a high per-
formance parallel environment, DMA and CD can be com-
bined to form a hybrid algorithm which has less candidate
sets than CD, a slightly more message communication than
DMA, but less synchronization. We will investigate this
further in our future study.

1

1

1 2

Another issue related to the performance of the mining of
association rules in a distributed database is the difference
between the partition sizes. The algorithms such as DMA and
CD require some synchronization in each iteration. A large
size difference between the partitions would not be favour-
able to the performance. A possible solution would be to di-
vide some large partitions further to equalize their sizes. This
would reduce the time in synchronization. However, the
trade-off would be more message communication.

7 CONCLUSION
We studied an efficient algorithm for mining association
rules in distributed databases. The developed method re-
duces the number of candidate sets at each partition effec-
tively by using local pruning. The communication scheme
for count exchange is optimized by using polling sites. The
method is implemented and its performance is studied and
compared with a direct application of a popular sequential
algorithm. The study shows that the proposed technique
has superior performance on the mining of association rules
in distributed databases.

The efficiency of local pruning can be enhanced by
global pruning if local support counts are stored at the sites.
We have also discussed the possibility of integrating the
techniques in DMA with those in PDM.

Recently, there have been some interesting studies at
finding multiple-level or generalized association rules in
large transaction databases 1131, [21]. An extension of the
techniques in DMA to the mining of multiple-level or gen-
eralized association rules in distributed database are inter-
esting problems for further research. For experimental pur-
poses, we are planning to implement the DMA and other
related algorithms on an IBM SP2 system with 32 nodes to
study the problem of mining association rules in a parallel
system with high speed communication.

ACKNOWLEDGMENT
The research of David W. Cheung and Vincent T. Ng was
supported in part by RGC (the Hong Kong Research Grants
Council) under Grant 338/065/0026.

REFERENCES
R. Agrawal, C. Faloutsos, and A. Swami, "Efficient Similarity
Search in Sequence Databases," Proc. Fourth Int'l Conf. Foundations
of Data Organization and Algorithms, Oct. 1993.
R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, "An
Interval Classifier for Database Mining Application," Proc. 18th
Int'l Conf. Very Large Data Bases, pp. 560-573, Vancouver, Canada,
Aug. 1992.
R. Agrawal, T. Imielinski, and A. Swami, "Database Mining: A
Performance Perspective," IEEE Trans. Knowledge nnd Dada Engi-
neering, vol. 5, pp. 914-925,1993.
R. Agrawal, T. Imielinski, and A. Swami, "Mining Assocation
Rules Between Sets of Items in Large Databases," Proc. ACM-
SIGMOD Int'l Conf. Management of Data, pp. 207-216, May 1993.
R. Agrawal and J.C. Shafer, "Parallel Mining of Association Rules:
Design, Implementation, and Experience," IBM Research Report
RJlOG4,199?5.
R. Amawal and R. Srikant, "Fast Algorithms for Mining Associa-
tion kules," Proc. Int'l Conf. V e y L&ge Data Bases, p{ 487-499,
Santiago, Chile, Sept. 1994.

922 IEEE TRANSACTIONS ON

171 D W Cheung, A W.-C. Fu, and J Han, “Knowledge Discovery in
Databases A Rule-Based Attribute-Oriented Approach,” Proc
Int’l Symp Methodologies for Intelligent Systems, pp 164-173, Char-
lotte, N.C , Oct 1994
D W Cheung, J Han, V T. Ng, and C Y Wong, ”Maintenance of
Discovered Association Rules in Large Databases. An Incremental
Updating Technique,” Proc. IEEE Int’l Conf Data Engineering, New
Orleans, La, Feb. 1996.

191 U.M Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R Uthu-
rusamy, Advances in Knowledge Discovery and Data Mining AAAI/
MIT Press, 1995.

[lo] W J Frawley, G Piatetsky-Shapiro, and C.J. Matheus,
”Knowledge Discovery in Databases: An Overview,” Knowledge
Discovery zn Databases, G Piatetsky-Shapiro and W.J. Frawley, eds ,
pp. 1-27. AAAI/ MIT Press, 1991

1111 A Geist, A Beguelm, J Dongarra, W Jian, R Manchek, and
V Sunderam, PVM Parallel Virtual Machine A Users‘ Guide and
Tutorial for Networked Parallel Computrng MIT Press, 1994

[12] J Han, Y Cai, and N Cercone, ”Data-Driven Discovery of Quan-
titative Rules in Relational Databases,” IEEE Trans Knowledge and
Data Engineering, vol 5, pp. 29-40,1993.

I131 J. Han and Y Fu, “Discovery of Multiple-Level Association Rules
from Large Databases,” Proc. Int’l Con$ Very Large Data Bases,
Zunch, pp 420-431, Sept 1995

[14] M Klemettmen, H. Mannila, P Ronkamen, H. Toivonen, and A.I.
Verkamo, ”Finding Interesting Rules from Large Sets of Discov-
ered Association Rules,” Pvoc. Third Int’l Conf Information and
Knowledge Management, pp. 401-408, Gaithersburg, Md., Nov
1994

[15] R Ng and J. Han, ”Efficient and Effective Clustering Method for
Spatial Data Mining,” Pvoc Int’l Conf Very Large Data Bases, pp.
144-155, Santiago, Chile, Sept 1994

I161 J S Park, M S Chen, and P S Yu, “An Effective Hash-Based
rithm for Mining Association Rules,” PYOC ACM-SIGMO
Conf Management of Data, pp 175-186, San Jose, Calif, May 1995

I171 J S Park, M S Chen, and P S Yu, ”Efficient Parallel Data Mining
for Association Rules,” Proc Int’l Conf Information and Knowledge
Management, Baltimore, Md , Nov. 1995

[18] G. Piatetsky-Shapiro and W J Frawley, Knowledge Discovery zn
Databases. AAAI/MIT Press, 1991.

I191 A Savasere, E. Omiecmski, and S Navathe, ”An Efficient Algo-
rithm for Mining Assocation Rules in Large Databases,” Proc Int’l
Conf Very Large Data Bases, pp 432-444, Zurich, Sept 1995

[201 A Silberschatz, M Stonebraker, and J Ullman, ”Database Re-
search Achievements and Opportunities into the 21st Century,”
Report NSF Workshop Future of Databases Systems Research, May
1995

I211 R Srikant and R. Agrawal, ”Mining Generalized Assocation
Rules,” Proc Int’l Conf Verevy LarXe Data Bases, pp 407-419, Zurich,

[8]

” _ _ _
Sept 1995

vols 1 /2 Computer Science Press, 1989
[22] J D Ullman, Prznciples of Database and Knowledge-Base Systems,

KNOWLEDGE AND DATA ENGINEERING, VOL 8, NO. 6, DECEMBER 1996

David W. Cheung received the MSc and PhD
degrees in computer science from Simon Fraser

da, in 1985 and 1989, respec-
received the BSc degree in

mathematics from the Chinese University of
Hong Kong. From 1989 to 1993, he was with
Bell Northern Research, Canada,
a member of the sci
Cheung has been a
partment of Computer Science at the University
of Hong Kong. His research interests include

distributed and main-memory databases, database concurrency con-
trol and recovery, data mining, and medical image databases. Dr.
Cheung is a member of the ACM, the IEEE, and the IEEE Computer
Society.

I .

Vincent T. Ng received the BSc degree in
mathematics and computing science from
Simon Fraser University, Canada, in 1982. He
later studied at the University of Waterloo, Can-
ada, where he received his MMath degree in
1986. In 1994, he received his PhD degree from
Simon Fraser University. Since 1994, he has
been an assistant professor at the Hong Kong
Polytechnic University. His research interests
include spatial databases, data mining, medical
informatics, and medical imaging.

Ada W. Fu received the BS degree in computer
science from the Chinese University of Hong
Kong in 1983, and the M S and PhD degrees in
computer science from Simon Fraser University,
Canada, in 1985 and 1990, respectively She
was a member of the scientific staff at Bell
Northern Research, Canada, from 1989 to 1993
Since 1993, she has been a faculty member of
the Department of Computer Science and Engi-
neering at the Chinese University of Hong Kong.
Her research interest include topics in data-
bases and parallel and distributed systems. She

is a member of the Association for Computing Machinery, the IEEE,
and the IEEE Computer Society.

Yongjian Fu is a PhD candidate at Simon
Fraser University, Canada. His research inter-
ests are knowledge discovery in databases,
data warehouse, distributed database systems,
and cooperative information systems.

