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Induction By Attribute Elimination
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AbstractÐIn most data-mining applications where induction is used as the

primary tool for knowledge extraction from real-world databases, it is difficult to

precisely identify a complete set of relevant attributes. This paper introduces a

new rule induction algorithm called Rule Induction Two In One (RITIO), which

eliminates attributes in the order of decreasing irrelevancy. Like ID3-like decision

tree construction algorithms, RITIO makes use of the entropy measure as a

means of constraining the hypothesis search space; but, unlike ID3-like

algorithms, the hypotheses language is the rule structure and RITIO generates

rules without constructing decision trees. The final concept description produced

by RITIO is shown to be largely based on only the most relevant attributes.

Experimental results confirm that, even on noisy, industrial databases, RITIO

achieves high levels of predictive accuracy.

Index TermsÐData mining, rule induction, attribute selection, information

entropy.

æ

1 INTRODUCTION

REAL-WORLD data is dirty. Data cleaning, including the removal
of contradictory and redundant data items and the elimination of
irrelevant attributes, has been an important topic in data-mining
research and development. In most data-mining applications
where induction is used as the primary tool for knowledge
extraction from real-world databases, attribute elimination is an
essential step to improve the efficiency and accuracy of data-
mining results. The kind of real-world databases we refer to here
are medical databases, where a lot of attributes like age, sex,
blood pressure, and temperature are always used to record each
patient's medical history and symptoms. Existing data-mining
algorithms, such as C4.5 [12] and HCV [15], start with all
attributes in a database, and choose useful attributes for concept
descriptions. The Rule Induction Two In One (RITIO) algorithm
designed in this paper takes a different approach; it eliminates
attributes in a database in order of decreasing irrelevancy from
the very beginning of its induction. A clear advantage of this
approach is that, since the most irrelevant attributes are
eliminated from the beginning, they will not mislead the
induction process in terms of both efficiency and accuracy.

One major form of representation used in inductive learning is

the decision tree in a process known as the top-down induction of

decision trees (TDIDT). Example algorithms include C4.5 [12] and

its predecessor ID3 [11]. The other major representation form is the

ªif... thenº rule structure. Examples include the AQ series [6], CN2

[2], and HCV [15]. Decision tree structures as induced by ID3-like

algorithms are known to cause fragmentation of the database

whenever a high-arity attribute is tested at a node [10]. This

diminishes the understandability of the induced concept hypoth-

eses. Furthermore, ID3-like decision tree structures have a

tendency to repeat subtrees when expressing disjunctive concepts

of the form (attribute 1 = A) or (attribute 2 = B). This is
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referred to as the replication problem. As a consequence of these

two problems, decision trees tend to grow very large in most

realistic problem domains.
Rule-like structures are a more convenient form to express

knowledge. Rules are similar to the way human experts express
their expertise and human users are comfortable with this way of
expressing newly extracted knowledge [4]. This is an important
consideration during expert validation of a large knowledge base
(KB) which might well be equivalent to tens of thousands of
decision trees during debugging of the KB and in engendering
user acceptance of a KB system. Therefore, with TDIDT
algorithms, there is often the added overhead of having to
decompile the decision tree into a set of rules. Algorithms
directly inducing a set of rules are, therefore, at a distinct
advantage as they circumvent the creation of a decision tree and
go directly to the creation of the rule set. A direct rule inducer
also often produces a more compact concept description than a
decision tree inducer.

Hypothesis generation in induction involves searching through

a vast (possibly infinite) space of concept descriptions. Practical

systems constrain the search space through the use of bias [14].

Bias forces the search to prefer certain hypothesis spaces over

others. One such bias that has not been given much attention is to

minimize the number of features in the concept description. We

propose a rule induction algorithm, RITIO, which prefers those

hypothesis spaces that contain fewer attributes by removing

irrelevant attributes. We show that this form of attribute-based

induction can very efficiently provide syntactically simple concept

descriptions with high generalizing powers, even in noisy

environments.
This paper presents the RITIO algorithm and provides an

empirical evaluation of RITIO with C4.5 (which is commonly
recognized as a state-of-the-art method for inducing decision
trees [3]), C4.5rules (which transforms C4.5 decision trees into
decision rules and manipulates these rules), and HCV [15]
(which performs rule induction without generating decision
trees). RITIO, like ID3-like algorithms, makes use of the entropy
measure, albeit in a different way, as a means of constraining the
hypothesis search space but, unlike ID3-like algorithms, the
hypotheses language is the rule structure. ID3-like algorithms,
including ID3 and C4.5, need a decompiler (such as C4.5rules) to
transform decision trees into rules, whereas RITIO carries out
rule induction without decision tree construction. In Section 2,
we describe the RITIO algorithm and briefly outline C4.5,
C4.5rules, and HCV for comparison purposes. In Section 3, we
present and compare the results of our empirical investigation of
the RITIO algorithm.

2 RITIO AND RELATED ALGORITHMS

In this section, we first describe the RITIO algorithm with an

example run and then outline the C4.5, C4.5rules, and HCV

programs used for comparative purposes.

C4.5 is a recent successor of ID3, one of the most widely used

decision tree inducers, and has been augmented by a decompiler,

C4.5rules, to convert a decision tree into a rule set. HCV induces

rules in the form of variable-valued logic using an extension matrix

approach [17].

2.1 RITIO: A Rule Induction Algorithm

2.1.1 The Algorithm

RITIO carries out a data-driven, specific-to-general search for
a consistent set of rules that describe the different classes
in the data.

Procedure RITIO(E, N; RS)
/* E is the training example set and RS is the induced rule set */
/* Let N be the number of attributes used in E */
RM  E; L  1;
Partition(RM, L, N; RS);
Remove duplicate rules in RS;
Return(RS).

Function Partition(RM, L, N; RS)
if L < N then

{ Evaluate(RM, Least-Relevant);
/* Least-Relevant: the least-relevant attribute */
Remove_Group  { }; Retain_Group  { };
/* Remove_Group and Retain_Group are the 2 partitions

of RM */
for each rule R in RM do

Consistency(RM, Least-Relevant, R; Remove_Attribute);
/* The Remove_Attribute flag is either TRUE or FALSE */
if Remove_Attribute = TRUE then

{ R  R - Least-Relevant;
/* Remove attribute Least-Relevant from R */
Remove_Group  Remove_Group + R }

else Retain_Group  Retain_Group + R
endif;

endfor;
L  L+1;
if L = N then RS  Remove_Group + Retain_Group

else
{ Partition(Remove_Group, L; RS1);

Partition(Retain_Group, L; RS2);
RS  RS1 + RS2 }

endif
};

Return(RS).

Function Evaluate(RM; Least-Relevant)
/* This function receives current RM and returns

the least-relevant attribute */
Candidate-Attrib  the set of all attributes in RM;
for each attribute in Candidate-Attrib

Calculate its entropy value using data in E;
endfor;
Designate the attribute with maximum entropy

as least-Relevant;
Return(Least-Relevant).

Function Consistency(RM, Least-Relevant,
R; Remove_Attribute)

/* This function takes the least-relevant attribute and the
current rule R and returns a Remove_Attribute flag */

for each Rule in RM do
for each attribute A in RM do

if (A <> Least_Relevant)
& (the value of A in Rule = the value of A in R)
& (the class of Rule < > the class of R)
then Remove_Attribute  FALSE

/* There are 2 rules in RM with the same
attribute value but different classes */

else Remove-Attribute  TRUE
endif

endfor
endfor
Return(Remove-Attribute).
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Initially, the rule set is a copy of the training set representing

a set of maximally specific generalizations1 referred to as the

rule matrix (RM). In the initial RM, which is the rule matrix at

level L � 0, a rule exists for each training instance. The level L

in Function Partition refers to a particular stage in the

induction process, with higher levels denoting increasing rule

generalization. There are a maximum of N ÿ 1 levels, where N

is the number of attributes in the database.
RITIO examines each attribute in the training set at each level

L), and selects the least relevant in Function Evaluate. The

heuristic used in Evaluate to identify relevancy is the informa-

tion theoretic function designed by Shannon and Weaver [13] and

popularized in Quinlan's ID3 [11]. In contrast to ID3, the heuristic

used in RITIO selects the attribute providing the lowest informa-

tion gain. The entropy of an attribute A;E�A� is the information

required to classify an instance based on the information in that

attribute. It is defined as follows:

E�A� �
XV
j�1

�RelFreqj � Infj�;

where V is the total number of distinct values in attribute A,

RelFreqj � Pj=T ;
with Pj being the number of occurrences of value j in attribute A

and T the number of training instances, and

Infj � ÿ
XC
k�0

�Pjk=Pj � log2�Pjk=Pj��;

with Pj k being the number of occurrences of value j in attribute A

belonging to class k and C the number of classes in the training set.
E�A� is calculated for each attribute in the database. In ID3, the

attribute with the minimum entropy is selected at a decision tree

node to split the tree. RITIO chooses the attribute with the

maximum entropy as the candidate for elimination from the RM.

This guarantees that the least relevant attribute (according to

information theory) is eliminated. The induction process will make

a total of N ÿ 1 entropy calculations.
On identifying the first least relevant attribute, RITIO checks

against each training instance to see whether removal of that

attribute results in an inconsistency. An inconsistency here is

defined as the occurrence of the same example with different

classifications after the removal of the least relevant attribute.

Function Consistency is designed to check for consistency. An

attribute whose removal from a rule causes no inconsistency

anywhere in the training set is termed a `removed` attribute.
After removal of the least relevant attribute from all instances

where such a removal does not cause an inconsistency, a new,

more general RM is generated. The RM has now been partitioned

into two distinct groups: one that still retains the full, initial

dimensionality, N , called the `retain` group (Remove_Group in

Function Partition), and the other with a reduced dimension-

ality, N ÿ 1, called the `remove` group (Retain_Group in

Partition). The RM is now at level 1.
In succeeding rounds of entropy calculations, all previous `least

relevant` attributes are not considered. In this case, the least

relevant attribute from the remaining, N ÿ 1 attributes across the

two existing partitions is chosen as the next candidate for

elimination.

Once this attribute has been chosen, the next round in the RM
generalization process commences. While checking for consis-
tency, the following rules henceforth apply when identifying
members of the training set to be used in the checking process:

1. If checking a rule belonging to the `retain` group, all
training instances are used. In some cases, this also means
checking against previously eliminated attributes.

2. If checking a rule belonging to the `remove` group,
only training instances belonging to that group are
used. As before, the current least relevant attribute is
dropped from those rules which do not cause any
inconsistency.

The RM at level L � 2 has now been partitioned into four
groups (i.e., retain & retain, remove & retain, retain & remove, and
remove & remove groups). The process repeats itself iteratively
N ÿ 1 times with new entropy calculations, consistency checks,
and further partitioning of the RM. At any point in the induction
process, the RM will contain a maximum of 2Lÿ1 partitions up to a
final maximum of 2Nÿ1 different partitions.

The final RM contains a set of maximally generalized rules
guaranteed for consistency. The generalizing process results in
a reduction in the number of rules from the original training
set size. This manifests itself by repeating rules which are
eliminated in the rule extraction process. Another effect of the
generalizing process is a reduction in the average dimension-
ality of the RM as attributes are progressively eliminated. The
rules are finally presented as an unordered list in conjunctive
normal form.

2.1.2 An Example Run of RITIO

For the data set given in Table 1, there are four attributes;
Outlook, Temperature, Humidity, and Windy. RITIO will carry out
three (the number of attributes minus 1) partitioning loops on the
data set.

At Level = 0, the rule matrix (RM) contains all the 14 examples
in Table 1.

Using these 14 examples, the Level 1 entropy for each attribute
is given below using the formulas in Section 2.1.1.

E�Outlook� � 0:694

E�Temperature� � 0:911

E�Humidity� � 0:788

E�Windy� � 0:892
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TABLE 1
The Golf Data Set [12]

1. A maximally specific generalization at this stage is the description
of an example in the training set. For example, if we have an example of
the T class with (attribute 1 = A) and (attribute 2 = B), then we
have a maximally specific generalization If (attribute 1 = A) and

(attribute 2 = B) then class = T.
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From these entropy values, Temperature has the highest entropy

and, therefore, is the least relevant attribute. RITIO now tries to

eliminate this attribute from the data set by checking for

consistency.

When attribute Temperature is deleted from Table 1, the data set

becomes Table 2.

Since the deletion does not cause any inconsistency (with the

same example description belonging to different classes), Table 2

becomes our reduced data set and each example gets a more

general description (because the condition on Temperature has been

dropped).

At Level = 2, the entropy values for attributes Outlook,

Humidity, and Windy remain the same as at Level 1 and,

therefore, Windy becomes the current, most relevant attribute.

When we try to delete Windy from Table 2, the data set becomes

Table 3.

This deletion causes inconsistency because Examples 4 and 14

are now contradictory with each other, as are Examples 5, 6, and

10. Therefore, Table 2 has to be partitioned into two groups

(Table 4 and Table 5); the `remove` group (Table 4) with Windy

deleted and the `retain` group with Windy retained.

With the five examples in Partition 2, the Level 3 entropy for

each attribute is as follows (attribute Windy is no longer considered

at this level).

E�Outlook� � 0:971

E�Humidity� � 0:951

Attribute Outlook is chosen as the current least relevant

attribute. Deleting Outlook from Table 5 results in two further

partitions (Table 6 and Table 7); the `remove` group (Table 6) with

Outlook deleted and the `retain` group (Table 7) with Outlook

retained.
The rule set from (Table 6) is: If Humidity = normal and Windy =

false, then Class = Play. The rule set from Table 7 is: If Outlook =

rain and Humidity = high and Windy = false, then Class = Play; if

Outlook = rain and Humidity = normal and Windy = true, then Class

= Don't Play; and if Outlook = rain and Humidity = high and Windy

= true, then Class = Don't Play.
Iterating the same procedure on Partition 1, we get the final rule

set in Table 8.

2.1.3 Noise Handling

Real-world databases are often 1) noisy (with wrong attribute

values and/or misclassifications), 2) contradictory (the same data

with different class assignments), 3) incomplete (not enough data

points) and 4) redundant (attributes or examples do not provide

any new information). To be of any practical use, RITIO needs to

be able to generalize in the presence of noisy data. In this paper,

noise is used in the general sense to imply any and all of the above

four types. RITIO handles noise by a series of processes distributed

throughout the induction process.
Data Preprocessing. During the data preparation or preproces-

sing stage, RITIO handles the problems of contradictory and

redundant instances and the case of missing attribute values.
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TABLE 4
Partition 1 (with Windy Deleted) at Level 2

TABLE 5
Partition 2 (with Windy Retained) at Level 2

TABLE 6
Partition 21 (with Outlook Deleted) at Level 3

TABLE 2
Reduced Golf Data Set at Level 1

TABLE 3
Deleting Windy from Table 2 at Level 2
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Contradictory instances are allowed. During the induction
stage, a contradictory rule arising out of contradictory data is
created and flagged as being contradictory. This rule is further
processed in the postprocessing stage and may be eliminated or
retained (depending on user specified criteria described further

on). Redundant instances are retained in the database as they do
not affect the final, induced rules. There is an increase in the
overheads of time and storage requirements of the algorithm.
However, in a real-world environment, assuming random sam-

pling of the training instances, redundancy is useful as it indicates
through rule coverage which phenomena are occurring more
frequently than others.

The default method used in RITIO for handling missing

attribute values is to treat each unknown value as a new attribute
value. Another method which can be chosen by the user is to
replace the unknown value by the most frequently occurring value,
either in the database or in members of the same class.

In RITIO, continuous attributes are discretized into a number of
intervals. The resulting intervals can then be used in the same way
as nominal attributes during induction and deduction. The
methods used for the discretization process are those described

in [17] and implemented in the HCV (Version 2.0) software [15].
These methods include, among others, making use of Bayesian
classifiers, the information theoretic heuristic or k-nearest neigh-
bors. All empirical evaluations of RITIO presented in this paper on

those databases that required discretization have used the
information theoretic function with class probabilities estimated
by the Laplacian Law of Succession [9]. Discretization can also be
viewed as contributing to noise handling. A small (with respect to
the discretized interval chosen) variation in an attribute value due

to noise is smoothed out on assignment of the value to a
discretized interval.

During Induction. Induction time noise handling in RITIO is
carried out using the information theoretic function to choose the

least relevant attribute at each stage of the induction process. This
means that the least relevant attribute is chosen before a more
relevant attribute as a candidate for elimination from the rule set.
The order of attribute selection is an important consideration if the

final induced rules are not to be unduly influenced by potentially
noisy attributes.

Relevancy refers to the ability of an attribute to discriminate
between the different classes in the training set. If an attribute's

lack of relevancy is due to corrupt data, then choosing an attribute

based on relevancy is, in fact, a noise handling operation. The later

in the induction process an attribute is chosen, the bigger the

probability that it will be used in the final induced rule set.

Therefore, this ordering in the choice of attributes as candidates for
elimination ensures that the noisier attributes are less likely to end

up in the rule set. This should lead to more accurate rules.
Postinduction Processing. Some of the induced rules may

cover only a small number of training instances. It has been shown

by other research [1] that such rules are responsible for an

unproportional part of the misclassifications of a rule set. Such

rules, known as small disjuncts, may be solely a product of noise

and not of a real underlying regularity in the training set. A
pruning procedure may be used to eliminate from the rule set

those rules that are only weakly supported by the empirical

evidence in the data.
Two pruning criteria are used in RITIO. The first criterion

eliminates those rules which obtain scores below a minimum

number of correct classifications expressed as a proportion of the

number of instances that match the rule antecedent. This pruning

criterion is really the generalizing ability of the rule. The second

criterion eliminates rules based on their coverage. The coverage is
worked out either with respect to instances of the same class as the

rule or else over all training instances. The cut-off values in both

criteria are user-defined.
During Deduction. When using the rule set on unseen data, an

instance may have no rule that matches it (referred to as no match

hereafter) or more than one rule with contradictory conclusions

(referred to as multiple match hereafter).
In no-match and multiple-match cases, RITIO will defer

classifying the instances until all other instances have been

classified for which unique classifications can be provided by

the induction rules. This allows it to build a rule hit score table

where 1 point is credited to a rule for each correct classification.
After this, RITIO will consider the unclassified set. In the case

of no match, it will iteratively cycle through an ever increasing

number of allowable mismatches between rules and instances

until one or more matches are found. The maximum allowable
number of mismatches is a user-set parameter. If a rule or rules

are found that match the instance, then the situation is identical

to the one where there is at least one rule match. In this case,

RITIO will choose the rule with the highest hit score for the

classification of the instance in question. In the case of a tie, the
first occurring rule is chosen. If, alternatively, the maximum

number of mismatches is reached and still no match has been

found, the highest scoring rule is used as a default.

2.2 C4.5 (A Decision Tree Inducer) and C4.5 Rules
(A Rule Decompiler)

The heart of the popular and robust C4.5 program is a decision tree

inducer. It performs a depth-first, general-to-specific search for

hypotheses by recursively partitioning the data set at each node of

a decision tree.
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TABLE 7
Partition 22 (with Outlook Retained) at Level 3

TABLE 8
RITIO Induced Rule Set from Table 1
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C4.5 attempts to build a simple tree by using a measure of the
information gain ratio of each feature and branching on the
attribute which returns the maximum information gain ratio. At
each point during the search, a chosen attribute is considered to
have the highest discriminating ability between the different
concepts whose descriptions are being generated. This bias
constrains the search space by generating partial hypotheses using
a subset of the dimensionality of the problem space. This is a
depth-first search in which no alternative strategies are maintained
and in which no backtracking is allowed. The final decision tree
built, therefore, though simple, is not guaranteed to be the simplest
possible tree.

C4.5 uses a pruning mechanism wherein the tree construction
process is stopped if an attribute is deemed to be irrelevant and
should not be branched upon. A �2- test for statistical dependency
between the attribute and the class label is carried out to test for
this irrelevancy. The induced decision tree can be converted to a
set of rules with some pruning and the generation of a default rule.

In the case of missing attribute values, the unknown values
are assumed to be distributed in proportion to the relative
frequency of these values in the training set. Replacement of
unknown values is, therefore, carried out according to this
assumption. When classifying test data with missing attribute
values, C4.5 tests all branches of this attribute and works out the
probability that each value is the correct choice. This probability
is summed over all classes. This method performs well under
conditions of increasing incidence of unknown values on the
databases used by Quinlan [12].

The C4.5rules program contains three basic steps to decompile
decision trees to production rules:

1. Traverse a decision tree to obtain a number of
conjunctive rules. Each path from the root to a leaf in
the tree corresponds to a conjunctive rule with the leaf as
its conclusion.

2. Manipulate each condition in each conjunctive rule to see if
it can be dropped or can be merged into a similar condition
in another rule without more misclassification than
expected on the original training examples.

3. If some conjunctive rules are the same after Step 2, then
keep only one of them.

Transformation of decision trees to production rules provides a
way of combining different trees into the same rule base for more
complicated domains. The final decision rules produced are
expected to be simpler than the original decision trees, but (as
shown in Section 3) not necessarily more accurate when classifying
new examples in noisy environments. However, manipulating
conditions from the decision-tree-traversal rules in Step 2 is like a
new induction algorithm that can work on the original example
sets, but in a way totally different from the ID3-like algorithms.
Therefore, the time complexity for the transformation is expensive.

2.3 HCV (Version 2.0)ÐA Rule Induction Program

HCV avoids constructing a decision tree by using an extension
matrix approach [5] to generate a set of conjunctive rules to cover
each class in the training set relative to all other classes. The
extension matrix approach was originally proposed by Hong [5]
and then extended in HCV by Wu [15]. In a revised version, HCV
(Version 2.0) has been extended to be able to deal with both noisy
data and continuous attributes [17]. HCV (Version 2.0) is the
version used in this study.

The HCV algorithm considers one class of instances in turn
(termed the positive examples, PE) against all the other classes
(termed the negative examples, NE). The matrix of NE is termed
the negative example matrix (NEM). An extension matrix (EM)

is constructed by taking a positive example and comparing it
against each member in the NEM. Each attribute value in the
NEM that is equal to the corresponding attribute value of the
positive example is replaced by a flag denoting a dead element
that is unable to distinguish between the positive example and
the NE. Repeating this exercise for all positive examples results
in a set of extension matrices. Superimposing a group of
extension matrices results in the formation of a disjunction
matrix (EMD). This superpositioning is governed by two rules:
A dead element flag results where at least one EM has a dead
element and the original NEM attribute value is retained where
no EM has a dead element.

A path is defined as a set of attribute values in the NEM
such that there is only one value per row and none of the
attribute values are dead elements. An intersecting group of
positive examples occurs when a disjunction matrix contains at
least one valid path. Such a path corresponds to a conjunctive
cover for all the positive examples in the EMD but none of the
negative ones. Since the tasks of finding optimal partitions and
extracting optimal conjunctive rules from the disjunction
matrices are both NP-hard, HCV provides a set of heuristics to
carry out these tasks.

HCV has been shown to induce compact rules in low order
polynomial time. The rules are expressed in the form of variable-
valued logic [7].2 On a battery of databases from both artificial and
real-world domains, HCV has been found to be highly accurate
relative to results from ID3-like algorithms [17].

3 EXPERIMENTAL EVALUATION

In this section, we present the results of an empirical investigation
into the performance of RITIO and compare the results obtained by
RITIO with those using C4.5, C4.5rules, and HCV (Version 2.0).

3.1 Test Conditions

Throughout the experiments, the same default conditions were
used for all the databases. Obviously, fine tuning different
parameters in RITIO would have achieved higher accuracy rates.
This, however, would have been at the expense of a loss in
generality and applicability of the conclusions. The default
conditions used in RITIO were as follows:

1. The induced rule set was pruned by eliminating those
rules that had the same class coverage of less than
5.0 percent.

2. The maximum number of mismatches allowed during
deduction is the number of attributes minus one.

Similarly, default conditions were adopted for the three other
programs C4.5, C4.5rules, and HCV (Version 2.0) as recommended
by the respective authors.

All databases used were divided randomly into training and
testing partitions by a 70/30 split of the instances. This was carried
out 10 times to obtain 10-fold cross-validation trials.

3.2 The Data

The data used in our experiments (see Table 9) can be divided into
three groups. The first group is made up of data with 100 percent
nominal attributes. The second group contains data of mixed
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2. The variable-valued logic originally developed by Michalski [7] is a
calculus for representing decision problems where decision variables can
take on some range of values. Its principal syntactic entity is a selector with
the general form, �X#R�, designated as equation (1), where X is a variable
or attribute, # is a relational operator (such as =, 6� , < , > , � , and � ), and
R, called a reference, is a list of one or more values that X could take on. A
well-formed rule in the logic is similar to a production rule, but with
selectors as the basic components of both its lefthand and righthand sides.
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nominal and continuous attributes. These two groups of data were

obtained from the University of California at Irvine machine

learning database repository [8]. The majority of these databases

are noisy. For example, the urban waste water treatment plant data

(WTP data) was obtained from daily measures of instrumentation

sensors. The classes are different operational states of the plant.

This is an ill-structured domain: The class distribution is severely

skewed, with some classes having only one or two instances to

represent them, and the data is in a time-series.
The third group of data originates from an aluminium smelter

and was obtained by process sensors monitoring the aluminium

production process. The first three databases in this group, Noise,

UFT, and Temperature, predict different abnormal process condi-

tions based on sensor data. The next database, Pot Difference, is

used to see whether different production cells differ from each

other and by which particular combination of process variables

they can be distinguished. The last three databases (Predictions 1,

2, and 3) augment the original sensor data through the use of

derived variables (such as rate of change and differences) to try

and predict one, two, and three days ahead whether a production

cell will exhibit abnormal operating conditions. All these databases

are very noisy and not guaranteed to be complete in terms of the

given attributes.

3.3 Rule Accuracy

Table 10 shows the accuracy results obtained by the four programs,

HCV (Version 2.0), C4.5, RITIO, and C4.5rules. The best result for

each problem is highlighted with boldface font in the table. Results

for C4.5 are the pruned ones. The RITIO results are the average of

ten fold cross-validated results on unseen test cases. Also included

for RITIO is the 95 percent confidence interval estimate of the mean

of the accuracy results. This estimate shows the variance associated

with the results and is a good indication of the stability of the

algorithm over different databases. For five databases out of the

first seven in Table 10, RITIO obtained the best results.
Out of the four databases with continuous data in the second

group, RITIO obtained the best results on two of them. RITIO

produced a particularly good result on the water treatment plant

database, WTP, which is a notoriously difficult real-world

database, significantly exceeding the next best. With the

industrial databases in the third group, RITIO again obtained

the best accuracy results for five out of the seven databases. In

several cases, such as the `Temperature` and `Prediction 3`

databases, RITIO obtained a very significant improvement over

the next best result.

From Table 10, RITIO performs significantly better on certain
databases (especially the industrial databases from the third
group) than others. The reason is that these real-world databases
each contain a significant number of ªdirtyº attributes, as well as
contradictory and redundant data items, and attribute elimination
in RITIO has managed to take out most of these irrelevant
attributes from the beginning of its induction.

4 CONCLUSIONS

As real-world databases are normally large and noisy, the problem
of focusing on relevant information has become increasingly
important in data mining. We have presented, in this paper, a
new induction algorithm, RITIO, which uses the information
theoretic function in a novel way to induce rules by attribute
elimination. It is similar to HCV in its approach of using matrices,
but has stronger noise handling capabilities in that it eliminates
attributes from the emerging rule set starting with the least
relevant attribute. This is in direct contrast to the decision tree
inducer in C4.5 which uses the most relevant attribute first to
branch on. RITIO has been shown in the experiments carried out
on a wide variety of 18 databases to produce concept descriptions
of consistently high accuracy which perform better in most cases
than C4.5, C4.5rules, or HCV (Version 2.0). The concept description
size has been found to be slightly larger in many cases than the
sizes of the outputs of the other three programs in terms of the
numbers of conjunctive rules and conjunctions in these rules.
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Where this has occurred, however, in the majority of cases, there
was a marked increase in accuracy. It is also difficult to compare
representation schemes on the basis of the concept description size
of different hypothesis.

Future work will involve developing more compact hypothesis
representation schemes such as through the use of multiple
attribute values and nonmembership. We are also looking at
different evaluation functions to employ besides the information
theoretic function when selecting attributes for elimination. The
consistency check procedure where the cut-off point for excluding
or including an attribute will also be modified to take a `softer`
fuzzy approach [16]. This ability to tolerate different levels of
inconsistency should add to the already good noise tolerance of the
RITIO algorithm.
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