
646 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997

Establishing the Relevancy of the
Bookkeeping Libraries to the Functional

Testing of Computer Implementations
Stamatis Vassiliadis, Fellow, IEEE,

George Triantafyllos, and Walid Kobrosly, Member, IEEE

Abstract —In this paper, we address issues related to the definition of
“faults,” “errors,” and “failures” and their separability, and attribution to
the different development processes of computing systems. In
particular, we deal with historical databases, which presumably contain
certain data (i.e., test failure data) and describe the methodology that
can be used to analyze the database and obtain the pertinent
information. The validation method may be of particular importance,
especially when information from the database needs to be
extrapolated for a purpose other than the one for which the database
was developed. Our methodology was used to evaluate the historical
data collected during the development of the IBM 4381 and 9370
family of computers, and to extrapolate the faults found during the
function testing.

Index Terms —Functional testing, errors, bugs, faults, software
reliability, error data, data accuracy, error prediction models.

———————— ✦ ————————

1 INTRODUCTION

FUNCTIONAL testing, defined here as the process of evaluating the
functions of computer systems and software products to assure that
they meet prespecified requirements, constitutes an integral and im-
portant process in the development of computer systems and software
products. Functional testing, as most of the processes involved with
the computing systems, has a number of diverse aspects. The major
contribution to the diverse aspects of functional testing is what is
commonly referred to as a “bug,” which may be discovered, cor-
rected, and attributed to different processes of the development of a
system. For example, a “bug” observed during the execution of a pro-
gram can be attributed to software, hardware, logic design, technol-
ogy, manufacturing, etc., and depending on the process involved
different aspects of the testing may be uncovered. Due to the plurality
of the processes involved with functional testing, in most cases, re-
searchers consider issues related to some processes and exclude oth-
ers. For instance, a researcher may consider issues concerning the
functional testing of the processes involving logic design and mi-
crocode development, and exclude other processes involving technol-
ogy, power supply, packaging, cooling, software, manufacturing, etc.
At no exception, our studies in the past five years have been concen-
trated in the general topic of “error” prediction models, see for exam-
ple [1], and their relation to the “bugs” (also referred to commonly as
“errors,” “defects,” “faults,” etc.) to be experienced by a development
team during the design and implementation of a computer system. In
particular, we were concerned with two development teams, namely,
the logic design and microcode development teams.

One important issue, often neglected and not discussed in the
literature, is the choice and validation of the data used in the re-
search of functional testing. In this paper, we discuss the proce-

dure we used to choose and validate the “error” data in our stud-
ies. As it will become obvious from the presentation to follow, the
choice, extrapolation, and validation of data (even though neces-
sary) was more involved than originally anticipated providing a
partial justification why most researchers accept the data “as is.”
In any case, we hope that our experience provides some general
guidelines for procedures in the maintaining and using the “error”
data and precise definitions that allow at least a uniform treatment
of “error” data in the future.

Before we proceeded in the investigation of the different as-
pects of functional testing in the development of computing sys-
tems, we considered of extreme importance to provide the answer
to the following questions:

• What constitutes an “error”?
• Can an “error” be attributed to the different development

processes?
• Can the “errors” be separated to the different development

processes?
• Which historical data sources contained information perti-

nent to the aspects of interest regarding functional testing?
• How can the “errors” be attributed to the functional testing,

after the source of historical data is established?
• Is the “error” data extrapolated from a historical source ac-

curate and representative of the aspects of the process under
consideration?

The answers to the previous questions for our application will
be found in the sections to follow. The organization of the discus-
sion is as follows: First, we describe what we considered to be an
error, fault and failure, and discuss the separability of errors. Con-
sequently, we discuss issues regarding the historical data sources
and the data accuracy. Finally, we describe a database, denoted as
the library subsystem, that we considered as the most appropriate
for our research, the extraction of the “error” data using a fuzzy
logic question answering system [2], and finally we establish a
confidence level for the accuracy of the error data.

2 ERRORS AND SEPARABILITY OF ERRORS

In this paper, we adopt the predominantly accepted definition for
failure, fault, and error proposed by Avizienis and Laprie [3],
which indicates that:

“A system failure occurs when the delivered service deviates
from the specified service, where the service specified is an
agreed description of the expected service. The failure occurred
because the system was erroneous: An error is that part of the
system state which is liable to lead to failure. The cause-in its
phenomenological sense-of an error is a fault. An error is thus
the manifestation of a fault in the system, and a failure is the ef-
fect of an error on the service.”

During the development of a computer system, when a devia-
tion from the expected service (a failure) is detected, the state of
the system (the error) causing the failure is determined and an
attempt is made to correct the cause/causes (faults) leading to the
unwanted system state. Given that there are a number of processes
associated with the development of a computer system, deter-
mining which process is responsible for a fault constitutes a diffi-
culty that needs to be overcome in order to resolve the failure (e.g.,
an architectural deviation in a computer system implementation
may be the result of a fault introduced in manufacturing, logic
design, circuit design, etc., and the resolution of failure requires
establishing the “responsible” development process). To be able to
attribute faults to the different development processes, it is re-
quired to be able to categorize the different kinds of faults, and to
separate and attribute the faults to the different processes. Avi-

1041-4347/97/$10.00 © 1997 IEEE

————————————————

• S. Vassiliadis is with the Department of Electrical Engineering,
Delft University of Technology (T.U. Delft), 2600 EA Delft,
The Netherlands. E-mail: stamatis@duteca.et.tudelft.nl.

• G. Triantafyllos is with Technology Integration, Products Development
Division, Intrasoft S.A., Athens, Greece.

• W. Kobrosly is with the AWS Division, IBM Corporation,
Austin, TX 78758.

Manuscript received 7 Dec. 1994.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104396.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997 647

zienis and Laprie [3] categorized the logic circuitry faults, the sub-
ject of our general interest, into:

1) Physical faults due to external influences (e.g., power sup-
ply fluctuations, electromagnetic interference, radiation)
and common weaknesses in the manufacturing process.

2) Design faults introduced by human mistakes and faulty de-
sign tools, as well as by ambiguities and errors in the initial
specifications.

Clearly, the categorization of faults alone is not enough to serve
the purpose of collecting data for the development of a model.
Separation and attribution of faults is important as clarified by the
following scenario: Assume that we are interested in the logic de-
sign process, thus we should be able to separate which faults are
associated with physical faults as they are not part of the design
faults. Furthermore, we should be able to distinguish logic design
faults from faults associated with the tools for the same reasons. In
other words, we should be able to distinguish which faults have
been introduced by the logic design team, and which were not.

The separation of faults can be achieved by considering the
following:

• The group of people participating in a development effort of
a system is subdivided into teams.

• Each team is responsible for a particular process.
• Teams communicate with predefined specifications.
• The underlined assumption among teams is that predefined

specifications will be met.
• When a failure (resulting in the detection of an erroneous

state, i.e., an error) has been discovered, the team responsi-
ble for the process that presented the failure will correct the
fault/faults.

The essence of the previous statements is that an error/fault
can be associated with a particular team as it requires the inter-
vention of the team for its resolution. The suggestion here is that
the responsibilities of a team is a key contributor in separating and
attributing errors/faults, and that the intervention of a particular
team to resolve an error/fault can be used to separate and count
the errors/faults. Clearly, errors that require the intervention of
multiple teams could (and in our opinion should) be considered
the manifestation of multiple faults.

2.1 The Dilemma of the Error Data
In order to develop an “error” prediction model for computer
implementations, it is often required to conduct research based on
historical data (needed to derive and validate the model). Two
sources of databases containing historical data, denoted here as
“error tracking” libraries and “bookkeeping” libraries, have been
used in the past by researchers for the development of “error”
prediction models in software and microcode processes, see for
example [4], [5], [6]. The first source, denoted here as “error
tracking” libraries, are usually established during the integration
of a system to report defects and track their resolution. The second
source, which we will refer to as the “bookkeeping” libraries are
usually created in the beginning of the development cycle to man-
age the revision of the code and to maintain information regarding
the development processes. The dilemma regarding which library
to use is not so much which library is the most representative of
the development process, both are considered representative by a
number of researchers, but rather which of the two libraries con-
tains the most accurate data. Such a dilemma is seldom discussed
in the literature as either researchers have available just one of the
libraries, or it is assumed that there are no accuracy problems.

The “error” tracking libraries are usually established during the
integration of a system to report defects and track their resolution,
and library entries are established as follows: When a deviation of a
prespecified behavior has been established, an entry is created. Such

an entry usually corresponds to the report of an observed deviation
(i.e., the entry represents the description of a failure), or the descrip-
tion (in a number of cases the partial description) of the machine
state that leads to a failure (i.e., the description of an error). The
bookkeeping libraries are usually created to maintain information
regarding the development processes and they are initiated in the
beginning of the development cycle. Library entries are established,
in addition to reasons unrelated to functional testing, for the correc-
tion of faults in the form of changes (e.g., adding newly developed
code, updating comments after code is developed, updating code
containing the code itself, etc.). Consequently, faults can be ac-
counted by examining the number of changes.

Clearly, the two databases are different and they may face dif-
ferent types of accuracy and representation problems. In discuss-
ing the accuracy of the data, we begin by considering a common
accuracy problem: An error is the part of the system state which is
liable to lead to a failure, suggesting that experiencing no failures
does not imply the absence of errors, and thus the absence of
faults. This introduces the first inaccuracy in developing models
based on historical data, as those data reflect only the discovered
errors, an approximation of the total number of errors and faults
existing in a product. Second, the libraries available today may not
take into account the severity of the errors/faults, an important
parameter in scheduling the development, because they attribute
the same weight to all library entries.

Regarding the “error tracking” libraries, multiple failures may
correspond to a single fault but logged multiple times in the li-
braries (the opposite also holds true). Also, the error keeping be-
gins usually long after the initial design and entry of components,
implying inapplicability to the entire development process. Addi-
tionally, in instances it becomes a means for communication
among groups rather than a means of future studies to understand
the development process. As a formal process, there may be a re-
luctance of different groups to report errors and rather rely on
private communications. The implications here is that the libraries
partially reflect the development of a system and in instances they
may contain misleading data. Furthermore, on occasion, some
individuals, primarily due to misunderstanding, may report non-
existing errors. An example of this is the case in which individuals
misinterpret the output of test cases and confuse tool errors for
design errors. Additionally, reporting an error in a unit that ap-
pears to belong to the responsibilities of a certain group may not
be true and thus a concatenation of error entries may occur until
the faulty unit is established resulting in multiple entries of an
error. This may not always be trackable, depending on the set up
of the library, resulting in multiple counting of the same error.

The previously discussed problems are not encountered in the
bookkeeping libraries. The advantages and problems with this
type of libraries rely on the following:

• Bookkeeping libraries are developed and contain informa-
tion that is necessary for the development (e.g., provide
the security and structure to the process of building the
hardware design and microcode by controlling the access
to the data files, and maintaining the most current copies
of data files).

• Entries always correspond to the faults as the correction of
faults require changes and changes are reported as entries
and counted as faults (this clearly implies one change one
fault not a necessarily true conclusion) and as most other li-
braries it does not account for the severity of faults.

• The bookkeeping libraries begin early in the development
process, thus they can be considered as representative of the
entire development cycle.

• It is more difficult, if not entirely impossible, to confuse de-
sign with other errors as the observed changes are part of
what is used as the design of the system.

648 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997

• There is no multiple logging of failures or faults.
• Given that a failure may be of the consequence of multiple

faults, it is more representative of the “bugs” encountered
during the development of a product.

From what has been discussed so far, we concluded that book-
keeping libraries offer a better approximation of history regarding
the testing of computer systems. There is, however, a major draw-
back: Bookkeeping libraries are not designed to keep track of cor-
rections of faults in a system. Thus, it may be difficult to extract
the entries of libraries reporting changes in the design. The major
challenge with this type of library, and at no exception, the librar-
ies at our disposition, is to be able to answer the following ques-
tion: Can the number of changes be extrapolated with an accept-
able approximation? Before proceeding to answer this question,
we discuss the library subsystems, as the existence of this question
and its answer is entirely dependent on the library set up.

3 COLLECTION OF THE MICROCODE AND HARDWARE
LIBRARY DATA

Three databases are considered in this study created during the
microcode and hardware development of the IBM 4381 and 9370
computer systems:

1) The microcode development bookkeeping library for the
IBM 4381 computer systems

2) The hardware development bookkeeping library for the
IBM 4381 computer systems

3) The microcode development bookkeeping library for the
IBM 9370 computer systems

The microcode libraries of the IBM 4381 and 9370 computer
systems, which are similar in structure, are accessed by a set of
commands that allow a user to add a data file to the library (PUT
command), to retrieve an existing file, (GET command), and to
perform other type of maintenance to the library such as compile
and release the code. A sequence of GET/PUT commands is usu-
ally used to retrieve, modify, and store a file back in the library.
The libraries described here allow other commands as well and

maintain additional information not pertinent to our discussion.
All transactions to the library are automatically recorded by the
system. A comment field of 40 characters accompanying a GET or
PUT command was used to allow the user to describe the reason
for issuing the command. The comments are filled by the develop-
ers to document the reasons for accessing a data file from the li-
brary and placing it back. This field is considered to be a key factor
in assessing the relevancy of a library access to functional changes,
since there was no other means of explicitly stating whether
the entry pertains to functional changes. In addition to the above
information, a library record contains a STATE field indicating
the state of readiness of a data file with respect to the four test
phases, namely,

• component test,
• unit test,
• subsystem test,
• and system test.

During the analysis of the microcode bookkeeping libraries,
each record was classified into one of three categories, namely
Irrelevant, Definite-Change and Possible-Change. The records in
the Irrelevant category include all “routine” entries, such as
“GET,” “Promotes,” and “History.” The records in the Definite-
Change category include the PUT entries which were promoted
from the component test to the system test phase in three days, or
less. This assumption is based on the notion that the new code was
submitted to the library in an expedient manner as a mean to fix or
patch an outstanding problem that was found during the system
test phase. This category also includes the PUTs which are identi-
fied as patches (i.e., modifications to object or load files). The rec-
ords in the Possible-Change category include all PUT entries that
are not included in the Definite-Change and Irrelevant categories.
This is based on the assumption that a PUT possibly signifies a
change in the design because it is applied to resubmit an existing
data file back into the library after it was retrieved by a GET. Table 1
shows the breakdown of the IBM 4381 microcode and hardware,
and the IBM 9370 microcode PUTs into possible and definite changes.

TABLE 1
BREAKDOWN OF THE IBM 4381 AND THE IBM 9370 LIBRARIES

Library
Total
Records

Total
PUT
Records

Possible
and
Definite
Changes

Definite
Changes

Possible
Changes

4381
Hardware

 17,811 7,874 7,874 228 7,646

4381
Microcode

136,016 29,955 27,473 3,632 23,841

9370
Microcode

475,909 85,572 65,160 4,662 60,498

Total
Records

The total number of records in a library

Total-
PUTs

All PUT records in a library (for the IBM 4381 hardware library;
this number includes only the Development PUTs)

Possible +
Definite
Changes

All Possible and Definite Changes

Definite
Changes

The PUT records which were promoted from the component
test to the system test phase in three days or less, and the
PUTs, which are identified as patches

Possible
Changes

All PUT records not included in the Irrelevant records, and
Definite Change Categories

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997 649

4 ANALYSIS OF THE BOOKKEEPING LIBRARIES BY THE
QUESTION ANSWERING SYSTEM

Table 1 indicates that the majority of the database records belong
to the Possible-Change category. Given that the database is written
by humans, in order to determine if the possible changes are in-
deed functional changes or routine accesses, we developed a data-
base question answering system based on fuzzy logic described in
[2]. The question answering system analyzes the comments writ-
ten in a spoken language and determines whether the comments
are related to a particular subject of interest. The system is de-
picted in Fig. 1.

In Fig. 1, the “Unique Word Generator” generates an alphabeti-
cally sorted list of all unique words contained in the comments of
the PUTs in the Possible change category of the IBM 4381 mi-
crocode and hardware libraries. The “Word Processor” requires
the manual processing of the words and the automatic examina-
tion of the database. During this manual process, the list of the
unique words generated by the “Unique Word Generator” is ana-
lyzed in order to extract and place potential “relevant” words to
functional testing in a table which is referred to as the replace ta-
ble. We considered relevant words the words that are likely to be
used in describing a functional change, such as “error,” “fix,”
“bug,” “change.” The replace table contains two columns, the first
contains the words as they appear in the database, and the second
contains the synonyms corresponding to the words that appeared
in the first column. All words in a database that match the first
column of the replace table are replaced by the words on the sec-
ond column, and all other words are deleted. As a result of this
analysis, new “comment records” are generated and a second da-
tabase is established. This database, which is referred to as the
modified database, contains the words that are only present in the
replace table. Using the Unique Word Generator and operating on
the modified database, the list of all unique words in the modified

database is generated, and it is referred to as the relevant word
table. Subsequently, each word of the relevant word table is as-
signed a confidence value; a value between zero and one, which
represents the degree of likelihood that a relevant word is used to
describe an action associated with functional testing. Assigning a
confidence value to a word may be achieved in many ways in-
cluding surveys of participants in the creation of the database
which was the case in our investigation.

Several hardware and microcode developers were asked to at-
tribute a confidence value to each word in the word table which
reflected his/her perception of the usage of that word, when used
in a comment, in describing a functional error, a bug, or a change.
Thus, for any given word, a multiplicity of values were collected
corresponding to the opinion of people. To construct the member-
ship grades for each word in the relevant word table from the re-
sponses of the survey participants, an algorithm was needed to
determine the most expected value from the scaled values. This
can be achieved by establishing the fuzzy expected value for each
word in the relevant word table (FEV Processor) [7]. We consid-
ered a number of algorithms, including the FEV [8] and the WFEV
[9], and developed a new algorithm, denoted as the Clustering
Fuzzy Expected Value (CFEV), shown to have a superior perform-
ance for this type of application [10].

Using the clustering algorithm, the elements of a fuzzy set are
grouped into separate clusters, and the population sizes and their
mean are determined for each individual cluster. Then, the mean
of the entire fuzzy set is evaluated and adjusted based on the
population sizes and the mean of the formed clusters to form the
CFEV value of each word in the relevant word list. A detailed
description of the CFEV can be found in [10]. The CFEV algorithm
computes the fuzzy expected value by:

CFEV W
N
N

W WA
i

Ai A
i

m

= +
�
��
�
��

-
=

å
2

1

2 7 (1)

Fig. 1. The question answering system.

650 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997

In (1), WA is the mean of all responses to a particular word, N is
the number of responses, m is the number of clusters produced
from the data for each word, Ni is the number of responses in a
cluster i and WAi is the mean of cluster i.

Based on the CFEV value of each word in the relevant word
lists, the confidence of the comments in the libraries are computed
based on [2] as follows: The “Fuzzy Evaluator” operates by ana-
lyzing each comment within the “modified database” in conjunc-
tion with the list of words in the “relevant word table” and the
degree of confidence associated with each word:

1) For a comment with no relevant words, a confidence of zero
is assigned to the entire record.

2) For a comment with one relevant word, the CFEV value of
this word is assigned to the entire record.

3) For a comment with two relevant words, the confidence value
of the entire record was based on the following function

µ A i j k w w l
w w

ce i j
4 9 =

+
− −

1

1
2()

 (2)

In (2), mA(wi, wj) is the membership function attributing a
degree of confidence with regards to A (functional testing)
for a comment, where, wi and wj are the confidence values
associated with two individual words i and j appearing in
the same comment, k is a constant greater than 0, l is a con-
stant between 0.00 and 1.00 indicating that words r that
having confidence value wr > l are considered to favorably
describe the subject of interest, while words having wr < l
are considered to adversely describe the subject of interest,
and words with wr = l are considered to be “neutral”. The
parameter c is defined as

c =
1 - m

m
,

where

m =
w wi j+

2

(i.e., the average confidence of the two words i and j).
4) For a comment with more than two relevant words, the con-

fidence value of the entire record may be computed by:

Fi
n

A i iw w
=

-

+1
1

1m ,2 7 (3)

The operator F, for any given i, applies (2) with possible in-
clusion. The inputs to (2) are the confidence values attrib-
uted to words i and i + 1, and the output value of F for all
the is between 1 and including n − 1 is a set of confidence
values. Consequently, a confidence value is attributed to a
comment by applying the following algorithm:

• Step 1: If there exists at least one element in the set pro-
duced by F that exceeds a given threshold value r0 and
the average of all pairs is <l, then the confidence value of
the comment is assumed to be the MAX confidence value
present in the set.

• Step 2: If step 1 does not hold true, and if there exists at
least one element in the set produced by F, less than a
given threshold value, r1 and the average of all pairs is
<l, then the confidence value of the comment is assumed
to be the MIN confidence value present in the set.

• Step 3: If neither step 1 nor step 2 holds true, then the
confidence value of a comment is assumed to be equal to
the average of the confidences.

The detailed explanation of the above algorithm can be found
in [2].

5 ESTABLISHING THE ACCURACY OF THE DATA

The Question Answering System [2] was invoked with the thresh-
old values r0 = 0.66 and r1 = 0.33, the k and l constants k = 7.00 and
l = 0.50, and the d and s clustering parameters d = 0.10 and s = 0.20.
The comments relevant to functional testing were extracted from
each bookkeeping library. The outcome of the analysis of the
bookkeeping libraries is shown in Table 2.

TABLE 2
ANALYSIS OF THE IBM 4381 AND THE IBM 9370 LIBRARIES

Library
Percentage of
Tool Changes

Percentage of Tool
+ Definite Changes

IBM 4381 Hardware 38 40

IBM 4381 Microcode 48 55

IBM 9370 Microcode 25 31

Percentage of Tool
Changes

The percentage of records assessed as
related to functional changes based on
the number of Possible changes.

Percentage of Tool
+ Definite Changes

The percentage of Tool and Definite
changes based on the number of Possi-
ble and Definite changes.

There are three validations to be made regarding the accuracy
of the number of changes, considered in this presentation as faults,
namely:

1) The accuracy of the tool.
2) The accuracy of the tools in the library entries considered to

report possible changes.
3) The overall accuracy of the data.

To answer the questions, it is of interest to operate on repre-
sentative data and measure the accuracy by measuring the tools’
responses with the expert human assessments. While human as-
sessments can be subjective in the absence of better library systems
and the potential inability of creating “objective” entries in future
libraries (library entries will always reflect the opinion of the
person determining the “meaning” of what constitutes an entry to
the library before an entry is established) they represent the best
approximation.

In attempting to answer the above questions without resorting
in manual evaluation of the entire databases, an upper bound of
comments to be evaluated manually by a human expert in the field
had to be established. With the man-power and time at disposi-
tion, we decided to evaluate no more than 10,000 comments. In
determining the experimental databases, we proceeded as follows:
First, we extracted the profiles, in terms of number of words, of all
the databases in the library, before and after the application of the
tool. It was immediately observed that after the application of the
tool the comments with zero relevant words were as low as 19.45
percent, and as high as 39.99 percent (see Table 3). This discovery
provided a complication in the composition of the experimental
databases. Given that, the percentages indicate that as much as
40 percent of the entries have been considered to be routine ac-
cesses (i.e., they have zero relevant words) by the tool, it was im-
perative to guarantee that the tool was highly successful in ex-
cluding these comments imposing the consideration of more com-
ments containing zero relevant words than initially anticipated.

The previous discussion was incorporated in the three data-
bases (DB1, DB2, and DB3) with their composition described in
Table 4. The three databases, DB1, DB2, and DB3, were extrapolated
from the IBM 4381 hardware and microcode, and the IBM 9370 mi-
crocode Possible Changes, respectively. We selected the entries ran-
domly and made sure the entries appeared only once. The characteris-
tics of the databases are described in Table 5. A number of things
should be noted from the characteristics of the databases, namely:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997 651

• We considered almost half the comments (45.12 percent) of
the IBM 4381 hardware.

• We considered more than one fifth comments (22.02 per-
cent) of the IBM 4381 microcode.

• We considered only 2.15 percent of the IBM 9370 microcode.
• Clearly, the experimental database extrapolated from the

IBM 9370 microcode as indicated earlier can be argued to be
nonrepresentative.

• Even though the composition of the databases did not re-
flect the actual characteristics, we have evaluated almost
half the comments in the IBM 4381 hardware and more than
one over five of the IBM 4381 microcode suggesting that if
the tool was close to the human evaluation, then the confi-
dence associated with the success of the tool should be high.

• The composition of DB1 and DB2 (especially DB1), reported
in Table 6, suggests that we have evaluated more than satis-
factory comments with zero relevant words (we considered
71.72 percent for DB1 and 48.09 percent for DB2 of the

comments with no relevant words in the entire IBM 4381
hardware and microcode databases). Furthermore, for at
least DB1, we have operated on substantial overall percent-
ages of all the comments (Table 6). For DB1, we considered
for examination 33.82 percent of the overall comments left in
the entire IBM 4381 hardware database after the examina-
tion containing one relevant word, 39.10 percent containing
two relevant words, and 44.12 percent containing three or
more relevant words.

The previous discussion suggests that high degree of accuracies
in DB1 of the tool suggest a high degree of confidence in the final
outcome for at least in the IBM 4381 hardware database and po-
tentially by extension a high degree of confidence to the other
libraries shown similar accuracy of the tool. In conducting the
discussion of the experimental databases, it should be noted that
we were interested in the overall accuracy regarding the closeness
of the evaluation to the human evaluation. In other words, we
wanted to evaluate the percentage of records that correspond to

TABLE 3
FREQUENCIES OF RELEVANT WORDS

Number of Relevant
Words in a Comment

IBM 4381 Hardware Possible
PUTs (7,646 Records)
Percentage of Relevant Words

IBM 4381 Microcode Possible
PUTs (23,841 Records)
Percentage of Relevant Words

IBM 9370 Microcode Possible
PUTs (60,498 Records)
Percentage of Relevant Words

0 25.53 19.45 39.99

1 48.34 41.34 39.93

2 21.24 27.50 15.07

3 4.34 9.40 4.17

4 0.54 2.09 0.66

5 0.01 0.18 0.15

6 0.00 0.04 0.03

TABLE 4
NUMBER OF RELEVANT WORDS IN THE EXPERIMENTAL DATABASES

Database

Zero
Relevant
Words

One
Relevant
Word

Two
Relevant
Words

> Two
Relevant
Words Total

Possible
Changes

 DB1 1,400 1,250 635 165 3,450 7,646

 DB2 2,230 1,650 930 440 5,250 23,841

 DB3 505 560 180 55 1,300 60,498

TABLE 5
PERCENTAGES OF RELEVANT WORDS IN THE EXPERIMENTAL DATABASES

Database

Percentage of
Zero Relevant
Words

Percentage of
One Relevant
Word

Percentage of
Two Relevant
Words

Percentage of
> Two Relevant
Words

Percentage
of Possible
Changes

 DB1 40.58 36.23 18.41 4.78 45.12

 DB2 42.47 31.43 17.72 8.38 22.02

 DB3 38.85 43.08 13.84 4.23 2.15

TABLE 6
FREQUENCIES OF RELEVANT WORDS BASED ON ALL THE POSSIBLE CHANGES

Database

Percentage of
Zero Relevant
Words

Percentage of
One Relevant
Word

Percentage of
Two Relevant
Words

Percentage of
> Two Relevant
Words

Percentage
of Possible
Changes

DB1 71.72 33.82 39.10 44.12 45.12

DB2 48.09 16.74 14.18 15.76 22.02

DB3 2.09 2.32 1.97 1.81 2.15

652 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997

functional changes versus the percentage of records that did not,
and to evaluate the closeness of the percentages between the tool
and the manual evaluation. To evaluate the tool accuracy, it is
necessary to first evaluate the tool error and consequently use such
an error to represent the disagreement between the manual
evaluation and the tool and produce the agreement between the
two evaluations which constitutes the tool accuracy. The tool accu-
racy can be found in the first row of Table 7, which was compiled
to include the following as tool errors:

• The tool is in error when it includes comments that are not
considered as functional changes by the manual evaluation.

• The tool is in error when it excludes comments that are con-
sidered by the manual evaluation as functional changes.

The findings indicate that the agreement between the tool and
the manual evaluation is as low as 95.70 percent and as high as
96.09 percent (for the three experimental databases, DB1, DB2, and
DB3). This indicates that the tool is very accurate in its decisions to
separate the database entries in relevant and irrelevant to func-
tional testing regions. Finally, it is of interest to identify if a data-
base is pertinent to the functional testing by establishing the per-
centage of pertinent comments to the functional testing. The sec-
ond and third row of Table 7 report such percentages for the three
experimental databases (DB1, DB2, and DB3) for functional
changes computed for the tool (second row) and the manual
evaluation (third row). The fourth row reports the absolute value
of the deviation between the tool and the manual evaluation. The
findings indicate that the tool and the manual evaluation are very
close among each others indicating that the tool can be used to
establish the relevance of a database to the functional testing.
Given that the excluded comments were a concern, in Table 7
(columns DB1.0, DB2.0, and DB3.0) we also report the result of the
evaluation for the comments containing zero relevant words.
Given that the lowest percentage is 97.79 percent, it can be sug-
gested that the tool when it considers entries as routine accesses to
the database, then there is a high degree of certainty that they are
indeed routine accesses. In conclusion, the experimentation
strongly suggests that the tool will operate more than satisfactory.
We note here that we performed additional experimentations re-
garding the actual database composition and overall validation.
The results are in accordance with what is reported here. Inter-
ested readers are referred to [11].

6 CONCLUSION

In this paper, we first identified a number of issues related to the
functional testing. In particular, we addressed the issues related to
the definition of “faults,” “errors,” and “failures” and their sepa-
rability to the various development processes, the dilemma of the
research data and the choice of the database that provides the
most confidence in the reflection of the entire development cycle.
Consequently, we discussed the assessment of the IBM 4381

microcode and hardware and the IBM 9370 history libraries,
two databases containing more than half a million records, and
established their relevancy to the study of functional changes by
applying a fuzzy reasoning database question answering system
[2]. As a result of this assessment, it was concluded that the li-
braries are pertinent to functional testing based on the percentages
of the relevant records in the IBM 4381 microcode and hardware
and the 9370 microcode bookkeeping libraries and the error data
used for example in [1] were extracted. While the confidence asso-
ciated with the tool and the overall data could be considered to be
high, we caution the reader to consider the final results of our
analysis as an approximation of the error data. As a final note, we
indicate that in the absence of better databases and a precise com-
mon methodology, approximations is what can be done today in
the arena of error data. We hope that the investigation reported in
this paper will help in the discussion for future improvements,
related to the maintaining of databases, and provide grounds for
discussion to achieve a common methodology in maintaining
commonly acceptable good error data so that extensive and com-
plicated extrapolations and validations of approximately good
error data is avoided.

REFERENCES
[1] G. Triantafyllos, S. Vassiliadis, and W. Kobrosly, “On the Predic-

tion of Computer Implementation Faults via Static Error Predic-
tion Models,” J. Systems and Software, pp. 129–142, Feb. 1995.

[2] S. Vassiliadis, G. Triantafyllos, and W. Kobrosly, “A Fuzzy Rea-
soning Database Question Answering System,” IEEE Trans.
Knowledge and Data Eng., pp. 868–882, Dec. 1994.

[3] A. Avizienis and J. Laprie, “Dependable Computing: From Con-
cepts to Design Diversity,” Proc. IEEE, vol. 74, no. 5, pp. 629–638,
May 1986.

[4] V.R. Basili and B.T. Perricone, “Software Errors and Complexity:
An Empirical Investigation,” Comm. ACM, pp. 42–52, Jan. 1984.

[5] T.J. Yu, V.Y. Shen, and H.E. Dunsmore, “An Analysis of Several
Software Defect Models,” IEEE Trans. Software Eng., vol. 14, no. 9,
pp. 1,261–1,269, Sept. 1988.

[6] D. Potier, J.L. Albin, R. Ferreol, and A. Bilodeau, “Experiments
with Computer Software Complexity and Reliability,” Proc. Sixth
Int’l Conf. Software Eng., pp. 94–103, 1982.

[7] L. Hall, S. Szabo, and A. Kandel, “On the Derivation of Member-
ships for Fuzzy Sets in Expert Systems,” Information Sciences,
vol. 40, pp. 39–52, 1986.

[8] A. Kandel, Fuzzy Math. Techniques with Applications. Addison-
Wesley, pp. 72–101, 1986.

[9] M. Friedman, M. Schneider, and A. Kandel, “The Use of Weigh-
ted Fuzzy Expected Value (wfev) in Fuzzy Expert Systems,”
Fuzzy Sets and Systems, vol. 31, pp. 37–45, May 1989.

[10] S. Vassiliadis, G. Triantafyllos, and G.G. Pechanek, “A Method for
Computing the Most Typical Fuzzy Expected Value,” Proc. Third
IEEE Conf. Fuzzy Systems, pp. 2,040–2,045, June 1994.

[11] S. Vassiliadis, G. Triantafyllos, and W. Kobrosly, “Establishing
the Relevancy of the Bookkeeping Libraries to the Functional
Testing of Computer Implementations,” IBM Technical Report
TR 01.C728, Endicott, N.Y., p. 37, Apr. 1993.

TABLE 7
TOOL VERSUS MANUAL EVALUATION (IN PERCENTAGES)

DB1 DB2 DB3 DB1.0 DB2.0 DB3.0

Tool Accuracy 96.09 95.70 95.86 97.79 99.37 99.41

Tool Changes 31.51 35.45 23.30 0.00 0.00 0.00

Manual Changes 30.55 35.51 21.82 2.21 0.63 0.59

Tool - Manual 0.96 0.06 1.48 2.21 0.63 0.59

