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Aktracr-The Partial Metrics (PM) system described in this paper 
utilizes chunking as a  model  for acquiring knowledge about program 
implementation. The chunking paradigm has three phases. The first 
phase partitions the object to be  chunked into relatively independent  
parts called aggregates. The objects to be  chunked in PM are code 
modules. Modules are separated into a  collection of aggregates based 
on  a  model  of stepwise refinement. A heuristic is given that generates 
a  hierarchically structured collection of refinement steps that describes 
how the program could have been developed as a  set of independent  
refinement decisions (object-oriented stepwise implementation). The 
second phase encodes (abstracts) each of the aggregates. Various tech- 
niques for symbolic learning can be  appl ied to produce a  frame-based 
encoding of information present in the code. This abstraction contains 
information about the aggregate’s role in the refinement process as well 
as the code’s functionality. The third phase inserts the chunked aggre- 
gate into a  hierarhically structured library of cases based on  the con- 
tents of its frame description. The storage of an  aggregate enables its 
future use in problem solving activities. The paper describes an  ex- 
ample of how this approach can be  used to acquire knowledge from a  
sort module.  

The goal of the Partial Metrics (PM) project is to in- 
vestigate the development of hybrid learning environ- 
ments which support the acquisition of such knowledge. 
It is felt that a  suitable environment must support the fol- 
lowing properties: 

1) Storage and retrieval of heterogeneous knowledge 
and structures. Programming knowledge comes in many 
forms and the system should support the acquisition and 
utilization of each. For example, a  professional program- 
mer must possess knowledge of algorithms and data struc- 
tures, knowledge about an application domain, and 
knowledge of how to plan and implement application soft- 
ware. 

Index Terms-Automatic programming, chunking, knowledge ac- 
quisition, object-oriented stepwise refinement, reverse engineering, 
software quality metrics, software reuse. 

2) Task neutral knowledge structures. The knowledge 
organization does not bias its use toward only one type of 
problem solving activity or another. This property allows 
stored knowledge to be accessible to all phases of the soft- 
ware design process. 

I. INTRODUCTION 

H ERBERT SIMON suggests that one of the major bot- 
tlenecks to the generation of automatic programming 

systems is the acquisition of programming knowledge for 
use in such systems [ 11. For example, a  number of re- 
searchers have demonstrated the importance of planning 
knowledge in the programming process [2]-[5]. Several 
automatic programming systems employ plan-like knowl- 
edge [6]-[8]. The library of plans associated with a given 
knowledge-based system is a major factor influencing that 
system’s performance. However, acquisition of the plan- 
ning knowledge that goes into such a library can involve 
an extensive amount of handcrafting on the part of the 
engineer. Such handcrafting is time consuming and im- 
pacts plan-based systems in three fundamental ways. 
First, it can narrow the scope of domain applications. 
Second, it can limit the number of applications within a 
given domain. Third, it can limit the number of target 
languages supported by the planning system. 

3) Layered learning strategy. This strategy allows 
knowledge to be acquired at complementary levels of ab- 
straction. The system should be able to “remember” de- 
tails of specific events and produce reasonable high-level 
generalizations about each event. There also must be 
mechanisms to support translation of acquired knowledge 
from one level of abstraction to another. 

4) Knowledge acquisition at different granularity levels 
in programs. Stored knowledge may correspond to one 
line of code, several lines, or perhaps the entire module. 

5) Knowledge structuring consistent with skilled pro- 
grammer behavior. This property implies that the knowl- 
edge structure’s design must be motivated by empirical 
studies whenever possible. 
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As motivated by the above properties, research on the 
PM project has taken the following directions. First, the 
prototype system is Case-Based. Each piece of program- 
ming knowledge is annotated with a description of the sit- 
uation for which its use is appropriate. The piece of 
knowledge is stored in the network of cases based upon 
its annotation. The annotation is expressed using a frame 
structure with slots representing information relative to its 
use in the stepwise refinement process as well as its func- 
tion in a program. The frame is therefore capable of char- 
acterizing the class of events in which its associated piece 
of knowledge can participate. Each category of knowl- 
edge object has its own frame template. For instance, the 
template for plans differs from those for code pieces. 
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Three principal knowledge categories have been defined 
so far; plans, fundamental implementation knowledge, 
and application implementation knowledge. Each cate- 
gory possesses its own hierarchical network of stored 
cases with the most generic events indexed at the top and 
the most specific at the bottom. 

Current work on the project focuses on the acquisition 
of fundamental implementation knowledge. The project’s 
immediate goal is to construct a  system capable of orga- 
nizing coding knowledge acquired from examining pro- 
grams in introductory computer science texts. This paper 
demonstrates how the PM system acquires knowledge 
from the kind of code typically found in those texts. The 
particular example used is a sorting routine from Gilbert 
191. 

The framework for the knowledge acquisition process 
described is based on an empirical model of the stepwise 
refinement process for implementing code modules. This 
model describes stepwise refinement in terms of specifi- 
cally developed metrics, partial metrics [lo] and rejine- 
ment metrics [ 111, which, respectively, assess the com- 
plexity of each refinement step in terms of a  programming 
language’s syntax and semantics. Use of the metrics has 
suggested a method for breaking down completed code 
modules into a collection of refinement objects based on 
a canonical model of the process by which they were im- 
plemented. This collection is structured into a hierarchy 
of aggregates (HAG). Each aggregate in the hierarchy is 
a potential object for acquisition into a case library; each 
can be viewed as a chunk of knowledge to be described 
and stored. 

Section II presents a general model of the chunking pro- 
cess and describes how the PM system supports this par- 
adigm. Section III presents a heuristic to generate the hi- 
erarchy of aggregates and applies the heuristic to the sort 
example. The HAG produced is a description of how the 
sort module can be implemented using refinement steps 
that satisfy a given set of metric constraints. Section IV 
discusses how the aggregates can be integrated into a hi- 
erarchically structured case library. As a result, the sys- 
tem is able to acquire and reuse programming knowledge 
from code modules. 

II. THE ROLE OF CHUNKINC IN PM 
The need for humans to associate specific input with 

more general or abstract patterns was motivated by the 
work of Miller, a  psychologist, on the size of a  human’s 
short-term memory [12]. His results suggest an average 
person has a limit of seven plus or minus two items. This 
limitation can be overcome when each of the objects in 
short-term memory is allowed to represent an encoding of 
a  collection of more detailed objects. For example, few 
people would be able to remember the string of bits 
010110101100. However, if the string is linearly decom- 
posed into three 4-bit subsequences, (0101, 1010, and 
llOO), then each 4-bit sequence can be encoded in its 
hexadecimal equivalent. The resultant set of objects, 5  
AC, is easy to remember. This result can then be decoded 

into the original, more detailed, representation if neces- 
sary . 

The above example suggests that chunking consists of 
several distinct phases. The first phase decomposes input 
into aggregates of low-level objects. These aggregates 
should be relatively independent in order to simplify the 
encoding process. Simon observed [13] that many com- 
plex systems can be decomposed into a collection of hi- 
erarchically structured subsystems, such that the intrasys- 
tern interactions are relatively independent of intersystem 
ones. The decomposit ion of the binary sequence above 
can be expressed hierarchically as 

~0110~01100 
\ 

0101 1010 1100 

If there is no dependence between the inter- and intra- 
subsystems, then the system is said to be completely de- 
composable, as is the case for the example above. Nearly 
decomposable systems exhibit a  few interactions, but still 
permit efficient encoding to take place [ 131. 

The second phase of the chunking process is encoding 
or abstraction. If the aggregates are independent then the 
encoding process is particularly straightforward since the 
abstraction mechanism can be applied independently to 
each. The presence of some interaction between compo- 
nents may cause the propagation of symbolic constraints 
produced by the chunking of one aggregate to others. In 
a nearly decomposable system this propagtion should be 
relatively local in nature. The encoding of the aggregates 
above can be expressed as 

01p1 10,lO llpo 

5 A C’ 

The third phase involves the storage of the chunked ag- 
gregates in a knowledge structure that enables its future 
use in a problem solving activity. It is assumed that the 
collection of chunked aggregates can be described in a 
hierarchical manner. 

The chunking process described above has been em- 
ployed in a variety of AI applications: for example, a  hi- 
erarchical planning system for chess [ 141, a system for 
learning about problem solving procedures [15], and as 
part of a  general model of human practice [ 161. 

A. What is Being Chunked in PM? 
Input to the PM system is target code from a specific 

programming language. The current prototype supports 
Ada, Pascal, C, OPS5, and Prolog. The prototype re- 
quires that target code have the following properties. 

1) The code is well structured and maintainable. Es- 
teva’s Software Reusability Classification System [ 171 is 
used to determine this property for a  candidate code mod- 
ule. His system utilizes inductive learning to generate a 
decision tree from examples of reusable and nonresuable 
code in terms of a  set of software quality metrics. 

2) The target code has been documented, well tested, 
and found to be reliable. Since the plan generated from 
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Fig. 1. Relationship between phases of knowledge acquisition in PM and 
chunking. 

the code will be used for many other designs, this prop- 
erty prevents the propagation of errors to other applica- 
tions that use the plan. 

B. How the Chunking Process is Integrated into the 
Structure of PM 

Fig. 1  relates the basic phases of the plan knowledge 
acquisition process in PM to the generic chunking para- 
digm. The initial phase attempts to partition the code into 
a hierarchy of code aggregates that are syntactically in- 
dependent. The model used to generate this hierarchy is 
an attempt to describe the construction of the module as 
a set of relatively independent refinement steps. 

The aggregation procedure is driven by a set of metric 
parameters which are input with the target code to be pro- 
cessed. These metrics, which are discussed in more detail 
in Section III, were selected because they successfully de- 
scribe patterns in the structure of code segments added to 
pseudocode programs during code refinement [ 181, [ 191. 

The relative independence of the set of aggregates pro- 
duced is then assessed in metric terms. If the aggregates 
do not exhibit enough structural independence then the 
aggregation process can be repeated by adjusting the val- 
ues of the metric parameters to produce a more appropri- 
ate grain size for the aggregates. The problem of finding 
a combination of metric values that produces aggregates 
with acceptable levels of independence is an example of 
the “granularity problem” described by Roy and Mostow 
[20]. - 

The advantages of dealing with the granularity problem 
prior to the generalization process are twofold. First, it 
reduces the effort involved in generalization since fewer 
interactions between aggregates need to be handled. Sec- 
ond, it results in the generation of plans that are efficient 
to use. Tambe and Newell have shown that some chunks 
are more expensive to employ in the problem solving pro- 
cess than others [21]. One of the causes of this expense 
is the presence of a  large number of condition elements 
in the chunk. By using metrics to force the relative inde- 
pendence of aggregates, the number of such conditions, 
and therefore the cost of using the aggregates, should be 
reduced. The following sections demonstrate how knowl- 
edge about a target program is acquired by the PM sys- 
tem. 

III. THE GENERATION OF A HIERARCHY OF 

AGGREGATES 

The principal AI paradigm used in this phase is search. 
Simon suggests that implementation of target code via 
stepwise refinement of pseudocode can be naturally ex- 
pressed in terms of state space search [ 11. The state space 
to be searched is the set of pseudocode programs in a tar- 
get language. Given an initial abstract description of a  
desired program, a programmer searches for a  sequence 
of refinement steps that will produce suitable target code. 
Fig. 2  presents a tree, termed a rejinement tree by Bar- 
stow [7], which represents the possible paths from an ini- 
tial pseudocode description to a final code module. Each 



276 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO.  3. SEPTEMBER 1990 

PARTIALLY PARTIALLY 
F(EFINED REFNED 
DESCRlPTlOh DESCRIPTlOh 

PARTIALLY PARTIALLY 
REFlNED REFINED 
DESCRIPTICN DESCRlPTiOh 

Fig. 2. Refinement tree representation of the search space for pseudocode 
refinement. Path A corresponds to the refinement steps used to generate 
the target code by the programmer. Path B corresponds to the reverse 
path generated by the PM system in producing the hierarchy of aggre- 
gates. 

node in the tree corresponds to a pseudocode program. An 
arc from a node x to a node y represents the fact that y 
was produced, via refinement, from x. 

For any given program implementation, each refine- 
ment in the programming sequence can be recorded to give 
the actual path taken through the tree by the programmer. 
Fig. 2 highlights the specific path (labeled A) taken by a 
programmer. Studies of numerous refinement sequences 
in the software engineering literature suggest a tendency 
of programmers to place constraints on the path taken 
through the tree in terms of the code complexity added at 
each step [lo]. 

A set of metrics developed by Reynolds ([lo], [ 111) 
characterizes these constraints on the search process. 
These metrics are designed to assess the structural com- 
plexity of the code aggregates added during the refine- 
ment step. Several basic assumptions were made in the 
construction of these measures. 

1) Each refinement step can be viewed as an aggrega- 

tion of a number of constituent code generation decisions. 
A portion of each decision deals with the expression of 
the results in terms of a programmer’s internalized model 
of the target language’s syntax. Therefore, the syntactic 
structure of the target language’s grammar affects the ag- 
gregation decisions made. This perspective has been sug- 
gested by others such as MacLennan [22]. The metrics 
selected to represent the impact of the language’s gram- 
mar on the refinement process are called refinement met- 
rics [ll], [23]. 

2) The code aggregate added at each refinement step is 
also influenced by limitations on the programmer’s short- 
term memory. It is assumed that these limitations can be 
estimated by counting the lexical symbols added to the 
code at each refinement step. The metrics developed to 
assess this aspect of the code aggregate are called partial 
metrics [lo]. 

3) Both partial and refinement metrics should codify 
information used by a programmer in selecting a path of 
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refinement through the tree that satisfies certain limita- 
tions on the code complexity added at each step. In doing 
so, the metrics must be capable of predicting the com- 
plexity of the completed code that would be achieved if 
the programmer were to follow the current path to com- 
pletion. If the prediction exceeds some acceptable limit 
the search systematically shifts to some other candidate 
path. It is important to ensure that the prediction consis- 
tently underestimates the possible value; otherwise, the 
fruitful path may be missed [24]. Both refinement and 
partial metrics have been designed to allow the prediction 
of properties along an entire path. In addition, these es- 
timates are designed to consistently underpredict the com- 
plexity of the completed code associated with the current 
path. 

The goal of the aggregation process is to traverse the 
refinement tree in reverse by systematically removing an 
aggregate of code from the target program and replacing 
it with a stub. The aggregate that is removed satisfies the 
set of metric constraints provided as input. This process 
continues to construct a  path through the refinement tree 
using a simple breadth-first search from bottom to top. 
The search is guided by an evaluation function composed 
of one metric from each of the set of partial and refine- 
ment metrics. The result of the process is the production 
of a  hierarchically nested sequence of code aggregates 
where each aggregate satisfies given metric constraints. 
Note that this path does not have to correspond to that 
used to construct the program in the first place. Fig. 2  
reflects this distinction: the program is shown to be pro- 
duced via one path A through the tree, and decomposit ion 
occurs in reverse following another path B. 

A. The Metrics Used for Aggregation 
. Since the goal is to generate a reverse path through the 

refinement tree, it is desirable that the aggregates pro- 
duced during the traversal should be considered in the 
same way as if they had been produced by an expert. If 
this is the case, the aggregate structure produced is more 
likely to be understandable to a human observer. In order 
to understand how each metric is able to characterize a 
particular aspect of the code aggregate added, the basic 
effects of a  refinement decision on the code must be de- 
scribed. 

The external effects of a  refinement decision can be 
manifest in two basic ways: 

1) a  change in the systematic structure of the pseudo- 
code program 

2) a change in the implementation subgoals associated 
with the pseudocode program. 

In order to measure the effect of a  refinement decision 
it was necessary to produce measures that quantitatively 
assess the changes of each effect. Partial metrics were de- 
veloped as a means to describe changes in a pseudocode 
program’s structural complexity [25]. A partial metric is 
computed relative to a specific model of a  pseudocode or 
partial program. In terms of this model, each program 
consists of a  projected part and a prescribed part. The 

prescribed part corresponds to reserved words and sym- 
bols in the target language. The projected part corre- 
sponds to implementation tasks that remain to be carried 
out by the programmer. These tasks are represented in the 
code by stubs. The position of each stub in the code im- 
plicitly determines the syntactic class associated with that 
stub. The implied syntactic class is a characterization of 
the implementation task in syntactic terms. 

Software engineers have developed a variety of metrics 
([26]-[28]) which assess the structural complexity of 
completed code, programs that have only a prescribed 
component. A partial metric is one that is able to compute 
the contribution of both the prescribed and the projected 
part in order to produce an overall estimate of structural 
complexity. Reynolds [lo], [25] demonstrated that a  
number of standard metrics, such as McCabe’s, Mc- 
Clure’s, and Halstead’s, can be extended to measure the 
complexity of pseudocode programs. These extended 
metrics are especially good predictors of complexity when 
the code is less than 75% prescribed. 

The specific partial metric used as the aggregation heu- 
ristic is program volume. Program volume is a prediction 
of the number of bits required to store the corresponding 
code segment in computer memory. Both prescribed and 
projected terms contribute to this value. The contribution 
of the projected terms is set to be the minimum contri- 
bution to the count of operands and operators for a  non- 
trivial substitution of code for the projected term. As a 
result this prediction is a consistent underestimate of the 
actual value. The relationships necessary to compute pro- 
gram volume are given below: 

n(program) = 
number of unique operands in prescribed code 

+ number of unique operators in prescribed code 
+ number of unique projected terms 

N(program) = 
total number of operands in prescribed code 

+ total number of operators in prescribed code 
+ total number of operands associated with the pro- 

jected terms 
+ total number of operators associated with the 

projected terms 

Volume(program) = 
N(program) * log, n(program). 

Partial program volume reflects certain limits in the 
amount of pseudocode added at each refinement step [lo]. 
Results from a study of numerous refinement examples 
taken from the software engineering literature suggested 
that the addition of a  new pseudocode refinement added 
on the average 122 bits to the partial program volume with 
a standard deviation of 33. The example aggregates in this 
paper were produced by setting the partial program vol- 
ume to the average 122 bits. 

A second class of metrics was developed to measure the 
change in subgoal complexity as the result of a  refine- 
ment. These metrics are termed refinement metrics and 
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measure language support for refinement decisions [ 111. 
In particular, they are used to estimate the decision-mak- 
ing effort associated with the transformation of a  program 
stub into completed code. 

Associated with each term is its identifier class which 
corresponds to a particular class of nonterminals in the 
grammar for the target language. It is also possible to as- 
sociate an index of syntactic complexity with each iden- 
tifier class. This index is helpful in isolating trends in the 
selection process for projected terms. 

The index used corresponds to the number of produc- 
tions in the target language’s grammar that are needed to 
express that identifier class in terms of the language’s ter- 
minal symbols. The index, refinement depth, is defined 
as the maximum number of substitutions, without cycles, 
that are needed to replace a nonterminal on the right-hand 
side of a  grammar’s production rule that contains the 
identifier class on the left-hand side. If the nonterminal is 
on the left-hand side of more than one production then the 
maximum over the set of relevant productions is taken. 
The index is called refinement depth since it reflects the 
number of productions required to express the most com- 
plex subtask associated with the implementation of a  stub 
of a  given nonterminal class. 

Refinement depth has been shown to be an important 
factor in predicting the structure of the code aggregate 
coded to a pseudocode program [ 181. In particular, there 
appears to be a limitation on the extent to which a stub of 
a  given nonterminal will be decomposed into subtasks. 
That is, the distance between the depth for the parent and 
each of its children seldom exceeds a certain value. This 
value is always much less than the maximum difference 
between nonterminal classes in the language. Constraints 
on the difference between the parent stub and its children 
reflect a  gradualism in the problem solving process. 

B. Generat ing the Hierarchy of Aggregates 
The basic approach used in generating the HAG is to 

conduct a branch and bound search through possible paths 
from the target code to a root node. The search is con- 
strained by the input values for refinement depth and par- 
tial program volume. Fig. 3  presents the result of parti- 
tioning a sort module, written in Ada and taken from 
Gilbert [9], into aggregates using a refinement depth of 
23 and a partial program volume of 122. Each bracketed 
portion of code is indexed by the order in which it was 
produced. 

The aggregation process is performed on the token 
stream generated from the target code. That is, the char- 
acters in the source code are grouped into collections that 
correspond to reserved words, symbolic names, and other 
code components. The token stream is a sequence of these 
tokens produced by scanning the code from top to bottom. 
Every symbolic name encountered in the scan, such as 
no-i tems-interchanged, is associated with a nonterminal 
class and its associated refinement depth. Initially all 
symbolic names in the token stream for the target code 
are associated with the identi$er class. 

if size 5 0 then 
ut( error message ); 

else 
[xf szze > 1 then 8 6 

xlt when no rtems Interchanged; 1 
oop: 

end if; - I ’ end if; 
.I 

Fig. 3. Aggregation of Gilbert’s sort example with partial volume of 122 
and refinement depth of 23. 

Once the token stream is produced the following aggre- 
gation procedure is executed: 

REPEAT 
1. Find the symbolic name associated with the lowest 

syntactic class. If there is more than one, select the 
one closest to the end of the token stream. This is 
the current “seed” for the aggregate. 

2. WHILE 
[the partial program volume for the current aggre- 
gate is less than the given upper bound] 

AND 
[(the maximum refinement depth for the bracketed 
syntactic structures minus the minimum refine- 
ment depth for the bracketed syntactic structures) 
is less than or equal to the given upper bound for 
refinement depth] 

” ““,. Adjust the top “bracket” by moving the scan 
to include the preceding token in the stream. 

b. IF [the token is a reserved word that requires 
another to be syntactically correct (such as 
begin) and the other term is currently not 
in the aggregate (e.g., end)] 

THEN 
[Adjust the bottom bracket downwards to 
include the additional term.] 

END WHILE 
3. Remove the bracketed code segment and replace it 

with a new symbolic name. The syntactic class of 
that name is the nonterminal of highest refinement 
depth associated with a syntactic structure in the 
segment. This name corresponds to a stub repre- 
senting the segment that was removed. 

UNTIL (top of token stream reached). 

The process can be illustrated using the example code. 
First, no-i tems-interchanged is determined to be the 
seed since it is the closest symbolic name to the end of 
the program. Next the scan moves the top bracket up to 
when without encountering a problem. The discovery of 
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when activates the extension of the bottom bracket to pick 
up the rest of the when action. At this point, the differ- 
ence between the refinement depth values for the largest 
(exit-statement) and smallest (ident$er) syntactic strut- 
tures exceeds the refinement depth bound used of 23. As 
a result the bracketing process is terminated for the ag- 
gregate. The bracketed code is removed and replaced by 
a unique stub name associated with the aggregate. The 
process then continues until all aggregates are produced. 

C. Preparing the Hierarchy of Aggregates for Chunking 
Each aggregate, excluding the root, is referenced by a 

stub in another aggregate. These relationships are ex- 
pressed by the tree in Fig. 4. Each aggregate corresponds 
to a node in the tree and is labeled by a unique stub name 
based on the general syntactic class for that code. The 
integer in the upper right hand corner represents the order 
in which the aggregate was generated. Our approach pro- 
duces all the leaf nodes prior to interior nodes. 

condition03 3 
statements02 .714 I .310 [ 

Fig. 4. Hierarchy of aggregates (HAG) for the sort example. 

The number in the lower right hand comer indicates the 
aggregate’s independence from other aggregates. This in- 
dependence is computed in the following fashion. For 
each symbolic name in the aggregate’s symbol table, di- 
vide the number of occurrences in the aggregate by the 
total number of occurrences in the program. The greater 
this ratio, the more localized the term’s use is in relation 
to that aggregate. The average of these ratios over all 
symbolic names in the aggregate is an indication of syn- 
tactic independence. Note that the values tend to increase 
from the leaf aggregates to the root as a natural result of 
the fact that higher level modules contain more stubs, and 
all of these stubs are unique occurrences. 

The success of the partitioning process described earlier 

SORTPASS NO-ITEMS-INTERCHANGED 

CGMPAREJTERCHANGE 

INTERCHANGE 

Fig. 5. Gilbert’s actual refinement sequence. 

in producing aggregates that exhibit sufficient syntactic 
independence to facilitate chunking is measured in terms 
of these values. Since the chunking process described in 
the next section typically begins at the leaf aggregates and 
propagates upward, it is important that the leaf aggregates 
possess sufficient syntactic independence to allow the pro- 
cess to begin. The rule of thumb used is that a  leaf aggre- 
gate should have a ratio in excess of 0.75 in order to be a 
viable candidate for chunking. If this is not the case, an 
attempt is made to cluster leaf nodes (and their immediate 
parents) based on the extent to which the sanle variables 
are used in each. If the clustered nodes have a ratio less 
than 0.75 other leaf nodes are added until the ,ratio ex- 
ceeds 0.75. In our example, the clustering combines ag- 
gregates 1 through 5. Since this new aggregate’s ratio ex- 
ceeds our lower bound of 0.75 it will be used in place of 
the 5 aggregates. 

are deferred until they are first used in the substituted 
code. Each refinement object is thus implicitly associated 
with the pertinent declaration. This opportunistic decla- 
ration of variables reinforces the view of refinement as a 
series of independent substitutions of refinement objects. 

The canonical sequence of refinement objects produced 
will not necessarily correspond to the actual sequence used 
by a programmer in generating the code. However, if the 
programmer did use an object-oriented approach the PM 
generated sequence can resemble the original. For ex- 
ample, Fig. 5  displays the actual refinement sequence 
generated in Gilbert’s sort routine. The labels for each 
node correspond to the name of the stub in the process. 
Notice that the tree structure closely resembles that pro- 
duced by the PM system (see Fig. 4). 

As a result of the clustering, each of the aggregates rep- 
resents a relatively independent refinement step. This cor- 
responds to the goal of making each refinement step an 
independent object. The canonical refinement sequence 
produced is referred to as an object-oriented refinement 
sequence. Note that the aggregation process concerned 
only the body of the code. This reflects another aspect of 
our canonical refinement sequence: variable declarations 

IV. CHUNKINC THE HIERARCHY OF AGGREGATES 

In order to understand how the knowledge embodied in 
these aggregates is encoded and stored, one must consider 
the overall organization of knowledge in PM. Kolodner 
and Riesbeck [29] and W illiams [30] among others have 
suggested a case-based approach to acquiring software 
engineering knowledge. In PM, each aggregate is consid- 
ered a potential case. The chunking process concerns the 
production of an abstract description for each code aggre- 
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“encapsulate” 

reusable 

Fig. 6. Placement of the sort example aggregates into the hierarchically 
structured case framework. 

gate. The description is made in terms of its role in both 
the refinement process and computation process. This de- 
scription is then used to index the case into a hierarchi- 
cally organized case-base. 

Since PM’s task is to acquire elementary programming 
knowledge, the overall organization of cases is chosen to 
reflect the way knowledge might be organized in a basic 
programming text. Specifically, PM uses a structure de- 
veloped by Booth in his text on algorithms and data struc- 
tures in Ada [3 11. This organization was selected because 
it supports an object-oriented approach and because its 
target language, Ada, is supported by the PM prototype. 

Fig. 6 presents a “slice” of Booth’s hierarchical struc- 
ture along with links to the sort example’s HAG. The slice 
highlights that part of the tree which is relevant to the 
insertion of knowledge present in the sort example. Dot- 
ted lines represent extensions that are not needed to de- 
scribe the acquisition of aggregates for the sort program. 

Aggregates are stored in the structure based on their 
role in stepwise refinement and their computational role 
in performing a given function. Each of these aggregate’s 
roles needs to be specified before the storage process can 
commence. The resultant description is represented as a 
frame with two parts: one part describes the role the ag- 
gregate played in the canonical refinement sequence from 
which it was taken; the other part describes its computa- 
tional functionality. 

The role played by an aggregate in the refinement pro- 
cess is expressed in terms of the data and control links 
between it and the other aggregates. There are two cate- 
gories of links: explicit links and implicit links. In the 
stepwise refinement process, an aggregate replaces a stub 

in the pseudocode program. That stub had certain implied 
control and data links between it and the prescribed code 
in which it was embedded. The prescribed portion of the 
replacement aggregate makes some of these dependencies 
explicit in terms of target code. These explicitly instan- 
tiated control and data dependencies are said to be acti- 
vated by the addition of the aggregates. The projected 
portion of the aggregate corresponds to implied depen- 
dencies that need to be resolved in future refinement steps. 
For example, the addition of code aggregate 7 into the 
current pseudocode provided by aggregate 8 makes the 
response of the program to a failed test explicit. Thus, 
aggregate 7 is explicitly tied to a failed branch. 

The functionality of an aggregate is described in terms 
of generalizations about its component segments. Based 
on its code structure each aggregate is categorized as a 
subtype of three basic classes of generalizations: filters, 
generators, and maps [31]. If an aggregate’s contents are 
composed of more than one generalization class the ag- 
gregate is given the category of the component class with 
highest priority. Maps are of highest priority followed by 
generators and filters. In the sort example, aggregate 8 is 
a filter while its child aggregates, 6 and 7, are generators. 
In fact, aggregate 6 performs both a filter and generator 
function and is thus classified as a generator. 

The generalization activity which produces information 
about an aggregate’s refinement and computation rules can 
be supported by a variety of symbolic learning ap- 
proaches. Several different machine learning techniques 
have been investigated as vehicles for producing compo- 
nents of the frame descriptions. These include version 
spaces, genetic algorithms [32], among others. 
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The result of the generalization process is the produc- 
tion of a frame description for each aggregate. The ag- 
gregates are then added to the hierarchy (see Fig. 6) in 
order of their functionality. Aggregates classified as maps 
are added first because the insertion process is bottom up 
and map functions are generally found in leaf nodes. Each 
node in the hierarchy is labeled by a frame which de- 
scribes the aggregate type that can be stored there. The 
frame structure, associated with a node, has the same for- 
mat to the ones generated for each aggregate. The aggre- 
gate is inserted in the collection association with the frame 
that most closely resembles it. In Fig. 6 the map aggre- 
gate is attached to the bubble sort “map” node. 

Other aggregates are added to the structure relative to 
the placement of the first aggregate. Since the generation 
invoked the map that defines the bubble sort activity, we 
move up the hierarchy along a path from that leaf node. 
Thus, the remaining aggregates are inserted at higher po- 
sitions in the hierarchy in reverse order of their refine- 
ment. In the sort example, aggregate 6 is added to the 
collection of cases associated with the exchange node. A 
piece of the frame for that node is used to label it here. 
That piece states that aggregates stored there must be 
“generators.” Likewise, to store the filter aggregate, we 
would move up the tree to the next node, sort. 

The result of this process is the storage of aggregates 
in positions that reflect both their position in the refine- 
ment sequence and their functional differences. The in- 
sertion of knowledge in the form of aggregates is done 
bottom up; the use of these aggregates to produce desired 
code could take place in a top down fashion. 

V. CONCLUSIONS 

The chunking process discussed in this paper is based 
in large part on empirical observations of programmers. 
Thus, the actual distribution of knowledge in the tree 
structure produced by PM may be used to assess the abil- 
ity of students to assimilate programming knowledge in 
terms of a particular set of programming examples. For 
example, if programs are not well-structured it may not 
be possible to successfully decompose them into indepen- 
dent aggregates. Therefore, the program, if it is to be 
stored at all, will be attached to a leaf node. If all the 
examples are of this type most of the information will be 
at the tree’s bottom level. Given that the above situation 
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