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Abstract—Many recent database applications must deal with similarity queries. For such applications, it is important to measure the
similarity between two objects using the distance between them. Focusing on this problem, this paper proposes the Slim-tree, a new
dynamic tree for organizing metric data sets in pages of fixed size. The Slim-tree uses the triangle inequality to prune distance
calculations needed to answer similarity queries over objects in metric spaces. The proposed insertion algorithm uses new policies to
select the nodes where incoming objects are stored. When a node overflows, the Slim-tree uses a Minimal Spanning Tree to help with
the split. The new insertion algorithm leads to a tree with high storage utilization and improved query performance. The Slim-tree is the
first metric access method to tackle the problem of overlap between nodes in metric spaces and to propose a technique to minimize it.
The proposed “fat-factor” is a way to quantify whether a given tree can be improved and also to compare two trees. We show how to
use the fat-factor to achieve accurate estimates of the search performance and also how to improve the performance of a metric tree
through the proposed “Slim-down” algorithm. This paper also presents a new tool in the arsenal of resources of Slim-tree aimed at
visualizing it. Visualization is a powerful tool for interactive data mining and for the visual tracking of the behavior of a tree under
updates. Finally, we present a formula to estimate the number of disk accesses in range queries. Results from experiments with real
and synthetic data sets show that the new algorithms of the Slim-tree lead to performance improvements. These results show that the
Slim-tree outperforms the M-tree up to 200 percent for range queries. For insertion and split, the Minimal-Spanning-Tree-based
algorithm achieves up to 40 times faster insertions. We observed improvements up to 40 percent in range queries after applying the
Slim-down algorithm.

Index Terms—Metric databases, metric access methods, index structures, multimedia databases, selectivity estimation, similarity
search.

<+

INTRODUCTION

ONE of the new research directions for database manage-
ment systems (DBMSs) is the handling of exotic data
types, such as images (still or dynamic), sounds in their
many formats, hypertexts, protein sequences, fingerprints,
etc. These kinds of data are typically multimedia data and it
is not simple to state their dimensionality. While there has
been a large number of proposals for multidimensional
access methods [15], almost none of them are applicable to
multimedia databases since they assume that data belong to
a multidimensional vector space. However, the data of
multimedia databases often are not in vector spaces but in
metric spaces. That is, the only information available are the
objects and a dissimilarity function stating the distance
between the objects.

This paper addresses the problem of designing efficient

metric access methods (MAM). A MAM organizes a large
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metric data set allowing insertions, deletions, and searches.
A metric data set is a set of objects and a distance function d()
between two objects x, y. The distance function d( ) satisfies
the three rules of a metric space (symmetry: d(z,y) = d(y, z);
nonnegativity:0 < d(z,y) < 0o,z # y and d(z,z) = 0; and
triangle inequality: d(z,y) < d(z, z) + d(z,y)). Consequently,
a MAM is not permitted to employ primitive operations
such as addition, subtraction, or any type of geometric
operation. MAMs usually support similarity queries, that is,
range queries and nearest neighbor queries. Nearest neighbor
queries ask for the first N nearest objects from a given object,
for example, “Select the five nearest stars from the sun.”
Range queries ask for the objects within a given distance
from a given object, for instance, “Find the stars that are
within 10 light-years from the sun.” In particular, range
queries with a radius of zero are called point queries.

The efficiency of a MAM is determined by several
factors. First, since the data set is generally too large to fit in
main memory, one major factor for efficiency is the number
of disk accesses required for processing queries and
insertions. We assume here that a MAM organizes data in
pages of fixed size on a disk and that disk access refers to
read (write) one page from a disk into main memory.
Second, the computational cost of the distance function can
be very high such that the number of distance calculations
has a major impact on efficiency. We expect, however, that
there is a strong relationship between the number of disk
accesses and the number of distance calculations. Third,
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storage utilization is another important factor, although it
has rarely been previously considered in this context. The
reason we are concerned about storage utilization is not
because of the storage cost, but primarily because of the
number of disk accesses required to answer “large” range
queries. For those queries, the number of accesses is low
only when the storage utilization is sufficiently high. In
other words, a MAM may be slower than a simple
sequential scan for such cases.

The basic structure of metric trees aims to partition the
data space in regions using representatives or centers to which
the other objects in each partition will be associated. Each
partition has a covering radius and only objects within this
radius are associated to the representative. Our proposed
Slim-tree is a new dynamic MAM. The Slim-tree, like other
metric trees, such as M-tree [11], stores the data in its leaves
and creates an appropriate cluster hierarchy on top. The
innovations in the Slim-tree are the following: First, based
on the Minimal Spanning Tree (MST), a new node splitting
algorithm is presented. This algorithm performs faster than
other split algorithms without sacrificing search perfor-
mance. Second, a new algorithm is presented to guide
insertion of new objects to an appropriate subtree. In
particular, our new algorithm leads to considerably higher
storage utilization. Third, and probably the most important,
the “Slim-down” algorithm is presented to make the metric
tree tighter and faster in a postprocessing step. This
algorithm was derived from our findings that high overlap
in a metric tree is largely responsible for its inefficiency.
Unfortunately, the well-known techniques to measure
overlap of a pair of intersecting nodes (e.g., circles in a
two-dimensional space) cannot be used for metric data.
Instead, we propose the “absolute fat-factor” and the
“relative fat-factor” to measure the degree of overlap. It is
shown that the Slim-down algorithm reduces the “relative
fat-factor” and, hence, improves the query performance of
the metric tree.

A preliminary version of this work was presented at
EDBT 2000 [28]. Here, we also describe two new tools. The
first tool is a visualization algorithm that quickly maps the
objects of the Slim-tree onto low-dimensional points, trying
to preserve the distances. With this tool, one can visualize
how “good” the tree is, as well as do visual data mining
(e.g., detecting clusters and outliers). The second tool is a
formula that estimates the average number of disk accesses
needed to answer range queries. This formula takes
advantage of the “absolute fat-factor,” so the estimate can
be performed on any tree and not only on ideal ones.

The remainder of the paper is structured as follows: In
the next section, we first give a brief history of MAMs,
including a concise description of the data sets we used in
our experiments. Section 3 introduces the Slim-tree, and
Section 4 presents its new splitting algorithm based on
minimal spanning trees. Section 5 introduces the “absolute
fat-factor” and the “relative fat-factor” and Section 6
presents the visualization kit developed for the Slim-tree.
The Slim-down algorithm is described in Section 7, while
Section 8 presents the development of a formula which
allows the estimation of selectivity for range queries.
Section 9 presents a performance evaluation of the Slim-
tree and Section 10 gives the conclusions of this paper.

2 SURVEY AND DATA SETS

The design of efficient access methods has interested
researchers for more than three decades. An excellent
survey of multidimensional access methods can be found in
[15]. However, most of these access methods apply only to a
one or multidimensional vector data set.

Metric data sets have attracted the attention of research-
ers, mainly regarding the problem of supporting nearest
neighbor and range queries. The pioneering work of
Burkhard and Keller [7] provided other interesting techni-
ques for partitioning a metric data set in a recursive fashion
where the recursive process is materialized as a tree. The
first technique partitions a data set by choosing a
representative from the set and grouping the elements with
respect to their distance from the representative. The second
technique partitions the original set into a fixed number of
subsets and chooses a representative from each of the
subsets. The representative and the maximum distance
from the representative to a point of the corresponding
subset are also maintained. The metric tree of Uhlmann [29]
and the Vantage-point tree (vp-tree) of Yanilos [32] are
somewhat similar to the first technique of [7] as they
partition the elements into two groups according to a
representative, called a “vantage point.” In [32], the vp-tree
has also been generalized to a multiway tree and, in [8], it
was further improved through using a better algorithm to
choose the vantage points and to answer nearest neighbor
queries. In order to reduce the number of distance
calculations, Baeza-Yates et al. [1] suggested using the same
vantage point in all nodes that belong to the same level.
Then, a binary tree degenerates into a simple list of vantage
points. Another method of Uhlmann [29] is the generalized
hyper-plane tree (gh-tree). The gh-tree partitions the data
set into two by picking two objects as representatives and
assigning the remaining to the closest representative.
Bozkaya and Ozsoyoglu [4], [5] proposed an extension of
the vp-tree called the “multivantage-point tree” (mvp-tree),
which carefully chooses m vantage points for a node which
has a fanout of m? The Geometric Near Access Tree
(GNAT) of Brin [6] can be viewed as a refinement of the
second technique presented in [7]. In addition to the
representative and the maximum distance, it is suggested
that the distances between pairs of representatives be
stored. These distances can be used to prune the search
space using the triangle inequality. Also, an approach to
estimate distances between objects using precomputed
distances on selected objects of the data set is proposed
by Shasha and Wang in [25].

All methods presented above are static in the sense that
they do not support insertions and deletions. The M-tree of
Ciaccia, et al. [11] overcomes this deficiency allowing further
insertions. The M-tree is a height-balanced tree where the
data elements are stored in the leaves. An internal node is a
set of entries where each entry consists of a pointer to a
subtree, the routing object, and the covering radius r of the
subtree. Each node is filled with at least ¢ and at most
C entries, where ¢ < C/2. Notice that the M-tree supports
insertions similar to R-trees [17]. Experimental results
comparing the M-tree and the mvp-tree [9] and the M-tree
and the R*-tree [10] are provided, as well as a cost model
based on I/0O and distance distribution for the M-tree [12].
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Fig. 1. The two-dimentional vector data sets used in the experiments. (a) Sierpinsky triangle. (b) MGCounty.

The Slim-tree as well as the M-tree are dynamic MAMs
in the sense that they allow dynamic insertions. Deletions
are not supported by Slim-tree nor by M-tree yet. Never-
theless, deletions can be handled in a similar way as it is in
some variations of B+-trees where the objects in the index
nodes could be marked as “deleted” [19].

With respect to visualization, there are several tools for
visualizing index trees in the literature [15]. An integrated
framework for visual debugging of access methods is
presented in [24]. In that work, the tool “amdb” allows the
user to visualize the structure of the whole tree, the nodes,
and even the data distribution. However, it does not
support metric data sets. An approach to visualizing a
metric set is to use a distance-preserving mapping
algorithm. This kind of algorithm takes a data set and a
distance function and maps each object in the data set to a
point in a k-dimensional space, trying to preserve the
distances. There are many distance-preserving mapping
algorithms in literature, such as the “FastMap” [14], Cofe
[18], which was developed to map protein data sets, and
the “Metric-Map” [31], aiming toward RNA data. In this
work, we used the “FastMap” algorithm just for visualiza-
tion because it performs well as a generic mapping
algorithm. However, any of the other algorithms could
also be employed.

In order to illustrate the performance of the different
MAMs, we use six synthetic and real data sets throughout
the paper. The distance distribution and intrinsic dimen-
sionality of these data sets are presented in [26]. The data
sets are the following:

e “Sierpinsky”’—a synthetic set of 106,288 points in a
two-dimensional space from the Sierpinsky triangle

(see Fig. 1a), a well-known data set, which is self-
similar (“fractal”).

e “"MGCounty”’—a set of 15,559 geographical points in
a two-dimensional space describing the coordinates
of the road intersections in Montgomery County,
Maryland (see Fig. 1b).

e “Eigenfaces”—a set of 11,900 face vectors (16-
dimensions) from the Informedia Project [30] at
Carnegie Mellon University.

e “Facelt”—a data set constructed with a distance
matrix given by the Facelt@® software, version 2.51.
Facelt is a commercial product from Visionics
Corporation and their distance function was not
disclosed. The set of 1,056 faces that generate this
distance matrix was also given by the Informedia
Project. Notice that the distance matrix corresponds
to a metric function.

e “EnglishWords”—a set of 25,143 objects from the
English language dictionary (/usr/share/lib/dict
from Unix systems).

o “PortugueseWords”—a set of 429,434 objects from
the Portuguese language dictionary [21].

Note especially that, for the Facelt data set, we have used a
distance function from a commercial software product. In
general, we have used the L, metric for the vector data sets
and all of them are normalized in a unit cube. For the
“EnglishWords” and “PortugueseWords” data set, the
Levenshtein, or string edit distance (Lgq:), was used.
Lpait(x,y) is a metric function which counts the minimal
number of symbols that have to be inserted, deleted, or
substituted to transform string x into string v (e.g., Lgai
(“head,” “hobby”) = 4 — three substitutions and one
insertion). We are using the same unit cost for each operation,
although different costs can be associated with each edit
operation without any change in our proposed methods.
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TABLE 1
Summary of Symbols and Definitions

Symbols | Definitions
dix,y) distance function between objects x and ¥
T metric trec
N number of objects in the dataset
D intrinsic dimensionality of the dataset
M number of nodes in a metric tree
M, numbecr of nodes in level A of a metrie tree (root is at A=0)
M., minimal number of nodes for a given metric tree with N objects
H height of the metric tree
H, minimal height for an optimal metric tree of N objects
Ie total number of node accesses required to answer a point query
for each object
C capacity of a metric tree node (maximum number of objects
stored in a non-root node)
Jul(T) absolute fat-factor for the metric tree T
rfaT) relative fat-factor for the metric tree 77
r, radius of a range query ¢
q a range query
DAy(r,) | number of disk accesses for all nodes in a metric tree T for a
range query of radius r,

3 THE SLIM-TREE: AN IMPROVED PERFORMANCE
METRIC TREE

The Slim-tree is a balanced and dynamic tree that grows
bottom-up from the leaves to the root. Like other metric
trees, the objects of the data set are grouped into fixed size
disk pages, each page corresponding to a tree node. The
objects are stored in the leaves. The main intent is to

Index Node:

247

organize the objects in a hierarchical structure using a
representative as the center of each minimum bounding
region which covers the objects in a subtree. The Slim-tree
has two kinds of nodes, data nodes (or leaves) and index
nodes. As the size of a page is fixed, each type of node holds
a predefined maximum number of objects C. For simplicity,
we assume that the capacity C of the leaves is equal to the
capacity of the index nodes. Table 1 summarizes the
symbols used in this paper.

The leaf nodes hold all objects stored by the Slim-tree,
and their structure is

leafnode [array of < Oid;, d(S;, Syep), Si >),

where Oid; is the identifier of the object S; and d(S;, S,p) is
the distance between the object S; and the representative
object of this leaf node S,,. The structure of an index node is

indexnode [array of < Sj, R;,d(S;, Syep),
Ptr(TS;), NEntries(Ptr(TS;)) >,

where S; keeps the object that is the representative of the
subtree pointed by Ptr(1'S;) and R; is the covering radius
of that region. The distance between 5; and the represen-
tative of this node S,., is kept in d(S;, S,.,). The pointer
Ptr(T'S;) points to the root node of the subtree rooted by
S;. The number of entries in the node pointed to by
Ptr(TS;) is held by Nentries(Ptr(TS;)). Fig. 2 graphically
shows the Slim-tree structure (Fig. 2a) and an example of a
tree with seven “word” objects using the Lpg; distance
function (Fig. 2b).

The regions that correspond to each node of the Slim-tree
can overlap each other. The increase of overlap also
increases the number of paths to be traversed when a
query is issued, as well as the number of distance
calculations to answer queries. The Slim-tree was devel-
oped to reduce the overlap between regions in each level.

S,

rep
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I i

Pir,| R, |#Ent,)--
-
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Leaf Node:
c|s, |od | 0| |sjoi|do0,0,) |s|od 0,0, - |s|od 0.0,
(a)
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(b)

Fig. 2. (a) Graphical representation of the structure on index and leaf nodes of the Slim-tree. (b) An example of a slim-tree storing seven “words”

using the Lgg; distance functions.
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begin

2. Delete the longest edge.

end

Algorithm 1 - Splitting of a node using MST strategy
1. Build the MST on the C objects of the node.
3. Report the connected components as two groups.

4. Choose the representative of each group, i.e., the object whose maximum distance to all
other objects of the group is the shortest.

Fig. 3. Algorithm for splitting a node using a minimal spanning tree.

3.1 Building the Slim-Tree
Objects are inserted in a Slim-tree in the following way:
Starting from the root node, the algorithm tries to locate a
node that can cover the new object. If none qualifies, select
the node whose center is nearest to the new object. If more
than one node qualifies, execute the ChooseSubtree algorithm
to select one of them. This process is recursively applied for
all levels of the tree. When a node m overflows, a new node
m’ is allocated at the same level and the objects are
distributed among the nodes. When the root node splits, a
new root is allocated and the tree grows one level.

The Slim-tree provides three options for the ChooseSubtree
algorithm:

e random—Randomly choose one of the qualifying
nodes.

e mindist—Choose the node that has the minimum
distance from the new object and the representative
(center) of the node.

e minoccup—Choose the node that has the minimum
occupancy among the qualifying ones. This is the
default method due to its better performance, as we
see next.

The number of entries in each child node (NEntries) is
maintained in its indexnode. The field NEntries is intended to
be used by the minoccup ChooseSubtree algorithm. Although
it uses some memory space in each indexnode, this is usually
a small proportion of the total memory used for each entry
(one byte is usually enough), but, as we will show later, this
ChooseSubtree algorithm generated trees with higher node
occupation rates, leading to a smaller number of disk
accesses. It also helps in the Slim-down algorithm, as
presented later.
The splitting algorithms for the Slim-tree are:

e random—The two new center objects are randomly
selected and the existing objects are distributed
among them. Each object is stored in the new node
whose center is closest to this object. This is not a
wise strategy, but it is very fast.

e minMax—All possible pairs of objects are consid-
ered as potential representatives. For each pair, a
linear algorithm assigns the objects to one of the
representatives. The pair which minimizes the cover-
ing radius is chosen. The complexity of the algorithm
is ©(C?), using O(C?) distance calculations. This
algorithm has already been used for the M-tree and it
was found to be the most promising splitting
algorithm regarding query performance [10].

e MST—The minimal spanning tree [20] of the objects
is generated and one of the longest arcs of the tree is
dropped. This algorithm is one of the contributions
of this paper. It produces Slim-trees almost as good
as the minMax algorithm in a fraction of the time.

The default algorithms to build a Slim-tree are: “minoccup”
for the Choose Subtree algorithm, the MST strategy for splits,
the node capacity C is 60 for vector (L distance) and word
data sets (L.q4;; distance) and 25 for Facelt data set. Next, the
new MST split algorithm is described.

4 THE SPLITTING ALGORITHM BASED ON MINIMAL
SPANNING TREE

This section addresses the following problem. Given a set of
C objects in a node to be split, quickly divide them in two
groups so that the resulting Slim-tree leads to low search
times. We propose a split algorithm based on the minimal
spanning tree (MST) which has been successfully used in
clustering [20]. We consider the full graph consisting of
C objects and C(C — 1) edges, where the weight of the edges
is the distance between the connecting objects. Thus, we
proceed with the steps as shown in Fig. 3. Unfortunately,
this algorithm does not guarantee that each group will
receive a minimum percentage of objects. To obtain more
even distribution, we choose the most appropriate edge
from among the longest ones. If none exists (as in a star-
shaped set), the uneven split is accepted and the largest
edge is removed.

Fig. 4 illustrates our approach applied to a vector space.
The node to be split is presented in Fig. 4a. After building
the MST (Fig. 4b), the edge between objects A and E will be
deleted and one node will keep the objects A, B, C, and D,
having B as the representative. The other node will have the
objects E, F, G, and H, having F as the representative. Fig. 4c
presents the two resulting nodes after the split by the MST
approach.

Experiments on real data sets show that the new MST-
splitting method is considerably faster than the minMax-
splitting method, which has been considered the best for the
M-tree [11], [9], while the query performance is minimally
affected. For a node with capacity C, the runtime of the
minMax-splitting method is O(C?), whereas the runtime of
the MST-splitting method is O(C? log C)). The performance
difference is reflected in our experiments, where the time to
build a Slim-tree using the MST-splitting method is much
faster than using the minMax-splitting method. Both
splitting methods result in Slim-trees with almost the same
query performance. We observed that the query perfor-
mance suffered a little by using the MST-splitting method,
but only for small node capacities (less than 20).
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Edge to be
removed

Node before split

MST built using the
objects of this node

Nodes after splitting

(@)

Fig. 4. Exemplifying a node split using the MST algorithm.

5 OVERLAP OPTIMIZATION

In this section, we present the theoretical underpinnings
behind the Slim-down algorithm. The Slim-down algorithm
is an easy-to-use approach to reduce overlaps in an existing
Slim-tree. Before presenting the algorithm, we have to
define the meaning of overlap in a metric space. Obviously,
the notion of overlap in a vector space cannot be applied to
a metric space [10].

When someone estimates the number of distance
calculations or disk accesses from an index tree, a typical
assumption is that the tree is “good” [13], [26]. That is, the
nodes are tight and the overlaps of the nodes are minimal.
Real trees are not necessarily “good.” The present work
directly tackles this issue. So, the major motivation behind
this work is to solve the following problem: “Given N objects
organized in a metric tree, how can we express its ‘goodness’/
"fitness” with a single number?”

We also show that our approach to measuring overlap in
a metric space leads to the “absolute fat-factor” and to the
“relative fat-factor.” Both of these factors are suitable for
measuring the “goodness” of the Slim-tree and other metric
trees. After discussing the properties of these factors, we
will present the Slim-down algorithm.

5.1 Computing Overlap in a Metric Access Method

Let us consider two index entries stored in a node of the
Slim-tree. In vector spaces, the overlap of two nodes is the
amount of common space which is covered by both of the
bounding regions. That is, we simply compute the overlap
as the volume of the intersection. Since the notion of volume
is not available in a metric space, we pursue a different
approach. Instead of measuring the amount of space, we
propose counting the number of objects that are covered by both
regions. Thus, we can state the following definition:

Definition 1. Let I1 and 12 be two index entries (nodes of the
metric tree). The overlap of I1 and I2 is defined as the number
of objects in the corresponding subtrees which are covered by
both regions, divided by the number of objects in both subtrees.

This definition provides a generic way to measure the
intersection between regions of a metric tree, enabling the
use of optimization techniques developed for vector spaces
on metric trees.

5.2 The Absolute Fat-Factor

Analogous to Definition 1 of overlap in a metric space, in
this section we present a method to measure the “goodness”

(b)

(©)

of a metric tree. The basic premise of the following
definition of the absolute fat-factor is that a good tree has
very little or, ideally, no overlap between its index entries.
Such an approach is compatible with the design goals of
index structures, like the R+-tree [23] and the R*-tree [2],
which strive to minimize overlap.

Our definition of the absolute fat' makes two reason-
able assumptions. First, we take into account only range
queries to estimate the “goodness” of a tree. This
assumption is not restrictive since nearest neighbor
queries can be viewed as special cases of range queries
[3] and nearest neighbor queries are also implemented on
Slim-trees. Second, we assume that the distribution of the
centers of range queries follows the distribution of data
objects. This seems to be reasonable since we expect the
queries to be issued most likely in regions of space where
the density of objects is high. Moreover, there is no other
alternative in a metric space.

Assuming the above, it is easy to state how an ideal
metric-tree should behave. For a point query (a range query
with radius zero), the ideal metric-tree requires that one
node be retrieved from each level. Thus, the “ absolute fat ”
should be zero. The worst possible tree is the one which
requires the retrieval of all nodes to answer a point query.
In this situation, the “absolute fat” should be one.

Definition 2. Let T be a metric tree with height H and M nodes,
M > 1. Let N be the number of objects. Then, the absolute
fat-factor, or simply the fat-factor, of a metric tree T is

fat(T) = 0

where I denotes the total number of node accesses required to
answer a point query for each of the N objects stored in the
metric tree. Definitions 1 and 2 lead to the next lemma.

Lemma 1. Let T be a metric tree. Then, fat(T) returns a value in
the range [0, 1]. The worst possible tree returns one, whereas an
ideal tree returns zero.

Proof. Let us consider a point query for an object stored in
the tree. Such a query has to retrieve at least one node
from each level of the tree. In particular, the nodes on the
insertion path of the object qualify and are required to be
read from disk into memory. A lower limit for I (the
total number of disk accesses for all point queries) is then
H*N, resulting in an absolute fat of zero. The worst case

1. The “absolute fat-factor” will be used interchangeably with absolute
fat and “relative fat-factor” with relative fat.
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Fig. 5. Two trees storing the same data set with a different number of
nodes and absolute fat-factors. Root nodes are indicated by broken
lines.

occurs when each node has to be read for each of the
queries. An upper limit of I is then M*N, resulting in an
absolute fat-factor of one. Since the absolute fat-factor is a
linear function in I and H*N < I < M*N, it follows
that the absolute fat-factor has to be in the range [0,1].0

Fig. 5 shows two trees and their absolute fat-factor. In
order to illustrate the relationship between the representa-
tive and its associated objects, we have drawn a connecting
line between them. Calculating the absolute fat for these
trees is straightforward, e.g., for the tree in Fig. 5a, we have
Ic =12, H=2, N =6, and M =4, leading to an absolute
fat = 0. For the tree in Fig. 5b, we have Io =14, H =2,
N =6, and M = 3, leading to an absolute fat = 1/3.

5.3 Comparing Different Trees for the Same Data
Set: The Relative Fat-Factor

The absolute fat-factor is a measure of the amount of
objects that lie inside intersecting regions defined by nodes
at the same level of a metric tree. If two trees store the same
data set and have the same number of nodes but different
absolute fat, the tree with the smaller factor will have fewer
points in intersecting regions and, thus, it will need fewer
disk accesses and distance calculations to perform a given
query. However, if two trees storing the same data set have
a different number of nodes, the direct comparison of the
corresponding absolute fat will not give such an indication.
This is due to the fact that a tree with fewer nodes may
lead to a tree with more objects lying inside intersection
regions and, thus, a bigger absolute fat-factor. However,
the average number of disk accesses needed to answer the
queries can also be smaller because there are fewer nodes
to be read (see Fig. 5).

To enable the comparison of two trees that store the
same data set (but that use different splitting and/or
different promotion algorithms leading to different trees),
we need to “penalize” trees that use more than the
minimum required number of nodes (and, so, disk pages).
To do that, we propose a new measure, called the “relative
fat-factor.” In a similar way to the absolute fat-factor, the
relative fat considers not the height and number of nodes in
the real tree, but that of the minimum tree. Among all
possible trees, the minimum tree is the one with the
minimum height H,,;, possible and the minimum number
of nodes M,,;,,. Mathematically, we have:

Definition 3. The relative fat-factor of a metric tree T with more
than one node (M, > 1) is defined as

IC - Hmin*N 1

rfat(T) = i (Mo —

Hmin) ’ (2)
This factor will vary from zero to a positive number that may
be greater than one. Although not limited to one, this factor
enables the direct comparison of two trees with different
relative fat as the tree with the smaller factor will always lead
to fewer disk accesses.

The minimum height of a tree organizing N objects is
Hyyin = [log N1, and the minimum number of nodes for a
given data set can be calculated as My, = Zfiﬁ [N/CT,
where C is the capacity of the nodes.

It is worth emphasizing that both the absolute and the
relative fat are directly related to the average amount of
overlap between regions in the same level of the tree,
represented by Ic. The absolute fat measures how good a
given tree is with respect to its amount of overlap,
regardless of a possible waste of disk space due to lower
occupation of its nodes. Relative fat enables us to compare
two trees, considering both the number of overlaps and
efficient occupation of the nodes.

6 VISUALIZATION OF SLIM-TREES

In order to make metric trees more intuitive and practical,
this section presents a new tool for the Slim-tree which
aims at visualizing it. Visualization is a powerful tool
which can help us in interactive data mining (detection of
clusters, testing of hypotheses, etc.) and even in visually
checking whether one metric tree is better than another.
Ideally, we would like to have an algorithm which will
operate on a Slim-tree of N objects and will print N points
in k dimensions (k is user-defined, e.g., k = 2 or 3). These
plotted points should preserve the distances as much as
possible. Having plotted the objects, it is useful to see how
they are distributed in the nodes of the tree.

Fig. 6a shows a three-dimensional view of the set of
English words using the Levenshtein distance function
(originally a nondimensional, i.e., metric, space). This figure
also shows the quantization effect because the distance
function always gives an integer value within a very small
range. Fig. 6b shows the same data set overlaid with the
bounding regions which involve the leaf nodes of a Slim-
tree built over this data set. A shape for the Levenshtein
distance function is not apparent as it is nondimensional, so
the bounding regions have been depicted as circles, aiming
to represent the nodes of the Slim-tree as spheres. The tree
was built using the minMax splitting algorithm. Only its
leaf nodes are shown. Here, it can be seen that this is not a
“good” tree as each bounding region covers many more
objects than just its “proper” ones. This occurs even if the
real shape of the balls turns out to be, in fact, not a circle at
all, but, perhaps, a “star” shape in some dimension.

6.1 Algorithm

The basic algorithm used to visualize a metric tree is based
on FastMap [14]. This is an iterative process, where the
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Fig. 6. A three-dimensional view of the English Words data set. (a) The mapping of the data set only. (b) The mapping of the data set, with the pivots
of the FastMap Algorithm and the balls of the leaf nodes of a Slim-tree built using the MinMax splitting algorithm, choosing a minimum radius and

60 objects per node.

number of iterations is k (the target number of dimensions).
In each iteration, two objects which are far away from each
other are chosen to be the “pivots” of the target dimension
being generated and both are arbitrarily put in the axis of
this dimension, considering only the distance between
them. Following that, the projections of all other objects in
this axis are calculated by the triangulation of the object and
the two pivots. The method maps objects into k-dimensional
points, trying to preserve the original distances. We
distinguish two entry points for the FastMap library of
routines:

1. FastMap( ), which receives a data set with N objects,
a distance function d( ), and the target number of
dimensions. It scans the data set to find k pairs of
objects (pivots) that are far from each other.

2. Coordinate FastMap( ), which receives an object, a
distance function d( ), and the k pairs of pivots. It
maps the given object to a point in a k-dimensional
space.

This process exhibits three interesting characteristics that
suggest its use as part of a visualizing tool for metric trees.
First, it is linear on the number of objects O(N), so it is
scalable in arbitrarily large data sets. Second, the set of
pivots can be stored for reuse in further executions of the
algorithm. In this way, objects can be mapped incrementally
and labeled, enabling the mapping of the different layers of
the tree, different subtrees, and/or different query results,
in a unique, consistent, target space. Third, as it preserves
the original distances as much as possible, it enables the
representation of geometric structures overlaying the object
sets, similar to the visualization of the hyper-bounding
regions defined by the Slim-tree nodes. To achieve better
mapping, it is important that the pivots for each dimension
be separated as much as possible. However, finding a pair
of points far apart can be the most time consuming part of
the FastMap algorithm. Considering that the objects within
the set of routing objects of any given nonleaf level of the
tree contain objects naturally distant from each other, we
decided to choose the anchors from the routing objects of

the first level of a tree that has at least 50 objects. The
selection of pairs of objects which are far apart is restricted
to a much smaller number, and this speeds up the process.
The complete algorithm used to build the visualization can
be seen in Fig. 7.

6.2 Usage of Visualization for Debugging and Better
Design

We show here an example of the visualization of Slim-trees.
Additional figures are presented in the following sections.
Fig. 8 shows the Sierpinsky data set, overlaid with the
circles corresponding to the leaf nodes of the Slim-tree. It
shows the points used as pivots of each dimension, too,
together with the respective axes generated. This tree was
built using the MST splitting algorithm and the choose
minimum occupancy insertion police. The occupancy C of the
nodes is 60. This tree presents the absolute and the relative
fat equal to 0.01. In fact, we can visually see that this is a
“good” tree.

7 THE SLIM-DOWN ALGORITHM

In this section, we present an algorithm that produces a
“tighter” tree. The absolute and relative fat-factors indicate
whether a tree has room for improvement. It is clear from
Definition 3 that if we want to construct a tree with smaller
relative fat, we need first to decrease the number of objects
that fall within the intersection of two regions in the same
level. Second, we may need to decrease the number of
nodes in the tree.

We propose the Slim-down algorithm to postprocess a
tree, aiming to reduce these two numbers in an already
constructed tree. This algorithm is described in Fig. 9. Fig. 10
graphically illustrates it.

In this way, if the object ¢ was moved from node i to
node j in Step 2, and it is the only object in node i at this
distance from the original center, then the correction of the
radius of node i will reduce the radius of this node without
increasing any other radii. As Fig. 10 illustrates, we can
assume that object e is the next farthest object from the
representative of the node i. Thus, after the reduction, the

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 21,2010 at 14:58:48 EST from IEEE Xplore. Restrictions apply.



252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 2, MARCH/APRIL 2002

Algorithm 2.1 - VisualizeSlimTree

output: the array of pivots;
Begin

associated with each object

=

end

Algorithm 2.2: FindPivots
input: tree T, output: array of pivots;

input: a built metric tree T, the level | of T to be mapped, the array of pivots (which can be null));

1. If the array of pivots is null, execute FindPivots
Retrieve the objects in level [ of T and, if this level is not the leaf level, the corresponding radius

3. Execute Coordinate FastMap( ) for cach object retrieved.
For each selected object, plot the point and the corresponding bounding region
5. Return the array of pivots to be re-used in [urther executions of this algorithm.

Begin
1. Count the number of objects stored in cach level of T
2. Identify the lowest level { with at least 50 objects
3. Select all objects of this level
4. execute FastMap( ) for these selected objects.
5. Store the pivots found in the array of pivots.
end

Fig. 7. The Visualization algorithm for Slim-tree using the FastMap method.

new radius of node i will be that shown with a solid line.
With this reduction, object ¢ will go out of the region of this
node which intersects with the region of node j, reducing
I counting.

During the execution of this algorithm, the minimum
occupancy in the nodes of the tree is not guaranteed, so,
eventually, some nodes can become empty (Step 3), further
reducing the number of nodes in the tree. After applying
the Slim-down algorithm, the nodes that became under-
occupied can be removed and its objects reinserted. This
approach proved to be quite effective during the slimming
down experiments.

A subtle problem may appear in Step 4 if the situation
shown in Fig. 11 occurs. In this case, objects f, d, and e will
synchronously move from nodes i, j, and k to nodes j, k, and
I, respectively, and then again to their original positions.
This is illustrated in Fig. 11 by the sets of solid and broken
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Fig. 8. A view of a Slim-tree indexing the Sierpinsky triangle data set and
the pivots of the FastMap algorithm. This tree was built with the MST
splitting algorithm, choosing minimum occupancy and a maximum of
60 objects per node (the default parameters for a Slim-tree).

lines. As this can lead to an infinite loop, we limited the
number of executions of Step 3, which holds the moving
objects to three times the number of objects in the node in
the preceding level. The experiments performed indicated
this value was a good choice.

We implemented the algorithm to manipulate the leaf
nodes after indexing the full data set. Fig. 12 plots the
regions of the leaves of trees created with the Sierpinsky
data set using the random splitting algorithm. Fig. 12a
shows the tree before the slimming-down and Fig. 12b
shows it after correction by the Slim-down algorithm. The
regions shown correspond to the minimum bounding
circles at the leaf level only (to avoid cluttering). The tree
in Fig. 12b clearly has fewer and tighter nodes (circles);
therefore, it should perform better. This is confirmed by the
relative fat-factor values, which are 0.03 for the tree in
Fig. 12a and 0.01 for the tree in Fig. 12b.

The Slim-down algorithm can be executed at many
different phases of the evolution of the tree. We list the
following variations:

1. As described earlier, the Slim-down algorithm is
only applied to the leaves of a full tree.

2. A similar algorithm can be applied to the higher
levels of the tree.

3. The algorithm can be dynamically applied for
slimming down the subtree stored in a node
immediately after one of its direct descendants has
been split.

4. When a new object needs to be inserted in a node
which is full, a single relocation of the farthest object
from one node should be tried instead of splitting.

Notice that introducing the concept of overlap between
nodes in metric trees allows the use of optimizations
already developed for spatial index structures in metric
access methods. For example, Variation 4 corresponds to
the shift-split technique already studied for spatial access
methods, like R-tree [16]. We believe that Variation 2 should
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Algorithm 3 - Slim-down
input: a built metric tree T, level h of the tree;
output: an improved metric tree T';

begin

from node / and insert it into node j.

w

else delete node i

to 3 must be re-applied.
end

1. For each node i in the level A of the tree, find the farthest object ¢ from the representative b.

2. Find a sibling node j of i, that also covers object ¢. If such a node j exists and it is not full, remove ¢
If node { is not empty then correct the radius of node i.

4. Steps 1 to 3 must be applied sequentially over all nodes of a given level of the tree. If after a full
round of these three steps, an object moves from one node to another, another full round from step 1

Fig. 9. The Slim-down algorithm.

Before Correction

After Correction

Fig. 10. How the Slim-down algorithm works.

improve the efficiency even more of the tree and it is a
promising direction for future research.

The treatment of nodes that become underoccupied after
the execution of the Slim-down algorithm depends on the
phase where it is executed. In Variation 1, under-occupied
nodes are removed and their objects are reinserted.
Through the field “number of entries in each child node”
(NEntries), this reinsertion operation becomes easier. We
implemented and tested Variations 1 and 3 and found that
both have similar results. Both variations can be applied
isolated or together and we found that, in general, the
improvements are cumulative when the variations are
applied together. In this paper, we present only the results
of Variation 1.

8 A FORMULA FOR ESTIMATION OF DiskK
ACCESSES FOR RANGE QUERIES

The same concept of measures presented in Section 5 will be
used in order to predict the number of disk accesses that a

Fig. 11. A cyclic move of objects without reducing radii.

range query of radius r, would require. In [26], a formula
was developed to predict the average number of disk
accesses for an optimal metric tree and, in the Appendix,
the development of this formula is shown. One of the
assumptions of that formula is that the expected probability
P;(0) of any point query g to fetch a given node m; can be
measured by taking the (hyper)volume covered by that
node divided by the overall volume covered by the metric-
tree. In [27] and [22], it was shown that, often, a real data set
behaves as a manifold with intrinsic dimensionality D € R.
Following this idea, a formula that allows estimation of the
number of disk accesses (on average) for range queries for
an optimal metric index tree is as follows:

Lemma 2. For an optimal metric tree, the average number of disk
accesses DA(r) on all nodes of the metric tree which are needed
to answer any biased range queries of radius r, can be
estimated as:

To

1 H-1 ' — D
DAOptimal(Tq) ~ D Z N}7< D\/ Nﬁ’ + ’f'q) . (3)
h=0

Proof. See [26]. O

However, this formula assumes that the overlap between
nodes is minimal, a typical assumption made when
developing a cost function. Because the absolute fat allows
measurement of the overlap between nodes for a given
metric tree, such optimistic assumptions are not necessary
anymore. Moreover, by taking advantage of the absolute fat
and estimating the average number of disk accesses for
range queries, the following conjecture can be made:
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Fig. 12. A tree indexing the Sierpinsky triangle using the random splitting algorithm. (a) Before the correction, the relative fat-factor is 0.03 and
(b) after the correction, the relative fat-factor is 0.01. Notice that there are fewer and tighter circles after the slimming-down.

Conjecture. Given a metric tree T, the number of disk accesses
DAr(ry) on all nodes of the metric tree which are needed to
answer any range query q with covering radius r, can be
estimated as

(1+ fat(T) - (M77 — 1)) N%(\”/N%}' + rq)D. )

1
TOD

>

=0

Justification. The reasoning for this conjecture is as follows:
Given that a tree with H levels has M total nodes, it will
have an average of M), = M’ 77 nodes in the & level. When
accessing the nodes to answer a query, at most My —1
are due to overlap because only a single node corre-
sponds to the correct one. Due to construction, the
absolute fat-factor gives the average proportion of the
nodes that overlap in each node of the tree. So, the term
fat(T) - (M}, — 1) represents, for each level & of the tree,
the average number of extra disk accesses that occur due
to overlap. Adding one to this number gives the total
number of disk accesses for each level i. Thus, modifying
(3) with this number to increase the predicted number of
disk accesses in each level of the tree will lead to (4).

Equation (4) holds for any tree because the overlap
between nodes is quantified by the absolute fat-factor of
the tree. When the metric tree is optimal, its absolute
fat-factor is zero and (4) turns into (3). When the metric
tree is as “bad” as possible (all nodes overlapping), its
absolute fat-factor is equal to one. In this case, all nodes
must be retrieved in order to answer any range query
and this can be seen by the summation on the number
of nodes per level M, in all levels of the tree. Section 9
of this paper presents plots comparing numbers of disk
accesses predicted by (4) and the real measurements
obtained with real Slim-trees built with an assortment of
data sets. Given the average values that are used, as
well as the assumptions made to obtain (3), a
mathematical proof that (4) is the real one is not
available. However, it makes sense as conjecture and the
experimental results indicate that it is at least a very
close approximation.

9 EXPERIMENTAL EVALUATION OF THE SLIM-TREE

This section provides experimental results of the perfor-
mance of the Slim-tree. The experiments were designed to
answer the following questions:

1. How good is the performance of the Slim-tree
compared with the M-tree?

2. How good is the performance of the new split
method MST compared with the minMax for both
insertion and query times?

3. What is the improvement achieved by the Slim-
down algorithm?

4. How accurate is the proposed formula for estimating
the selectivity for range queries?

We implemented the Slim-tree from scratch in C++
under Windows NT. The experiments were performed on a
Pentium II 450MHz PC with 128 MB of main memory. We
instrumented our implementation with counters for node
accesses and for distance computations. Since the perfor-
mance of insertions is largely determined by the CPU-time
(because of the required distance computations and the
complexity of split operations), only the total runtime for
creating metric trees is reported in the following. The six
previously introduced data sets were used in the experi-
ments. In each case, the metric tree was built by inserting
objects one by one. Thereafter, 13 sets of 500 range queries
were run for each data set, where the size of the range
queries was fixed for each set. In the following graphs, we
report the average number of disk accesses and distance
calculations obtained from a set of queries as the function of
the query size.

9.1 Comparing the Slim-Tree and the M-Tree

Since the M-tree is the only dynamic metric tree available,
its alleged best configuration was compared to the
correspondent Slim-tree. Figs. 13 and 14 show the query
performance of the Slim-tree and the M-tree for the six data
sets. Both trees were built using the minMax-splitting
algorithm. The corresponding capacities of the nodes used
in these experiments are reported in Table 2. Note that, for
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Fig. 13. The query performance (given by an average number of disk accesses) for the M-tree and the Slim-tree as a function of the query radius,
where each of the plots refer to one of our data sets.
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Fig. 14. The query performance (given by an average number of distance calculations) for the M-tree and the Slim-tree as a function of the query
radius, where each plot refers to one of our data sets.

both trees, the same settings of the parameters were used, the full data set—we use log scale for these radii to
leading to a fair comparison. highlight the behavior for different magnitude of radii. The

Fig. 13 presents the average number of disk accesses resulting average number of disk accesses is plotted in log
for different query radii. For the EnglishWords and scale to minimize the large difference resulting from queries
Portuguese-Words data sets, we show the results for each  yith small and large radii, which makes the comparison
possible distance (from one to the maximum number of ogier. Similarly, Fig. 14 shows the average distance
letters in a word). For the other data sets, we show different calculation for answering the same range queries issued
radii from 1/10,000 * of the maximum data set radius, upto i, Fig. 13. Notice that the query objects are randomly taken

2. For the Facelt data set, the radius begins at 1/100 because it reaches and are different for each radlus, but the same for both

the top of the resolution of the distance matrix. trees.
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TABLE 2
Parameters Used to Compare Slim-Tree with M-Trees

Dataset Num. of objects | Objects per node
N C
Sierpinsky 106,288 52
MGCounty 15,559 52
Eigenlaces 11,900 24
Facelt 1,056 11
EnglishWords 25,143 60
PortugueseWords 429,434 60

It can be seen from the plots in Fig. 13 that the Slim-tree
consistently outperforms the M-tree in number of disk
accesses. One of the reasons is that occupation of the nodes
is higher for the Slim-tree and, therefore, the total number of
nodes is smaller. This effect is visible for the Facelt and
EnglishWords data sets, where a large number of pages is
required for the large range queries. For the vector data sets,
however, both trees perform similarly for large query radii.
This is because the overlap of the entries is low and,
therefore, the different insertion strategies of the M-tree and
the Slim-tree perform similarly. Note also that, for large
query radii, it might be more effective to read the entire file
into memory (using sequential 1/O0s). However, it is
common to expect that the majority of queries radii are
rather small so that it is beneficial to use a metric tree. Notice
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that, for distance calculations, both Slim-tree and M-tree
perform similarly for the words data sets.

It is noteworthy to compare the most efficient M-tree (as
shown in Fig. 13) with the most efficient Slim-tree for the
same configuration (after Slim-down). Therefore, Fig. 15
presents a comparison of three trees; an M-tree and a Slim-
tree both before and after execution of the Slim-down
algorithm. The improvement of the trees is visible and the
absolute and relative fat corroborate this. For the Eigenfaces
data set, the absolute fat drops from 0.33 to 0.31 and the
relative fat from 0.55 to 0.50, after running the Slim-down
algorithm. For the EnglishWords data set, the absolute fat
drops from 0.48 to 0.38 and the relative fat from 0.53 to 0.39.
For the Facelt data set, the absolute fat drops from 0.42 to
0.41 and the relative fat from 0.69 to 0.59, after running the
Slim-down algorithm. Notice that the difference in relative
fat represents the difference in query performance between
the trees.

9.2 Comparing minMax and MST Splitting
Algorithms

Fig. 16 compares the query performance of two Slim-trees,
where one uses the minMax-splitting algorithm and the
other uses the MST-splitting algorithm. Such Slim-trees
were built using the default parameter values (see
Section 3.1) and no slimming down was performed. The
plots in Figs. 16a and 16b show the results for Sierpinsky
and Facelt, respectively, and show that both Slim-trees
perform similarly. Table 3 gives more details about the
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A Time Comparison of the Slim-Trees Using the minMax-Splitting Algorithm and the MST-Splitting Algorithm

TABLE 3

257

Slim-tree using the minMax-splitting algorithm Slim-tree using the MST-splitting algorithm
Datasets (wall-clock time in scc.) (wall-clock time in scc.)
build range queries build range queries

Sierpinsky 1,102.49 65.03 38.01 69.52
MGCounty 29275 20.13 7.79 2047
Eigenlaces 110.13 45.73 21.42 43.84
Facclt 12.90 3.35 10.68 3.34
EnglishWords 1,743.64 3,606.05 36.20 3647.41
PortugueseWords 65.739.70 96,192.30 1,700.19 96.576.15

Both trees were built using the default parameters. The numbers are wall-clock times in seconds.

comparison of the different splitting strategies. Here, the
columns “range queries” refer to the total wall clock time
required to perform the 500 queries for 13 radii (for the
EnglishWords data set, we used 22 radii and, for the
Portuguese, 25 radii). Note that the MST-splitting strategy
suffers slightly when the number of objects per node (the
capacity) is small. The columns labeled “build” show the
time taken to create the Slim-trees. The MST-algorithm is
clearly faster than the minMax-splitting algorithm. For
example, the MST-algorithm is faster by a factor of 40 for
the two-dimensional data sets. Overall, the MST-splitting
algorithm provides considerable savings when a Slim-tree
is created, and it gives almost the same performance as the
minMax-splitting algorithm for range queries.

The experiments comparing the splitting algorithms
show that the runtime of the MST-splitting algorithm is
increasingly better than the minMax-splitting algorithm as
the number C of entries per node increases. From the results
of the experiments, we propose the following rule of thumb:
When C (the capacity of the nodes) is lower than 20, it is
beneficial to use the minMax splitting strategy; otherwise,
use the MST-splitting algorithm. It is also important to
mention that the ChooseSubtree algorithm also influences the
splitting algorithms.

9.3 Experiments with the Slim-Down Algorithm

The Slim-down algorithm improves the number of disk
accesses for range queries on average between 10 to
20 percent for vector data sets. These data sets already

have a low relative fat, which indicates that there is little
room for improvement by using the Slim-down algorithm.
For data sets with bigger relative fat, such as the metric data
sets Facelt and EnglishWords, the average improvement is
between 25 and 40 percent.

We run the Slim-down algorithm on trees built with the
Slim-tree default parameters. Fig. 17 compares the query
performance of the Slim-trees before and after running the
Slim-down algorithm. Fig. 17a shows the results when the
minMax-splitting algorithm is used, whereas the results of
the MST-splitting algorithm are presented in Fig. 17b. Both
graphs show that the Slim-down algorithm improves the
Slim-trees. In general, only a small fraction of the build time
is required to slim down a Slim-tree (less than four seconds
for all data sets but EnglishWords and PortugueseWords).
For the EnglishWords and PortugueseWords data sets, the
majority of the time spent is in Step 4 of the Slim-down
algorithm (Fig. 9) trying to correct the object migration flaw,
which occurs because the distance used provides values in a
small range. In this case, the time to slimming down the tree
is about 10 percent of the build time.

Although the measurement of I takes some comput-
ing time, the alternative way to obtain values that
represent the performance of a metric tree is to issue
several queries for each given radius, accumulate the
average number of disk accesses or distance calculations,
their standard deviations, and then generate the corre-
sponding plots for many radii. The times spent calculating
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Fig. 17. Comparing the improvements given by the Slim-down algorithm to answer range queries. (a) minMax-splitting algorithm. (b) MST-splitting

algorithm.
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TABLE 4
Slim-Trees Built Using the MST-Splitting Algorithm with the Default Parameters without Running the Slim-Down Algorithm
Dataset Num. of | Max. # Number of Height Absolute| Relative
objects Objects nodes of the tree fat fat
N |pernode | M M, | H H,| fag | a0
C
Sierpinsky 106,288 60| 3015] 1803 4 3 0.01 0.01
MGCounty 15,559 60 516 266 3 3 0.01 0.02
Eigenfaces 11,900 30 602 412 3 3 0.33 0.55
Facclt 1,056 25 72 46 3 3 0.42 0.69
EnglishWords 25,143 60 586 428 3 3 0.48 0.53
PortugueseWords 429,434 60| 12829 7281 4 4 0.11 0.19

both the absolute fat and the average of disk accesses on
500 randomly generated queries was measured. The times
to obtain the absolute and relative fat is about 10 percent
of the total time required to ask 500 range queries on the
trees. Thus, it can be seen that the calculation of the fat-
factor is usually much faster than the other alternative.

The last two columns of Table 4 show the absolute fat
and the relative fat calculated for the Slim-trees using the
MST-splitting algorithm. Moreover, the number of objects,
the capacity, the number of nodes, and the height of the tree
are also presented. Note that parameter M refers to the
actual number of nodes and parameter M, gives the
minimum number of nodes. Analogously, parameters H
and H,,y, refer to the height of the Slim-tree.

The experiments show that the two splitting algorithms
lead to similar search performance, with MST having
significantly faster insertions. The experimental results
confirmed that the absolute fat-factor is suitable for

measuring the quality of a Slim-tree. As a rule of thumb,
it seems that a metric tree with an absolute fat between 0
and 0.1 can be considered a “good” tree. Table 4 shows that
the Slim-trees for Sierpinsky and MGCounty are indeed
“good” trees, but the trees for Eigenfaces, Facelt, English-
Words, and PortugueseWords have room for improvement.

9.4 The Accuracy of Our Proposed Selectivity
Formulas

Here, the results obtained from the measurement of real
queries in a Slim-tree are compared with estimations made
using (4). This measurement plots the average number of
disk accesses evaluated from the Slim-tree to answer
500 queries with each given radius. Fig. 18 shows the
measurements obtained from the six data sets and the
respective estimations using (4) versus the query radius.
There is no competing method for purposes of comparison.
For metric data sets, it is impossible to use even the
uniformity assumption.
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Fig. 18. Slim-trees for the six data sets using the MST splitting strategy. The plots are shown in log-log scales (except for the “EnglishWords” and
PortugueseWords data sets in linear-log) comparing the actual number of the disk accesses (bullets) inside one standard deviation (error bars) with
the estimated number of disk accesses using the absolute fat-factor (line).
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10 CONCLUSIONS

We have presented the Slim-tree, a dynamic metric access
method which uses new approaches to efficiently index
metric data sets. Our main contributions are as follows:

e new measurements, the absolute and the relative fat-
factor, to evaluate the overlap between nodes of a
metric tree,

e the Slim-down algorithm which leads to better trees,
decreasing the absolute and relative fat-factors
proposed,

e a new, significantly faster splitting algorithm based
on the minimal spanning tree (MST),

e a formula (4) that allows estimating the selectivity
for range queries using only a few parameters from
the tree,

e a visualization algorithm that helps the user to
understand how metric data is organized internally
by the Slim-tree, which can also be used as a tool for
data mining on the already stored data,

e a new ChooseSubtree algorithm for the Slim-tree
(minoccup) which leads to tighter trees, fewer disk
pages, and faster retrievals.

The Slim-down algorithm is designed for application to

a poorly constructed metric tree in order to improve its
query performance. The theoretical underpinning of the
Slim-down algorithm is our approach for computing
overlap in a metric tree. Although overlap is identified
as an important tuning parameter for improving query
performance for spatial access methods, it has not been
previously used for metric trees due to the inability to
compute the volume of intersecting regions. In order to
overcome this deficiency, we propose using the relative
number of objects covered by two (or more) regions to
estimate their overlap. This concept is used in the design
of the Slim-down algorithm. In this paper, we used the
Slim-down algorithm in a postprocessing step, just after
the insertion of all objects. This approach does not impede
subsequent insertions since it could also be used when
objects have yet to be inserted. In our experiments, the
Slim-down algorithm improves query performance up to
40 percent. The experiments also show that the Slim-tree
outperforms the M-tree up to 200 percent in terms of
number of disk accesses when performing range queries.

Our concept of overlap also leads to the introduction of

two factors, each of which expresses the quality of a Slim-
tree for a given data set using only a single number. The
absolute fat-factor measures the quality of a tree with a
fixed number of nodes, whereas the relative fat-factor
enables a comparison of trees where the number of nodes is
different. Moreover, we foresee that the proposed method
of treating overlaps in metric spaces allows us to apply to
MAM many well-known fine-tuning techniques developed
for SAMs. Taking advantage of the absolute fat-factor, we
derived a formula to estimate the selectivity for range
queries with considerable accuracy, typically within one
standard deviation of the actual value for meaningful
radius values.

The visualization algorithm developed for the Slim-tree

allows graphic perception of how the data is organized,

even if the data is in a high-dimensional or metric space.
This tool can also be used to help in data mining techniques.
Future work could focus on the use of the absolute and
relative fat for bulk-loading, as well as for analysis of other
operations, such as the nearest-neighbor queries.
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