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Abstract—When a multidatabase system contains textual database systems (i.e., information retrieval systems), queries against
the global schema of the multidatabase system may contain a new type of joins—joins between attributes of textual type. Three
algorithms for processing such a type of joins are presented and their I/O costs are analyzed in this paper. Since such a type of joins
often involves document collections of very large size, it is very important to find efficient algorithms to process them. The three
algorithms differ on whether the documents themselves or the inverted files on the documents are used to process the join. Our
analysis and the simulation results indicate that the relative performance of these algorithms depends on the input document
collections, system characteristics, and the input query. For each algorithm, the type of input document collections with which the
algorithm is likely to perform well is identified. An integrated algorithm that automatically selects the best algorithm to use is also
proposed.

Index Terms—Query processing, textual database, information retrieval, join algorithm, multidatabase.
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1 INTRODUCTION

ESEARCHES in multidatabase system have been intensified
in recent years [4], [5], [9], [13], [12], [16], [19]. In this

paper, we consider a multidatabase system that contains
both local systems that manage structured data (e.g., rela-
tional DBSs) and local systems that manage unstructured
data (e.g., information retrieval (IR) systems for handling
text).

The global schema of a multidatabase system, integrated
from local database schemas, provides an overall picture of
all sharable data in the local systems. The global query lan-
guage can be used to specify queries against the global
schema, which will be referred to as global queries hereafter,
and to retrieve data represented by the global schema. For
example, if the global schema is in relational data model,
then SQL can be used as the global query language. Since
the multidatabase system considered in this paper contains
IR components and relational components, the global query
language must be capable of accommodating both struc-
tured data and unstructured data. An SQL-based query
language that can serve such a purpose has been proposed
in [1]. In this paper, we extend the features of this language
to specify our queries.

Because we have a database front-end, global users may
submit queries that contain joins between attributes of tex-
tual type. A motivating example is presented in Section 2. A
likely join comparator for textual attributes is SIMILAR_TO
that matches objects with similar textual contents based on
some similarity function. Since each textual object is essen-
tially a document, the join is to pair similar documents
among the two document collections corresponding to the
two textual attributes. Although other types of comparators
between textual attributes may exist, the SIMILAR_TO op-
erator is a key operator for textual data and, therefore, we
concentrate on this operator in this paper.

While processing joins between nontextual attributes has
been studied extensively, not much research has been re-
ported on processing joins between textual attributes in the
literature. In [6], the authors reported a case study on
automating the assignment of submitted papers to review-
ers. The reported study requires matching the abstract of
each submitted paper with a number of profiles of potential
reviewers. The problem is essentially to process a join be-
tween two textual attributes. Since the document collections
involved were small, efficient processing strategy of the join
was not their concern. Instead, the emphasis of that work
was on the accuracy of the automated match. A somewhat
related problem is the consecutive retrieval problem [7], [17],
which is to determine, for a given set of queries Q against a
set of records R, whether there exists an organization of the
records such that, for each query in Q, all relevant records
(loosely, similar records) can be stored in consecutive stor-
age locations. If we interpret Q and R as two document
collections, then the consecutive retrieval problem deals
with the storage aspect of efficient retrieval of relevant
documents from one collection for each document from
another collection. However, a major difference between
consecutive retrieval problem and the join processing
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problem is that the former assumes the knowledge of which
documents from R are relevant to each document in Q,
while the latter needs to find which documents from one
collection are most similar to each document from another
collection. Another related problem is the processing of a
set of queries against a document collection in batch. There
are several differences between this batch query problem
and the join problem:

1)�For the former, many statistics about the queries
which are important for query processing and opti-
mization such as the frequency of each term in the
queries are not available unless they are collected ex-
plicitly, which is unlikely since the batch may only
need to be processed once and it is unlikely to be cost
effective to collect these statistics.

2)�Special data structures commonly associated with a
document collection, such as an inverted file, are un-
likely to be available for the batch for the same reason
given above.

As we will see in this paper, the availability of inverted files
means the applicability of certain algorithms. The cluster-
ing problem in IR systems [14] requires finding, for each
document d, those documents similar to d in the same
document collection. This can be considered as a special
case of the join problem, as described here, when the two
document collections involving the join are identical.

A straightforward way exists for processing joins between
textual attributes in a multidatabase environment. This
method can be described as follows: Treat each document in
one collection as a query and process each such query against
the other collection independently to find the most similar
documents. However, this method is extremely expensive
since either all documents in one of the two collections are
searched or the inverted file of that collection is utilized once
for processing each document in the other collection. As an
example, consider the Smart system [3] developed at Cornell
University. The Smart system uses inverted file to process user
queries. If the collection whose documents are used as queries
has a large number of documents, then using the inverted file
of the other collection to process each query independently can
easily incur a cost which is several orders of magnitude higher
than that of a better join algorithm (see Section 6). Therefore, it
is very important to develop efficient algorithms for process-
ing joins between textual attributes. This paper has the fol-
lowing contributions:

1)�We present and analyze three algorithms for process-
ing joins between attributes of textual type.

2)�Cost functions based on the I/O cost for each of the
algorithms are provided.

3)�Simulation is done to compare the performance of the
proposed algorithms. Our investigation indicates that
no one algorithm is definitely better than all other al-
gorithms in all circumstances. In other words, each
algorithm has its unique value in different situations.

4)�We provide insight on the type of input document
collections with which each algorithm is likely to per-
form well. We further give an algorithm which de-
termines which one of the three algorithms should be
used for processing a text-join.

We are not aware of any similar study that has been re-
ported before.

The rest of this paper is organized as follows: A moti-
vating example is presented in Section 2. In Section 3, we
include the assumptions and notations that we need in this
paper. The three join algorithms are introduced in Section 4.
Cost analyses and comparisons of the three algorithms are
presented in Section 5. In Section 6, simulation is carried
out to further compare the proposed algorithms and to
suggest which algorithm to use for a particular situation.
An integrated algorithm that automatically selects the best
algorithm to use is also included in this section. We con-
clude our discussion in Section 7.

2 A MOTIVATING EXAMPLE

Assume that the following two global relations have been
obtained after schema integration: Applicants(SSN, Name,
Resume) and Positions(P#, Title, Job_descr), where relation
Applicants contains information of applicants for job posi-
tions in relation Positions, and Resume and Job_descr are of
type text. Consider the query to find, for each position, λ
applicants whose resumes are most similar to the position’s
description. This query can be expressed in extended SQL
as follows:

select P.P#, P.Title, A.SSN, A.Name
from Positions P, Applicants A
where A.Resume SIMILAR_TO(λ) P.Job_descr

The where-clause of the above query contains a join
on attributes of textual type. This type of joins does not
appear in traditional database systems. Note that “A.Resume
SIMILAR_TO(λ) P.Job_descr” and “P.Job_descr SIMILAR_
TO(λ) A.Resume” have different semantics. The former is to
find λ resumes for each job description, while the latter is to
find λ job descriptions for each resume. All job descriptions
will be listed as output by the former. However, a job de-
scription may not be listed in the output by the latter if it is
not among the λ most similar job descriptions to any resume.
Later, we will see that the asymmetry of the operator
SIMILAR_TO has some impact on the evaluation strategy.

There are some important differences between joins in
relational database systems and the join between two tex-
tual attributes. Consider the relational join R1.A θ R2.A,
where θ is a comparator such as = and >. Given a tuple t1
of R1 and a tuple t2 of R2, if t1[A] θ t2[A] is true, then we
immediately know that t1 and t2 satisfy the join. However,
for a given resume r and a given job description j, there is
no way for us to know immediately whether or not r
SIMILAR_TO(λ) j is true, since, to be sure that r is among
the λ resumes most similar to j, all resumes have to be con-
sidered. If we process the join by comparing each job de-
scription with all resumes, then, after a job description d is
compared with all resumes, the λ resumes most similar to d
can be identified and a partial result is produced. However,
if we process the join by comparing each resume with all
job descriptions, then, after a resume is compared with all
job descriptions, no partial result can be generated. In this
case, many intermediate results (i.e., similarity values be-
tween resumes and job descriptions) need to be maintained
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in the main memory. This observation indicates that com-
paring each job description with all resumes is a more natu-
ral way to process the above textual join.

Due to selection conditions on other attributes of the re-
lations that contain textual attributes, it is possible that only
a subset of the set of documents in a collection need to par-
ticipate in a join. For example, consider the query that is to
find, for each position whose title contains “Engineer,” •
applicants whose resumes are most similar to the position’s
description.

select P.P#, P.Title, A.SSN, A.Name
from Positions P, Applicants A
where P.Title like “%Engineer%” and A.Resume

SIMILAR_TO(λ) P.Job_descr

If selection P.Title like “%Engineer%” is evaluated first,
then only those job descriptions whose position title con-
tains “Engineer” need to participate in the join.

In this paper, we are interested in studying algorithms
that can be used to process the following query:

select R1.X1, R2.Y2
from R1, R2
where R1.C1 SIMILAR_TO(λ) R2.C2

where C1 and C2 are attributes representing two docu-
ment collections (collection 1 and collection 2, respec-
tively). Clearly, the join to be evaluated is of the form: “C1
SIMILAR_TO(λ) C2”. The impact of selections will also be
addressed.

3 ASSUMPTIONS AND NOTATIONS

Using the vector representation [14], each document can be
represented as a list of terms together with their number of
occurrences in the document. Each term is associated with a
weight indicating the importance of the term in the docu-
ment. Usually, terms are identified by numbers to save
space. We assume that each document consists of a list of
cells of the form (t#, w), called document-cell or d-cell,
where t# is a term number and w is the number of occur-
rences of the term t in the document. All d-cells in a docu-
ment are ordered in ascending term numbers. The size of
each d-cell is |t#| + |w| bytes, where |X| is the number of
bytes to contain X. In practice, |t#| = 3 and |w| = 2 is suf-
ficient. In a multidatabase environment, different numbers
may be used to represent the same term in different local IR
systems due to the local autonomy. Several methods may
be used to overcome this problem. One method is to use
actual terms rather than term numbers. The disadvantage is
that the size of the document collection will become much
larger. Another method is to establish a mapping between
the corresponding numbers identifying the same term.
Such a mapping structure, usually a table with two col-
umns, if not stored in the main memory, can substantially
degrade the performance. Assuming |t#| = 3, then ap-
proximately 150 pages, each of size 4KB, are needed for the
mapping structure to accommodate 100,000 distinct terms.
Since the total size of the mapping structure is less than
1MB, it is likely that the mapping structure can be held in
the memory. An attractive method is to have a standard
mapping from terms to term numbers and have all local IR

systems use the same mapping. Such a standard can be
very beneficial in improving the performance of the multi-
database system. It can save on communication costs (no
actual terms need to be transferred) and processing costs (it
is more efficient to compare numbers than to compare ac-
tual terms or no need to search the mapping table). To sim-
plify our presentation, we assume that the same number is
always used to represent the same term in all local IR sys-
tems. Note that this assumption can be simulated by always
keeping the mapping structure in the memory when differ-
ent numbers are used to represent the same term in differ-
ent local systems. In the remaining discussion, terms and
term numbers will be used interchangeably.

Let t1, t2, ..., tn be all the common terms between docu-

ments D1 and D2. Let u1, u2, ..., un and v1, v2, ..., vn be the
numbers of occurrences of these terms in D1 and D2, re-
spectively. The similarity between D1 and D2 can be de-

fined as u vi ii

n
*

=Í 1
. A more realistic similarity function is

to divide the similarity by the norms of the documents and
to incorporate the use of the inverse document frequency
weight [14], which assigns higher weights to terms which
occur in fewer documents. The normalization can be car-
ried out by precomputing the norms of the documents,
storing them and performing the divisions during the proc-
essing of the documents. The inverse document frequency
weight can be precomputed for each term and stored as
parts of the list heads in the inverted files. For the sake of
simplicity of presentation, we use the number of occur-
rences instead of weights.

For a given term t in a given document collection C, the
inverted file entry consists of a list of i-cells (short for in-
verted-file-cell) of the form (d#, w), where d# is a document
number and w is the number of occurrences of t in the
document with number d#. We assume that i-cells in each
inverted file entry are ordered in ascending document
numbers. The size of each i-cell is |d#| + |w|. i-cells and
d-cells have approximately the same size.

We use the following notations in our discussion:

 Ni—the number of documents in collection i, i = 1 or 2
  B—the size of the available memory buffer in pages
 Ti—the number of terms in collection i
Bti—the size of the B+tree for collection i in pages (assume

tightly packed, i.e., no space is left unused in each
page except possibly the last page)

  p—the probability that a term in collection C1 also appears
in collection C2

  q—the probability that a term in collection C2 also appears
in collection C1

  α—the cost ratio of a random I/O over a sequential I/O
  P—page size in bytes (4KB)
 Ki—the average number of terms in a document in collection i
  Ji—the average size of an inverted file entry on collection i

in pages (5 * (Ki * Ni)/(Ti * P))
  Ii—the size of the inverted file on collection i in pages (Ji * Ti,

assume tightly packed)
 Si—the average size of a document in collection i in pages

(5 * Ki/P)



480 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  VOL.  10,  NO.  3,  MAY/JUNE  1998

Di—the size of collection i in pages (Si * Ni, assume tightly
packed)

 Ii
t —the inverted file entry of term t on collection i

  λ—operator SIMILAR_TO(λ) is used
  δ—the fraction of the similarities that are nonzero

We assume that documents in each collection are stored
in consecutive storage locations. Therefore, when all docu-
ments in collection i are scanned in storage order, the total
number of pages read in will be Di, which is also the total
I/O cost. On the other hand, if documents in collection i are
read in one at a time in random order, and a document is
not kept in the memory after it is processed, then the total
number of pages read in will approximately be Ni * Si and
the total cost will approximately be Ni * Si * α, where X
denotes the ceiling of X and α is the cost ratio of a random
I/O over a sequential I/O due to the additional seek and
rotational delay of a random read. Similarly, we assume
that inverted file entries on each collection are stored in
consecutive storage locations in ascending term numbers
and typically Ji pages will be read in when an inverted file
entry is brought in the memory in random order.

Note that, for a given document collection, if document
numbers and term numbers have the same size, then its
total size is the same as the total size of its corresponding
inverted file.

In this paper, only I/O cost will be used to analyze and
compare different algorithms, as if we have a centralized
environment where I/O cost dominates CPU cost. Cost
analysis and comparisons for a distributed environment
will be conducted in the future.

4 ALGORITHMS

In this section, we present three algorithms for processing
joins on textual attributes. These algorithms will be analyzed
and compared in the next two sections. We assume the exis-
tence of the inverted file on all document collections.

Depending on how documents and/or inverted files are
used to evaluate a join, three basic algorithms can be con-
structed. The first algorithm is to use only documents to
process the join, the second algorithm is to use documents
from one collection and the inverted file from another col-
lection to evaluate the join, and the third algorithm uses
inverted files from both collections to do the same job. A
collection of documents can be represented by a document-
term matrix where the rows are the documents and the col-
umns are the terms or the inverted file entries of the terms.
Therefore, we name the first algorithm, the Horizontal-
Horizontal Nested Loop (HHNL); the second algorithm,
the Horizontal-Vertical Nested Loop (HVNL); and the
third, algorithm the Vertical-Vertical Merge (VVM).

4.1 Algorithm HHNL
A straightforward way for evaluating the join is to compare
each document in one collection with every document in the
other collection. Although simple, this method has several
attractive properties. First, if one or two of the collections can
be reduced by some selection conditions, only the remaining
documents need to be considered. Second, documents can
generally be read in sequentially resulting in sequential I/Os.

From the discussion in Section 2, we know that it is more
natural to process the join by comparing each document in
C2 with all documents in C1. That is, it is more natural to
use C2 as the outer collection and C1 as the inner collection
in the join evaluation. We call this order the forward order
and the reverse order the backward order. The backward or-
der can be more efficient if C1 is much smaller than C2. We
consider the forward order first.

We adopt the policy of letting the outer collection use as
much memory space as possible. The case that lets the inner
collection use as much memory space as possible is
equivalent to the backward order, which will be discussed
later. With this memory allocation policy, the algorithm
HHNL can be described as follows: After reading in the
next X documents of C2 into the main memory, for some
integer X to be determined, scan the documents in C1 and,
while a document in C1 is in the memory, compute the
similarity between this document and every document in
C2 that is currently in the memory. For each document d2 in
C2, keep track of only those documents in C1 which have
been processed against d2 and have the λ largest similarities
with d2.

More rigorously, with C2 as the outer collection, we need
to reserve the space to accommodate at least one document
in C1. That is, S1 pages of the memory need to be reserved
for C1. We also need to reserve the space to save the λ
similarities for each document in C2 currently in the mem-
ory. Assume that each similarity value occupies 4 bytes.
Then, the number of documents in C2 that can be held in
the memory buffer of size B can be estimated as: X = (B
− S1)/(S2 + 4λ/P), where P is the size of a page in bytes.

We now present the algorithm HHNL:

While (there are documents in C2 to be read in)
{If there are X1 = min{N2, X} or more unprocessed docu-

ments in C2 left
input the next X1 unprocessed documents in C2 into

the main memory;
Else input the remaining unprocessed documents in C2

into the main memory;
For each unprocessed d2 in C2 in the memory

For each document d1 in C1
{compute the similarity between d2 and d1;
If it is greater than the smallest of the λ largest

similarities computed so far for d2
{replace the smallest of the λ largest similarities

by the new similarity;
update the list of the documents in C1 to keep

track of those documents with the λ largest
similarities with d2;

}
}

}

If λ is large, then a heap structure can be used to find the
smallest of the λ largest similarities in the above algorithm.

We now consider the backward order. When C1 is used
as the outer collection to evaluate the join, C2 will be
scanned for each set of documents in C1 currently in the
memory. Let d1 be the first document in C1 read in the
memory. After C2 is scanned, the N2 similarities between d1
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and every document in C2 are computed. Since, for each
document in C2, we need to find the λ documents in C1
that are most similar to it, we need to keep track of the λ
documents in C1 that have the largest λ similarities for each
document in C2. This means that we need to keep track of
the λ * N2 similarities during the backward order evalua-
tion. In other words, we need a memory space of size
4λ * N2/P to keep these similarities. Compared with the
forward order which requires 4λ * X1/P pages to keep track
of the needed similarities, more memory space is needed to
save the similarities for the backward order. This will have
an adverse impact on the performance of the backward or-
der. As a result, the forward order is likely to perform better
than the backward order when the two document collec-
tions have about the same size. However, when C1 is much
smaller than C2, then the backward order can still outper-
form the forward order. For example, if C1 can be entirely
held in the memory, then only one scan of each collection is
needed to process the join with the backward order no
matter how large C2 is.

4.2 Algorithm HVNL
This algorithm uses the documents in one collection and
the inverted file for the other collection to compute the
similarities. In an information retrieval system, processing a
user query, which can be considered as a document, is to
find the λ documents in the system which are most similar
to the user query. One way to process such a query is to
compare it with each document in the system. This method
requires almost all nonzero entries in the document-term
matrix be accessed. A more efficient way is to use the in-
verted file on the document collection to process the query.
This method is used in the Smart system [3]. The advantage
of this method is that it only needs to access those nonzero
entries in the columns of the document-term matrix which
correspond to the terms in the query. Since the number of
terms in a query is usually a very small fraction of the total
number of terms in all documents in the system, the in-
verted file based method accesses only a very small portion
of the document-term matrix. Algorithm HVNL is a
straightforward extension of this method to the situation
where we need to find the λ most similar documents from
one collection for every document in another collection.

The process of using the inverted file to compute the
similarities between a document d in C2 to documents in C1
can be described as follows. Let (t, w) be the next d-cell to
be considered in d. Let the inverted file entry corresponding
to t on C1 be {(d1, w1), ..., (dn, wn)}, where dis are document
numbers. After t is processed, the similarity between d and
document di as accumulated so far will be Ui + w * wi, where
Ui is the accumulated similarity between d and di before t is
considered, and w * wi is the contribution due to the sharing
of the term t between d and di, i = 1, ..., n. After all terms in
d are processed, the similarities between d and all docu-
ments in C1 will be computed, and the λ documents in C1
which are most similar to d can be identified.

Note that before the last d-cell in d is processed, all in-
termediate similarities between d and all documents in C1
need to be saved. The amount of memory needed for such
purpose is proportional to N1. Further analysis can reveal

that using the inverted file on C2 to process the join needs
more memory space to store intermediate similarities (the
amount is proportional to λ * N2). In practice, only nonzero
similarities need to be saved. We use δ to denote the frac-
tion of the similarities that are nonzero, 0 < δ < 1.

A straightforward way to process the join is to go
through the above process for each document in C2 inde-
pendently. That is, read in each document d in C2 in turn
and, while d is in the memory, read in all inverted file en-
tries on C1 corresponding to terms in d to process d (note
that not all terms in d will necessarily appear in C1). The
problem with this straightforward method is its lack of co-
ordination between the processing of different documents
in C2. As a result, if a term appears in K documents in C2,
then the inverted file entry of the term (assume that it also
appears in C1) on C1 will be read in K times. Algorithm
HVNL is designed to reuse the inverted file entries that are
read in the memory for processing earlier documents to
process later documents to save I/O cost. Due to space
limitation, usually not all inverted file entries read in earlier
can be kept in the memory. Therefore, the algorithm also
needs a policy for replacing an inverted file entry in the
memory by a new inverted file entry. Let the frequency of a
term in a collection be the number of documents containing
the term. This is known as document frequency. Document
frequencies are stored for similarity computation in IR sys-
tems and no extra effort is needed to get them. Our re-
placement policy chooses the inverted file entry whose cor-
responding term has the lowest frequency in C2 to replace.
This reduces the possibility of the replaced inverted file
entry to be reused in the future. To make the best use of the
inverted file entries currently in the memory, when a new
document d1 in C2 is processed, terms in d1 whose corre-
sponding inverted file entries are already in the memory
are considered first. This means that each newly read in
document will be scanned twice in the memory. The first
scan is to find the terms whose corresponding inverted file
entries are already in the memory and the second scan is to
process other terms. A list that contains the terms whose
corresponding inverted file entries are in the memory will
be maintained. Note that, when not all inverted file entries
that are read in earlier can be kept in the memory, it is still
possible to read in an inverted file entry more than one
time. Note also that the worst case scenario for algorithm
HVNL is that for each document in C2 under consideration,
none of its corresponding inverted file entries is currently
in the memory. In this case, algorithm HVNL deteriorates
into the straightforward method.

We now present the algorithm HVNL:

For each document d in C2
{For each term t in d

If t also appears in C1
If the inverted file entry of t on C1 ( I t

1 ) is in the
memory

accumulate similarities;
For each term t in d

If t also appears in C1
{If the inverted file entry of t on C1 ( I t

1 ) is not in the
memory
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If the available memory space can accommodate I t
1

read in I t
1 ;

Else
find the inverted file entry in the memory

with the lowest document frequency and
replace it with I t

1 ;
accumulate similarities;
}

find the documents in C1 which have the λ largest simi-
larities with d;

}

For each inverted file, there is a B+tree which is used to
find whether a term is in the collection and if present where
the corresponding inverted file entry is located.

One possible way to improve the above algorithm is to
improve the selection of the next document to process. In-
tuitively, if we always choose an unprocessed document in
C2 whose terms’ corresponding inverted file entries on C1
have the largest intersection with those inverted file entries
already in the memory as the next document to process,
then the likelihood of an inverted file entry already in the
memory to be reused can be increased. For example, con-
sider three documents each with three terms: D1 = {t1, t2, t3},
D2 = {t2, t3, t4}, and D3 = {t3, t4, t5}. Suppose terms with
smaller subscripts have lower document frequencies. Sup-
pose the memory buffer is only large enough to hold three
inverted file entries. If D1, D2, and D3 are processed in the
given order, then each inverted file entry needs to be read
in exactly once. However, if the processing order is D1, D3,
and D2, then the inverted file entry corresponding to t2
will be read in twice and all other inverted file entries will
be read in exactly once. Clearly, for this example, order
{D1, D2, D3} is better than order {D1, D3, D2}.

An order is optimal if it incurs the minimum I/O cost.
The question is can an optimal order be found efficiently.
Unfortunately, as shown by the proposition below, the
problem of finding an optimal order is NP-hard.

PROPOSITION. The problem of finding an optimal order of docu-
ments in C2 so that the best performance can be achieved is
NP-hard.

PROOF. It was shown in [11] that the following problem,
known as the Optimal Batch Integrity Assertion Verifica-
tion (OBIAV), which is to find an optimal order for
verifying a set of integrity constraints and verifying
each such constraint requires a set of pages be
brought in from secondary storage to the memory, is
an NP-hard problem. It can be seen that the optimal
order problem in our case is essentially the same as
the optimal order problem in OBIAV because the fol-
lowing correspondences between the two problems
can be easily established: Processing a document in
C2 corresponds to verifying an integrity constraint;
the need to read in a set of inverted file entries for
processing each document in C2 corresponds to the
need to bring in a set of pages for verifying each in-
tegrity constraint; that an inverted file entry read in
for processing one document may be used for proc-
essing another document corresponds to that a page

brought in for verifying one integrity constraint may
be used for verifying another integrity constraint.
Therefore, the optimal order problem in our case is
also NP-hard. o

We decided not to pursue the issue of finding an optimal
order further because in addition to its NP-hard nature,
there is another problem associated with any optimal order,
that is, by reading in documents in any order rather than
their storage order, more expensive random I/Os will be
incurred.

4.3 Algorithm VVM
Algorithm VVM uses inverted files on both collections to
compute the similarities. The strength of this algorithm is
that it only needs to scan each inverted file once to compute
similarities between every pair of documents in the two
collections regardless of the sizes of the two collections
provided that the memory space is large enough to accom-
modate intermediate similarity values. In this case, algo-
rithm VVM can be at least as good as algorithm HHNL be-
cause algorithm HHNL needs to scan each document col-
lection at least once and the size of the inverted file on a
collection is about the same as the size of the collection it-
self. Algorithm VVM tries to compute similarities between
every pair of documents in the two collections simultane-
ously, as a result, it needs to save the intermediate similari-
ties. Thus, the memory requirement for saving these simi-
larities is proportional to N1 * N2 (independent of the num-
ber of terms in each document), which can be so large such
that algorithm VVM cannot be run at all. In summary, algo-
rithm VVM is likely to perform well for document collec-
tions that are large in size (such that none can be entirely
held in the memory) but small in number of documents.
This is possible if each document has a large size. Another
situation that algorithm VVM may do well is when the vo-
cabularies of the two document collections are very differ-
ent. For example, one collection is on medicine and the
other is on computer science. In this case, the number of
nonzero similarities between documents in the two collec-
tions is likely to be small.

Algorithm VVM can be described as follows: We scan
both inverted files on the two collections. During the parallel
scan, if two inverted file entries correspond to the same term,
then invoke the similarity accumulating process.

Recall that we assumed that inverted file entries are
stored in ascending term numbers. Therefore, one scan of
each inverted file is sufficient (very much like the merge
phase of merge sort). The similarity accumulating process
can be described as follows. Let I r u r ut

m m1 1 1= {( , ), , ( , )}K

and I s v s vt
n n2 1 1= {( , ), , ( , )}K  be two inverted file entries for

the same term t on the two collections, respectively. After
the two inverted file entries are processed, the similarity

between documents rp and sq as accumulated so far will be

Upq + up * vq, where Upq is the accumulated similarity be-

tween rp and sq before t is considered, p = 1, ..., m, q = 1, ..., n.
We can extend the above algorithm VVM as follows to

tackle the problem of insufficient memory space for all in-
termediate similarities. Suppose SM is the total number of
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pages needed to store the intermediate similarities when all
pairs of documents in the two collections are considered at
the same time. Suppose M is the available memory space
for storing the intermediate similarities. If SM > M, divide
collection C2 into SM/M subcollections and then com-
pute the similarities between documents in each subcollec-
tion and documents in C1, one subcollection at a time. Since,
for each such subcollection, one scan of the original inverted
files on both collections is needed, this extension incurs a cost
which will be SM/M times higher than that when the
memory is large enough to hold all intermediate similarities.
For a more detailed cost analysis, see Section 5.3.

5 I/O COST ANALYSIS

In this section, we provide analysis of the I/O cost of each
algorithm presented in Section 4.

5.1 Algorithm HHNL
Let X be the number of documents in C2 that can be held in
the memory buffer of size B, as defined in Section 4.1. Since,
for each X documents in C2, C1 needs to be scanned once,
the total I/O cost of HHNL can be estimated as below:

hhs = D2 + N2/X * D1        (HHS1),

where the first term is the cost of scanning C2 and the sec-
ond term is the cost of scanning C1, and N2/X is the
number of times C1 needs to be scanned.

The above cost formula assumes that all I/Os are se-
quential I/Os (i.e., both C1 and C2 are sequentially scanned
in). This is reasonable only when each document collection
is read by a dedicated drive with no or little interference
from other I/O requests. If this is not the case, then some of
the I/Os may become more costly random I/Os. We first
consider the case when N2 ≥ X. The following interleaved
I/O and CPU patterns can be observed. After each X
documents in C2 are read in, for each document d in C1
read in, the CPU will take some time to compute the simi-
larities between the X documents and d. When the CPU is
doing the computation, I/O resources may be allocated to
other jobs. If this is the case, then the next document from
C1 will use a random I/O, so does the read-in of the next X
documents in C2. In other words, in the worst case, all
documents in C1 will be read in using random I/O and for
every X documents in C2, there will be a random I/O. The
number of actual random I/Os for scanning documents in
C1 once also depends on the document size and can be es-
timated as min{D1, N1} (if S1 ≤ 1, then D1 should be used;
otherwise, N1 should be used). Therefore, when N2 ≥ X, in
the worst scenario, the total I/O cost can be estimated as
follows:

hhr = hhs + N2/X * (1 + min{D1, N1}) * (α − 1).

When N2 < X, then the entire collection C2 can be
scanned in sequentially and held in the memory, and the
remaining memory space ((X − N2) * S2) can be used to hold
documents in C1. Therefore, C1 can be read in D1/((X
− N2) * S2) blocks and each block can be read in sequen-
tially. In this case, we have

hhr = hhs + D1/((X − N2) * S2) * (α − 1).

5.2 Algorithm HVNL
Recall that a B+tree is maintained for each document col-
lection for quickly locating the inverted file entry of any
given term. The size of the B+tree can be estimated as fol-
lows: Typically, each cell in the B+tree occupies 9 bytes (3
for each term number, 4 for address, and 2 for document
frequency). If a document collection has N terms, then the
size of the B+tree is approximately 9 * N/P (only the leaf
nodes are considered). The size is not terribly large. For
example, for a document collection with 100,000 distinct
terms, the B+tree takes about 220 pages of size 4KB. We
assume that the entire B+tree will be read in the memory
when the inverted file needs to be accessed and it incurs a
one-time cost of reading in the B+tree.

Let X be the number of inverted file entries on C1 that
can be held in the memory when the memory buffer is fully
used. In addition to X inverted file entries, the memory
(size B) also needs to contain a document in C2 of size S2,
a B+tree of size Bt1, the nonzero similarities values between
the document in C2 currently under processing and all
documents in C1 and the list containing the terms whose
corresponding inverted file entries are in the main memory
(size X|t#|/P). Therefore, X can be estimated as follows:

X
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If we assume that the read-in of the documents in C2 in-
curs sequential I/Os, then the I/O cost of HVNL can be
estimated as follows:
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where the first case corresponds to the case when X is
greater than or equal to the total number of inverted file
entries on C1 (i.e., T1). In this case, we can either read in the
entire inverted file on C1 in sequential order (this corre-
sponds to the first expression in min{}) or read in all in-
verted file entries needed to process the query (the number
is T2 * q) in random order. (This corresponds to the second
expression in min{}. The memory is large enough to do this,
since X ≥ T1 ≥ T2 * q.) The second case corresponds to the
case when the memory is not large enough to hold all in-
verted file entries on C1 but is large enough to hold all of
the necessary inverted file entries; the last expression is for
the case when the memory is not large enough to hold all
needed inverted file entries on C1. In this case, the second
term is the cost of finding and reading in the inverted file
entries on C1 which correspond to the terms in documents
in C2 until the memory is fully occupied. Suppose the
memory is just large enough to hold all the inverted file
entries on C1 corresponding to the terms in the first (s − 1)
documents in C2 and a fraction (X1) of the inverted file en-
tries corresponding to the terms in the sth document in C2
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(i.e., the inverted file entries on C1 corresponding to the
terms in the first s + X1 − 1 documents in C2 can be held in
the memory). Let Y be the number of new inverted file en-
tries that need to be read in when a new document in C2 is
processed after the memory is fully occupied. Then, the
third term is the total cost of reading in new inverted file
entries for processing the remaining documents in C2. We
now discuss how s, X1, and Y can be estimated. First, the
number of distinct terms in m documents in C2 can be esti-
mated by f(m) = T2 − (1 − K2/T2)

m 
* T2. Therefore, s is the

smallest m satisfying q * f(m) > X. Note that (X − q * f(s − 1))
is the number of inverted file entries that can still be held in
the memory after all the inverted file entries on C1 corre-
sponding to the terms in the first (s − 1) documents in C2
have been read in and (q * f(s) − q * f(s − 1)) is the number of
new inverted file entries that need to be read in when the sth
document in C2 is processed, X1 can be estimated by (X − q
* f(s − 1))/(q * f(s) − q * f(s − 1)). Finally, Y can be estimated
by (q * f(s + X1) − X).

As discussed in Section 5.1, it is possible that some or all
of the I/Os of reading in the documents in C2 are random
I/Os due to other obligations of the I/O device. If, after
inverted file entries are accommodated, there is still more
memory space left, then the remaining memory space can
be used to sequentially scan in multiple documents in C2 at
a time. Based on this observation, when random I/Os are
considered, the total I/O cost of HVNL can be estimated as:
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It would be easier to understand the above formula
when compared with the formula for computing hvs. In the
first expression in min{}, (X − T1) * J1 is the remaining mem-
ory space after all inverted file entries are accommodated.

With slight modification on similarity accumulation, C1
can be used as the outer collection to process the query. In
this case, the memory space needed to store intermediate
similarities will be 4λδ N2/P. The cost of the backward or-
der can be estimated in the same way as in the case of the
forward order.

5.3 Algorithm VVM
To avoid the much higher cost of random I/Os, we can
simply scan both inverted files on the two collections.
During the parallel scan, if two inverted file entries corre-
spond to the same term, then invoke the similarity accu-
mulating process. Recall that we assumed the inverted file
entries are stored in ascending term numbers. Therefore,
one scan of each inverted file is sufficient to compute all
similarities if the memory is large enough to accommodate
all intermediate similarities. Therefore, if all the I/Os are
sequential I/Os, the total I/O cost of the algorithm VVM is:

vvs = I1 + I2.

Again, some or all of the I/Os could actually be random
I/Os due to other obligations of the I/O device. In the
worst case scenario, i.e., all I/Os are random I/Os, the total
I/O cost of the algorithm VVM can be estimated as:

vvr = (min{I1, T1} + min{I2, T2}) * α.

Algorithm VVM usually requires a very large memory
space to save the intermediate similarity values. If only
nonzero similarities are stored, then the memory space for
storing intermediate similarity values for the algorithm
VVM is 4δ * N1 * N2/P. When the memory space is not large
enough to accommodate all intermediate similarity values,
a simple extension to the algorithm VVM can be made (see
Section 4.3). In this case, the total cost can be estimated by
multiplying vvs (or vvr) by SM/M, where SM = 4δ  * N1 *
N2/P is the total number of pages needed to store the in-
termediate similarities when all pairs of documents in the
two collections are considered at the same time and M = B −
J1 − J2 is the available memory space for storing the in-
termediate similarities. Therefore, a more general formula
for estimating the total I/O cost when all the I/Os are se-
quential I/Os can be given below:

vvs = (I1 + I2) *  SM/M                       (VVS)

and a more general formula for estimating the total I/O
cost when all the I/Os are random I/Os is:

vvr = (min{I1, T1} + min{I2, T2}) * α * SM/M.

5.4 Comparisons
Algorithm HHNL uses two document collections as the
input. Each of the two document collections needs to be
scanned at least once, which constitutes the lower bound of
the I/O cost of this algorithm. Algorithm HHNL does not
use any special data structures, such as inverted files and
B+trees. Thus, it is more easily applicable and easier to im-
plement. Since algorithm HHNL uses documents directly
for similarity computation, it benefits quite naturally from
any possible reductions to the number of documents in ei-
ther one or both collections resulted from the evaluation of
selection conditions on nontextual attributes of the relevant
relations. The memory space requirement of this algorithm
for storing intermediate similarity values is generally small
compared with those of other algorithms.

Algorithm HVNL uses one document collection, one in-
verted file, and the B+tree corresponding to the inner collec-
tion as the input. While the document collection is always
scanned once, the access to inverted file entries is more com-
plex. On the one hand, not all inverted file entries need to be
read in. In fact, only those inverted file entries whose corre-
sponding terms also appear in the other document collection
need to be accessed. On the other hand, some inverted file
entries may be read in many times due to their appearances
in multiple documents in C2, although effort is made by the
algorithm to reuse inverted file entries currently in the mem-
ory. It is expected that this algorithm can be very competitive
in the following two situations:

1)�One of the document collection, say C2, is much
smaller than the other collection. In this case, it is
likely that only a small fraction of all inverted file en-
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tries in the inverted file needs to be accessed. This
means that only a small portion of the document-term
matrix corresponding to C1 will be accessed in this
case. In contrast, if algorithm HHNL is used, then the
entire matrix needs to be accessed at least once, even
when C2 can be held entirely in the memory.

When C2 contains only one document, this situation
becomes an extreme case of processing a single query
against a document collection. As we have mentioned
before, using the inverted file to process a single query
has been shown in IR to be superior to using docu-
ments directly. Note that an originally large document
collection may become small after conditions on attrib-
utes of the relevant relation are evaluated.

2)�For the collection where documents are used, close
documents in storage order share many terms and
nonclose documents share few terms. This increases
the possibility of reusing inverted file entries in the
memory and reduces the possibility of rereading in
inverted file entries. This could happen when the
documents in the collection are clustered.

Algorithm HVNL accesses inverted file entries in ran-
dom order. As such, it has two negative effects on the I/O
cost. One is that random I/Os are more expensive than se-
quential I/Os. The other is that, even when an inverted file
entry occupies a small fraction of a page, the whole page
containing the entry has to be read in. In other words, if e is
the size of an inverted file entry, we need to read in e even
if e is very small, say 0.1. Therefore, when the size of each
inverted file entry is close to an integer, the competitiveness
of algorithm HVNL will be increased. Algorithm HVNL
uses primarily two data structures, one is the inverted file
and the other is the B+tree for the terms. One disadvantage
of using the inverted file is that the size of the file remains
the same even if the number of documents in the corre-
sponding document collection can be reduced by a selec-
tion unless we construct another inverted file for the re-
duced set, which is highly unlikely due to the cost involved.
The memory space requirement of algorithm HVNL for
storing intermediate similarities is higher than that of algo-
rithm HHNL but lower than that of algorithm VVM.

Algorithm VVM uses two inverted files as the input. As
we discussed before, this algorithm has a very nice one-scan
property, namely, it only needs to scan each inverted file once
to compute the similarities regardless of the sizes of the two
collections provided that the memory space is large enough
to accommodate intermediate similarity values. When the
memory space is large enough to accommodate intermediate
similarity values, algorithm VVM can be at least as efficient
as algorithm HHNL as far as I/O cost is concerned. The ma-
jor drawback of algorithm VVM is that it needs a very large
memory space to save the intermediate similarities. There are
two situations in which algorithm VVM is likely to perform
well. The first is when the document collections are large in
size but small in number of documents. The second is when
the vocabularies of the two document collections are very
different. In both of the two situations, the number of
nonzero similarities between documents in the two collec-
tions is likely to be small. Another disadvantage of algorithm
VVM is that the sizes of the inverted files will remain the

same even if the number of documents in the corresponding
document collections can be reduced.

6 SIMULATION RESULTS

Due to the large number of parameters in the cost formulas
of the algorithms presented, it is very difficult to compare
the performance of these algorithms based on these formu-
las directly. In this section, the algorithms are compared
based on simulation results computed from the cost for-
mulas derived in Section 5. Our objective is to identify the
impact of the variations of the parameters on the algo-
rithms. In other words, we would like to find out in what
situation an algorithm performs the best.

The statistics of three document collections which were
collected by ARPA/NIST [8], namely, WSJ (the Wall Street
Journal), FR (Federal Register), and DOE (Department of
Energy), are used in our simulation. The statistics of these
collections are shown in Table 1 (the last three rows are es-
timated by us based on |t#| = 3).

Among the three document collections, FR has fewer, but
larger, documents and DOE has more, but smaller, docu-
ments. The number of documents in WSJ lies between those
of FR and DOE. So is the average size of documents in WSJ.

For all simulations, the page size P is fixed at 4KB, the
fraction of the similarities that are nonzero δ is fixed at 0.1,
and λ is fixed at 20 (note that only algorithm HHNL and the
backward order of algorithm HVNL involve λ and none is
really sensitive to λ if it is not very large, say in the hun-
dreds). The probability q is computed as follows:
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The formula says that, given the number of distinct terms in
C2 (i.e., T2), the smaller the number of distinct terms in C1,
T1, is, the smaller the probability that a term in C2 also ap-
pears in C1 will be; and, when T1 becomes much larger than
T2, then q will become closer to 1; otherwise, q is 0.8. Prob-
ability p can be computed in a similar manner.

For parameters B (memory size) and α, we assign a base
value for each: B = 10,000 (pages) and α = 5. When the im-
pact of a parameter is studied, we vary the values of the
parameter while let the other parameter use its base value.

We present the following five groups of simulation results.

Group 1: In this group, a real collection will be used as both
collection C1 and collection C2. Since there are three real
collections (WSJ, FR, and DOE) and two parameters (B
and α), six simulation results will be collected.

TABLE 1
STATISTICAL INFORMATION

OF SEVERAL DOCUMENT COLLECTIONS

WSJ FR DOE
#documents 98,736 26,207 226,087
#terms per doc 329 1,017 89
total # of distinct terms 156,298 126,258 186,225
collection size in pages 40,605 33,315 25,152
avg. size of a document 0.41 1.27 0.111
avg. size of an inv. fi. en. 0.26 0.264 0.135
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Group 2: In this group, different real collections will be
used as C1 and C2. B will vary while α will use its base
value. From the three real collections, six simulations can
be designed.

Group 3: In this group, while C1 and C2 will continue to
use real collections, only a small number of documents
in C2 will be used to participate in the join. These ex-
periments are used to investigate the impact of local se-
lections. All simulations in this group use only the base
values of the two parameters. Since there are three real
collections, three simulation results will be collected in
this group.

Group 4: In this group, C1 again will continue to use real
collections, but C2 will be collections with only a small
number of documents. The difference between Group 3
and Group 4 is that the former uses a small number of
documents (in C2) from an originally large collection C2
and the latter uses an originally small collection C2. This
difference has the following impacts on the cost:

1)�documents in C2 need to be read in randomly by the
former but can still be read in sequentially by the lat-
ter; and

2)� the size of the inverted file and the size of the B+tree
on collection C2 for the former are computed based
on the original collection, not just the documents
used.

This will have an impact on the cost of algorithm VVM.
In our experiments, after a real collection is chosen to be
C1, C2 will be derived from C1. Again, all simulations in
this group use only the base values of the two parame-
ters. Since there are three real collections, three simula-
tion results will be collected in this group.

Group 5: In this group, both collection C1 and collection C2
will use new collections but they will remain to be identical.
Each new collection is derived from a real collection by re-
ducing the number of documents in the real collection and
increasing the number of terms in each document in the
real collection by the same factor such that the collection
size remains to be the same. The simulations in this group
are especially aimed at observing the behavior of algorithm
VVM. Again, only the base values of the two parameters
will be used and three simulation results will be collected in
this group since there are three real collections.

For space consideration, the simulation results for the
backward order approach will not be presented. Notice that
the backward order approach makes a difference only when
HHNL and HVNL are used (see the discussions in Section 4.1
and Section 5.2). Compared with the forward order, the
backward order requires more memory space to store in-
termediate similarities. As a result, the backward order
with outer collection A1 and inner collection A2 incurs a
somewhat higher cost than the forward order with outer
collection B1 and inner collection B2 when A1 and B1 are
the same collection and A2 and B2 are the same collection.

For all the figures in this section, a value k on y-axis is

equivalent to 10k sequential page I/Os. For Figs. 1, 3, and 4,
each unit on x-axis is equivalent to 10,000 pages.

Simulation Results in Group 1
The following simulations are conducted in this group:

Simulation 1: C1 = C2 = WSJ, α = 5, B changes from 10,000 to
50,000 with an increment of 5,000

Simulation 2: C1 = C2 = FR, α = 5, B changes from 10,000 to
50,000 with an increment of 5,000

Simulation 3: C1 = C2 = DOE, α = 5, B changes from 10,000 to
50,000 with an increment of 5,000

Simulation 4: C1 = C2 = WSJ, B = 10,000, α changes from 3 to
10 with an increment of 1

Simulation 5: C1 = C2 = FR, B = 10,000, α changes from 3 to 10
with an increment of 1

Simulation 6: C1 = C2 = DOE, B = 10,000, α changes from 3 to
10 with an increment of 1

The following observations can be made from the result
of simulation 1 (see Fig. 1).

Fig. 1. Result of Simulation 1.

Fig. 2. Result of Simulation 4.
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1)�Algorithm HHNL outperforms the other two algo-
rithms, especially when B is small.

2)�There are several reasons that algorithm HVNL per-
forms poorly. First, the outer document collection has
too many documents (N2 = 98,736) which causes re-
peated read-ins of many inverted file entries on C1.
Second, algorithm HVNL requires more random
I/Os. Third, both S2 and J1 are not close to integers
and, as a result, for each document or inverted file
entry read in, algorithm HVNL incurs more than
twice as much cost as that by algorithm HHNL (1 ver-
sus 0.41 for document and 1 versus 0.26 for inverted
file entry).

3)�The main reason that algorithm VVM performs very
poorly is because the memory requirement for storing
intermediate similarities (952,031 pages) is much
greater than the available memory. As a result, many
scans of the two inverted files are needed to process
the join.

4)�All algorithms perform better with larger available
memory. When B = 45,000 or larger, one document
collection or an inverted file can be held in the mem-
ory in its entirety. When this happens, algorithm
HHNL and algorithm HVNL have very similar per-
formances since, in this case, algorithm HHNL scans
each of the two document collections once and algo-
rithm HVNL scans one document collection and one
inverted file which has the same size as a document
collection.

Similar observations as made from the result of simula-
tion 1 can also be made from the results of Simulation 2 and
Simulation 3 (not shown). Relatively speaking, the per-
formance of algorithm VVM in Simulation 2 has the largest
improvement due to the larger size of documents and fewer
number of documents. However, the memory requirement
for storing intermediate similarities in this case (67,071
pages) is still too large for the available memory to handle
and at least two scans of the two inverted files are used to
process the join. Not surprisingly, the relative performance
of algorithm VVM in Simulation 3 has become much worse
due to the smaller size of documents and larger number of
documents.

The following observations can be made from the result
of Simulation 4.

1)�Algorithm HHNL is the best performer among the
three algorithms.

2)�hhs and vvs are independent of α because they in-
volve no random I/Os.

3)�Others become worse when α increases.
4)�Algorithm HVNL is more sensitive to larger α.

Similar observations can be made from the results of
Simulations 5 and 6.

Simulation Results in Group 2
In this group, different real collections will be used as C1
and C2 and the base value for α will be used while B will
vary. From the three real collections, the following six
simulations can be designed.

Simulation 7: C1 = WSJ, C2 = FR, α = 5, B changes from 10,000
to 50,000 with an increment of 5,000

Simulation 8: C1 = FR, C2 = WSJ, α = 5, B changes from 10,000
to 50,000 with an increment of 5,000

Simulation 9: C1 = FR, C2 = DOE, α = 5, B changes from 10,000
to 50,000 with an increment of 5,000

Simulation 10: C1 = DOE, C2 = FR, α = 5, B changes from
10,000 to 50,000 with an increment of 5,000

Simulation 11: C1 = WSJ, C2 = DOE, α = 5, B changes from
10,000 to 50,000 with an increment of 5,000

Simulation 12: C1 = DOE, C2 = WSJ, α = 5, B changes from
10,000 to 50,000 with an increment of 5,000

Comparing the result of Simulation 7 with the result of
Simulation 8 (see Figs. 3 and 4), the following observations
can be made.

1)�While algorithm HHNL is the best performer in
Simulation 7, algorithm HVNL sometimes beats
HHNL in Simulation 8. The reason is that, while algo-
rithm HHNL lets the outer collection use as much
memory space as possible, algorithm HVNL lets the
inner collection use as much memory space as possi-
ble. For example, consider Fig. 4 when B = 35,000 (i.e.,
B = 3.5 in the figure). In this case, the entire inverted
file on FR can be held in the memory. As a result,
when algorithm HVNL is used, only one scan of WSJ
and the inverted file on FR is needed to process the
join. However, when algorithm HHNL is used, the
memory is not large enough to hold the entire outer
collection WSJ. As a result, one scan of WSJ and two
scans of the inverted file on FR are needed to process
the join when algorithm HHNL is used.

2)�There is no change on the cost of algorithm VVM be-
cause it is completely symmetric to the two document
collections.

3)�When none of the two collections can be entirely held
in the memory, we get mixed results for algorithm
HHNL, that is, sometimes, it has a better result in
Simulation 7 than that in Simulation 8, but sometimes
the opposite is true. When only the smaller collection
can be held in the memory, better performance can be
achieved using the smaller collection as the outer
collection. This is the reason that algorithm HHNL
has a better result in Simulation 7 than that in Simu-
lation 8 when B becomes 35,000 or larger. This obser-
vation also supports our earlier argument in Section
4.1 that the backward order can outperform the for-
ward order if the backward order implies a much
smaller outer collection.

4)�The situation for algorithm HHNL is reversed for al-
gorithm HVNL. The reason is that while algorithm
HHNL lets the outer collection use as much memory
space as possible, algorithm HVNL lets the inner col-
lection use as much memory space as possible.

Similar observations made above between the result of
Simulation 7 and the result of Simulation 8 can also be
made between the result of Simulation 9 and the result of
Simulation 10, as well as between the result of Simulation 11
and the result of Simulation 12 (the results of Simulations 9-
12 are not shown).
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Simulation Results in Group 3
In this group, C1 and C2 will continue to be real collections
but only a small number of documents in C2 will be used to
participate in the join. Let M be the number of such docu-
ments in C2. Since M << N2, we should read each of the M
documents individually in random order. As a result, the
cost of reading in the M documents will be M * S2 * α.
Based on this, we have the following new formula for hhs:

hhs = M * S2 * α + (M/X) * D1          (HHS2)

Since M is small, it is likely that all of the M documents
in C2 can be held in the memory. In addition, the remaining
memory space ((X − M) * S2) can be used to read in as many
documents in C1 as possible. As a result, we have the fol-
lowing formula for hhr:

hhr = hhs + D1/((X − M) * S2) * (α  − 1)

To compute hvs and hvr, we need to estimate the number
of distinct terms in the M documents. This number can be
estimated by f(M) = T2 − (1 − K2/T2)

M * T2. The cost formula
for hvs is the same as that in Section 5.2 except D2 is re-
placed by M * S2 * α and T2 is replaced by f(M). Let this
new formula be denoted by (HVS2). Since all I/Os in hvs
have become random I/Os, hvr = hvs.

The cost formulas for vvs and vvr remain the same.
However, the memory requirement for storing the interme-
diate similarities is now reduced to 4 * N1 * M * δ/P. Other
quantities such as the size of inverted file entries and the
size of the B+tree on collection C2 remain as before.

The following three simulations are carried out:

Simulation 13: C1 = C2 = WSJ, B = 10,000, α = 5, M changes
from 5 to 50 with an increment of 5

Simulation 14: C1 = C2 = FR, B = 10,000, α = 5, M changes
from 5 to 50 with an increment of 5

Simulation 15: C1 = C2 = DOE, B = 10,000, α = 5, M changes
from 5 to 50 with an increment of 5

The following observations can be obtained from the re-
sult of Simulation 13 (see Fig. 5).

1)�When M is very small (≤ 30), algorithm HVNL out-
performs others as expected. Algorithm HHNL be-
comes the best performer when M becomes larger.

2)�Since M is so small, the M documents can easily fit
into the memory. As a result, algorithm HHNL re-
quires only one scan of the inner document collection
in addition to reading in the M documents from the
outer collection.

3)� In this case, the memory is able to accommodate all
intermediate similarities for algorithm VVM. The rea-
son that algorithm VVM incurs much higher cost than
algorithm HHNL is because the size of the inverted
file on collection C2 did not change although only a
small number of documents in C2 is used.

Comparing the result of Simulation 14 (not shown) with
the result of Simulation 13, a noticeable difference is that
the relative performance of algorithm HVNL deteriorated—
algorithm HVNL becomes worse than algorithm HHNL be-
fore M reaches 10. This is because each document in FR
contains much more terms than each document in WSJ and,
therefore, more inverted file entries need to be read in by
algorithm HVNL for processing a document in FR.

Comparing the result of Simulation 15 (not shown) with
the result of Simulation 13, a noticeable difference is that
the relative performance of algorithm HVNL is improved—
algorithm HVNL outperforms algorithm HHNL even after
M reaches 50. This is because each document in DOE con-
tains much fewer terms than each document in WSJ and,
therefore, fewer inverted file entries need to be read in by
algorithm HVNL for processing a document in DOE.

For space considerations, we do not present simulation
results for situations when the numbers of documents in
both collections are reduced by selections. However, it is
not difficult to see that comparing the situation when only
one collection is reduced, algorithm HHNL will benefit the
most when both collections are reduced.

Fig. 3. Result of Simulation 7.

Fig. 4. Result of Simulation 8.
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Fig. 5. Result of Simulation 13.

Fig. 6. Result of Simulation 16.

Simulation Results in Group 4
In this group, C1 will continue to use real collections, but
C2 will be collections with only a small number of docu-
ments. Since we do not have real collections that contain a
small number of documents, we derive such a collection
from a real collection. This turns out to be quite easy. From
a given document collection, we first keep its document
size and then decide the number of documents we want in
the new collection. From this number, say M, the number of
distinct terms in the new collection can be computed by
f(M). Now, all key statistics of the new collection become
available. With these statistics, the cost formulas in Section 5
can be used to find the cost of each algorithm.

The following three simulations are conducted in the
group:

Simulation 16: C1 = C2 = WSJ, B = 10,000, α = 5, M changes
from 5 to 50 with an increment of 5

Simulation 17: C1 = C2 = FR, B = 10,000, α = 5, M changes
from 5 to 50 with an increment of 5

Simulation 18: C1 = C2 = DOE, B = 10,000, α = 5, M changes
from 5 to 40 with an increment of 5

Comparing the result of Simulation 16 (see Fig. 6) with
that of Simulation 13 (see Fig. 5), the following observations
can be made.

1)�There is little change for algorithm HHNL. Since M is
so small, reading in the M documents sequentially or
randomly makes little difference.

2)�Algorithm HVNL degraded somewhat. This is the ef-
fect of q—the probability that a term in collection C2
also appears in collection C1. In Simulation 13, q is
computed based on the original T1 and T2. Since T1 =
T2, q = 0.8 is computed. In Simulation 16, q is com-
puted based on the original T1 and the new f(M).
Since f(M) is much smaller than T1, q between 0.92 to
0.99 are computed using the formula. Higher q values
imply that more inverted file entries on collection C1
need to be read in and as a result, the performance of
algorithm HVNL is down.

3)�The cost of algorithm VVM is reduced substantially.
The main reason behind the reduction is the reduction
of the size of the inverted file on C2. In Simulation 13,
the size is computed based on the original C2, but, in
Simulation 16, the size is computed based on the re-
duced collection.

Similar observations as above can be made for Simula-
tion 17 and Simulation 18.

Simulation Results in Group 5
In this group, both C1 and C2 will use new collections but
they will remain to be identical. Each new collection is de-
rived from a real collection by reducing the number of
documents and increasing the number of terms in each
document in the real collection by the same factor F to en-
sure that the collection size remains to be the same.

The following three simulations are carried out:

Simulation 19: C1 = C2 are derived from WSJ, B = 10,000, α = 5,
the decreasing (increasing) factor changes from 1 to 13 with an
increment of 2

Simulation 20: C1 = C2 are derived from FR, B = 10,000, α = 5,
the decreasing (increasing) factor changes from 1 to 5 with an
increment of 1

Simulation 21: C1 = C2 are derived from DOE, B = 10,000, α = 5,
the decreasing (increasing) factor changes from 1 to 28 with an
increment of 3

The following observations can be made from the result
of Simulation 19 (see Fig. 7).

1)�When factor F is small (≤ 5), algorithm HHNL outper-
forms other algorithms. However, when F is 7 or
larger, the sequential version of algorithm VVM (i.e.,
vvs) becomes the best performer.

2)�vvs decreases rapidly as F increases as expected.
When F reaches 11, all intermediate similarities can be
held in the memory. As a result, vvs reaches its lower
bound—each inverted file is scanned once. When F =
11, the number of documents in the collection is
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reduced to 8,976 and the number of terms in each
document becomes 3,619.

3)�hvs and hvr are insensitive to the changes.
4)�hhr decreases as F increases. This is because as F in-

creases, the number of documents in C1 decreases.
Since the number of random I/Os is bounded by the
number of documents in C1, hhr decreases as a result.

Similar observations as for Simulation 19 can be made
for Simulation 20 with the only difference that vvs reaches
its minimum faster for the latter. The reason is that the
number of documents in FR is originally much smaller than
that in WSJ. Again, similar observations as for Simulation 19
can be made for Simulation 21 with the only difference that
vvs reaches its minimum slower for the latter. The reason is
that the number of documents in DOE is originally much
larger than that in WSJ.

6.1 Summary of the Simulation Results
The following main points can be summarized from the
above extensive simulations.

1)�The cost of one algorithm under one situation can dif-
fer drastically from that of another algorithm under
the same situation. For example, in Simulation 1, Al-
gorithm HVNL incurs a cost which is about 4,000
times higher than that of Algorithm HHNL when the
memory buffer is small (B = 10,000); but, in Simula-
tion 13, the cost incurred by Algorithm HHNL is more
than five times higher than that by Algorithm HVNL.
As a result, it is important to choose an appropriate
algorithm for a given situation.

2)� If the number of documents in one of the two docu-
ment collections, say M, is originally very small or be-
comes very small after a selection, then algorithm
HVNL has a very good chance to outperform other
algorithms. Although how small M needs to be to be
small enough mainly depends on the number of
terms in each document in the outer collection, M is
likely to be limited by 100 (it is 70 for Simulation 15).

3)� If the number of documents in each of the two collec-
tions is not very large (roughly N1 * N2 < 10,000 * B)
and both document collections are large such that
none can be entirely held in the memory, then algo-
rithm VVM (the sequential version) can outperform
other algorithms.

4)�For most other cases, the simple algorithm HHNL
performs very well.

5)�The costs of the random versions of these algorithms
depict the worst case scenario when the I/O devices
are busy satisfying different obligations at the same
time. Except for algorithm VVM, these costs have no
impact in ranking these algorithms.

Overall, the simulation results match well with our
analysis in Section 5.4.

6.2 An Integrated Algorithm
Since no one algorithm is definitely better than all other
algorithms in all circumstances, it is desirable to construct
an integrated algorithm that can automatically determine
which algorithm to use given the statistics of the two col-
lections (N1, N2, K1, K2, T1, T2, p, q, δ), system parameters
(B, P, α) and query parameters (λ, selectivities of predicates
on nontextual attributes). This integrated algorithm can be
sketched as follows:

If none of the two collections has inverted file /* in this
case, only HHNL can be used */

{compute hhs using formula (HHS1);
compute bhhs; /* the counterpart of hhs when the back-

ward order is used (formula not shown) */
If hhs ≤ bhhs, use the forward order of HHNL;
Else use the backward order of HHNL;
}

If only one collection has inverted file /* only HHNL and
HVNL can be used in this case */

{If there is no selection
{compute hhs using formula (HHS1);
compute bhhs;
compute hvs using formula (HVS1);
compute bhvs; /* the counterpart of hvs when the

backward order is used (formula not shown) */
}

Else
{estimate the number of documents that can partici-

pate in the join using the selectivities;
compute hhs using formula (HHS2);
compute bhhs;
compute hvs using formula (HVS2);
compute bhvs;
}

use the algorithm with the lowest estimated cost;
}

If both collections have inverted file
{If there is no selection

{compute hhs using formula (HHS1);
compute bhhs;
compute hvs using formula (HVS1);
compute bhvs; /* the counterpart of hvs when the

backward order is used (formula not shown) */

Fig. 7. Result of Simulation 19.
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compute vvs using formula (VVS);
}

Else
{estimate the number of documents that can partici-

pate in the join using the selectivities;
compute hhs using formula (HHS2);
compute bhhs;
compute hvs using formula (HVS2);
compute bhvs;
compute vvs using formula (VVS);
}

use the algorithm with the lowest estimated cost;
}

7 CONCLUDING REMARKS

In this paper, we presented and analyzed three algorithms
for processing joins between attributes of textual type. From
analysis and simulation, we identified, for each algorithm,
the type of input document collections with which the algo-
rithm is likely to perform well. More specifically, we found
that algorithm HVNL can be very competitive only when
the number of documents in one of the two document col-
lections is/becomes very small, and algorithm VVM can
perform very well when the number of documents in each
of the two collections is not very large and both document
collections are large such that none can be entirely held in
the memory. In other cases, algorithm HHNL is likely to be
the top performer. Since no one algorithm is definitely bet-
ter than all other algorithms, we proposed the idea of con-
structing an integrated algorithm consisting of the basic
algorithms such that a particular basic algorithm is invoked
if it has the lowest estimated cost. We also indicated that the
standardization of term numbers will be very useful in
multidatabase environments.

Further studies in this area include:

1)� investigate the impact of the availability of clusters on
the performance of each algorithm;

2)�develop cost formulas that include CPU cost and
communication cost;

3)�develop algorithms that process textual joins in par-
allel; and

4)� conduct more detailed simulation and experiment.
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