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Simultaneous Detection of Lane and Pavement
Boundaries Using Model-Based Multisensor Fusion
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Abstract—This paper treats a problem arising in the design of
intelligent vehicles: automated detection of lane and pavement
boundaries using forward-looking optical and radar imaging
sensors mounted on an automobile. In previous work, lane and
pavement boundaries have always been located separately. This
separate detection strategy is problematic in situations when
either the optical or the radar image is too noisy.

In this paper, we propose a Bayesian multisensor image fusion
method to solve our boundary detection problem. This method
makes use of a deformable template model to globally describe the
boundaries of interest. The optical and radar imaging processes are
described with random field likelihoods. The multisensor fusion
boundary detection problem is reformulated as a joint MAP esti-
mation problem. However, the joint MAP estimate is intractable,
as it involves the computation of a notoriously difficult normaliza-
tion constant, also known as the partition function. Therefore, we
settle for the so-called empirical MAP estimate, as an approxima-
tion to the true MAP estimate. Several experimental results are
provided to demonstrate the efficacy of the empirical MAP estima-
tion method in simultaneously detecting lane and pavement bound-
aries. Fusion of multi-modal images is not only of interest to the in-
telligent vehicles community, but to others as well, such as biomed-
icine, remote sensing, target recognition. The method presented in
this paper is also applicable to image fusion problems in these other
areas.

I. INTRODUCTION

T HIS paper treats an important problem concerning nav-
igation of intelligent vehicles: automated detection of

lane and pavement boundaries using forward-looking optical
and millimeter-wave radar imaging sensors mounted on an
automobile. This boundary detection problem is particularly
difficult when no prior knowledge of the road geometry is
available (such as from previous time instants —see [1] and
[3]), and when the detection algorithms have to locate the
boundaries even in situations where there may be a great deal
of clutter in the images. The ability to detect pavement and lane
boundaries in the radar and optical images of a road scenario
is an enabling or enhancing technique for a number of driver
assisting applications, such as road departure or lane excursion
warning, intelligent cruise control and autonomous driving. All
of these applications have potential use in both military and
civilian contexts.
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Many gradient-based detection algorithms, which are appli-
cable for structured edges including lane and pavement bound-
aries, apply a threshold to the image gradient magnitude to de-
tect edges (see [4]–[7]). When a visual image has clearly vis-
ible lanes, and when the radar image has uniform regions with
good separation between the regions, good performance can
be obtained with these algorithms. However, real road scenes
seldom give rise to such clean images—there may be a great
deal of clutter in the images, radar images have extremely low
signal-to-noise ratio (SNR), or there are spurious boundaries in
the images.

Needless to say, it is difficult to select thresholds which elim-
inate noise edges without also eliminating many of the edge
points of interest, and so the conventional edge detection algo-
rithms described in [4]–[7] are not suitable for our boundary
detection problem under the above mitigating conditions.

A class of successful methods that overcome the thresholding
problem are studied in [7]–[11]. These methods work directly
with the image intensity array, as opposed to separately de-
tected edge points, and use a global model of lane and pavement
boundary shape. Two examples from this class are particularly
relevant to this paper:

1) Reference [9] presents a vision-based real-time algorithm
called LOIS for locating lane and pavement boundaries
using a deformable template global shape model. The
global shape model adaptively adjusts and aligns a tem-
plate so that it best matches the underlying features of
the lane and pavement-boundary over the entire image.
At the heart of LOIS is a matching function that encodes
the knowledge that the edges of the lane should be near
intensity gradients whose orientation are perpendicular to
the lane edge. This allows strong magnitude gradients to
be discounted if they are improperly oriented and weak
magnitude gradients to be boosted if they are properly ori-
ented. LOIS is shown to work well under a wide variety of
conditions, including cases with strong mottled shadows
and broken or interrupted lane markings, which pose a
challenge for gradient-based lane detection schemes.

2) Reference [11] presents a method for detecting pavement
boundaries in radar images. Like in LOIS, here too a de-
formable template model is used. The biggest difference
though is in the matching function: [11] uses the log-
normal probability model of the radar imaging process,
which was proposed in [8]. This function encodes the
knowledge that boundaries of the pavement should divide
the image into three “relatively” homogeneous regions.

In [9] and [11], the boundary detection problem on hand is
reformulated as a Bayesian estimation problem, where the de-

1524–9050/00$10.00 © 2000 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 6, 2009 at 14:29 from IEEE Xplore.  Restrictions apply.



136 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2000

formable template model plays the role of a prior probability
density function (pdf) and the matching function plays the role
of a likelihood pdf, respectively.

Note that previously lane boundary detection in optical
images [5]–[7], [9], [10], and pavement boundary detection
in radar images [8], [11]–[13] have always been studied
separately. However, a single sensor, either optical or radar
sensor, limits itself in the ability to sense and identify the
relevant features in varying environments. For example, the
optical sensor is not able to operate in a poorly illuminated
environment, while the radar sensor can not distinguish the lane
markers on the road. To take advantage of the strengths (and
overcome the weaknesses) of both the optical and radar sensors,
it is natural to think of combining the two different types of
sensed data together since multiple sensors will provide more
information and hence a better and more precise interpretation
of the sensed environment.

In this paper, we present a method for fusing the two
multi-modal images—vision and radar. The problem of interest
is simultaneous detection of lane and pavement boundaries
using images from both the modalities. Consideration of both
the modalities is meaningful because lane and pavement bound-
aries for the same road scene are highly correlated. The lane
and pavement boundary detection problem is re-formulated in
a Bayesian framework in this paper. The lane and pavement
boundary shapes are represented by a pair of deformable
template models, one in the ground plane and the other in the
image plane, respectively. And each model has an associated
set of deformation parameters. However, the model parameters
are correlated. A statistical distribution that expresses the
variability of and correlation between these parameters consti-
tutes the prior pdf for the Bayesian reformulation. A pair of
likelihood pdfs (matching functions) provide a relative measure
of how well the deformed templates of the lane and pavement
boundaries match the observed vision and radar images of a
road scene. Fusion of the multi-modal information is realized
by obtaining the joint maximuma posteriori (MAP) estimate
(see Figs. 7–10). The same framework can be extended to fuse
data from other modalities such as from infra-red, ultrasound
or single-beam radar sensors. We refer the reader to [14] and
[15] for examples.

Computing the joint MAP estimate involves the relative
weighting of the matching functions, corresponding to the two
likelihood pdfs. Without a proper choice of this weighting either
the vision or the radar matching function will always dominate
the other. A theoretically correct choice of weighting involves a
normalizing constant, whose determination is computationally
prohibitive. Instead we adopt the so-called empirical MAP
(Bayes’) estimate [16], [17]. The two matching functions are
linearly combined with a fixed weighting. This fixed weight is
experimentally derived by examining the individual matching
functions for a (training) set of vision and radar image pairs.
The weight is chosen so that the scales of variation for the
individual matching function contributions are approximately
the same over the entire training set.

Several experimental results are provided to demonstrate the
efficacy of this empirical MAP estimation method in simultane-
ously detecting lane and pavement boundaries. The information

gained by fusing data from both modalities is evident when these
results are compared to those obtained by processing each data
modality separately. The fused boundary detection results are
also compared to those obtained when no likelihood weighting
is used, to illustrate the advantage of weighting.

The rest of this paper is organized as follows: Section II con-
tains a detailed discussion on multisensor image fusion, espe-
cially as it applies to the lane and pavement boundary detec-
tion problem. In Section III, the deformable template global
shape models for both lane and pavement boundaries are de-
scribed, along with the prior pdf over the template shape pa-
rameters. Sections IV and V treat the radar and optical imaging
likelihoods, respectively. Section VI presents the Bayesian re-
formulation of the problem, along with a description of the joint
MAP method used to implement the multisensor image fusion.
Section VII presents the empirical MAP estimate. Section VIII
presents the computational issue of the empirical MAP estimate
and Section IX gives experimental results that illustrate the per-
formance of the proposed data fusion method. The paper con-
cludes with a detailed discussion of several relevant issues, in-
cluding possible future work, in Section X.

II. M ULTISENSORIMAGE FUSION

There has been a growing interest over the past few years in
the use of multiple sensors to increase the capabilities of intelli-
gent machines and systems. Multisensor fusion deals with inte-
gration of information from several different sources, aiming at
an improved quality of results, e.g., better decisions, robust be-
havior of algorithms, or improved classification accuracies. In
other words, fused images can significantly enhance system in-
terpretation capabilities and reliabilities. The major application
areas for image fusion include biomedicine [18], [19], remote
sensing [20]–[22], automatic target recognition [23], [24], and
autonomous landing guidance [25].

The intelligent vehicles community has been very active in
the image fusion area as well [14], [15], [26], [27]. The problem
of co-registering vehicle navigation data (proximity of the ve-
hicle ahead, map of the scene ahead, host vehicle position, speed
and heading direction, etc.) with concurrently obtained visual
images is of much interest to this community. The use of this
co-registered information for affecting various driver warning
and vehicle control tasks is also of interest. The problem at
hand, namely, the simultaneous detection of lane and pavement
boundaries from vision and radar images of the same road scene
has not been considered before. A related problem of simulta-
neous detection of lanes and obstacles from vision and radar
images of the same road scene has indeed received much atten-
tion recently [15], [26], [27]. However, the type of radar used,
the objects of interest, and the estimation methods employed are
all distinctly different from the ones in this paper.

The radar data and visual images used in this work
were all obtained from an imaging platform mounted atop
WOLVERINE I (Wheeled Onroad Lab Vehicle Enabling
Research Into New Environments), a self-contained test-bed
vehicle (Fig. 1). The imaging platform uses a 77 GHz frequency
modulated continuous wave (FMCW) radar sensor, with a
maximum range of 128 m (resolution 0.5 m) and angular field
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Fig. 1. Configuration of the test-bed vehicle.

of view of 64 (resolution 1). The imaging platform is also
equipped with a video camera that is bore-sighted with the
radar and captures a visual image of the same road scene (see
Figs. 1 and 2 for an illustration and the setup). The radar and
optical sensors sense the same road scenario simultaneously in
order to acquire pair of co-registered images of that scene.

The information contained in the optical image depends on
the reflectivity of the road illuminated by natural visible light.
The lane boundaries, i.e., the white or yellow lane markers,
constitute one of the two boundaries of interest to us and are
clearly visible in the optical image. The radar image is obtained
by illuminating the road scene with electromagnetic radiation
in the millimeter-wave spectrum (see [8] and [13] for a de-
tailed discussion of this image acquisition process). The rela-
tively smooth road surface forward scatters much of this inci-
dent electromagnetic power and hence returns very little power
back to the radar; the side of the road, because it is made up of a
coarser structure than the road, returns a slightly higher amount
of power. Thus, in the radar image, the road region is a little
darker than the road sides, and the boundaries of the road delin-
eate these three regions of different contrast.

Evidently, either optical or radar sensor used alone has lim-
ited capabilities for resolving ambiguities and providing consis-
tent descriptions of the road scenario due to the operating range
and limitation which characterize the sensor. The optical sensor
can provide high SNR images in a well-illuminated environment
such as a sunny day. Such images, which clearly reflect the lane

Fig. 2. Radar setup.

Fig. 3. Diagram of the optical and radar multisensor fusion.

information, are sufficient for the lane boundary detection task.
However, since it is a passive sensor and works at visible light
wavelengths, in an ill-illuminated environment, e.g., at night or
in foggy weather, the optical sensor will fail to provide suffi-
cient information about the lane boundary. The radar sensor, on
the contrary, being an active sensor and operating at millimeter
wavelengths, has the ability to penetrate through rain, snow, fog,
darkness, etc., i.e., it can operate under all weather conditions
and provides an “alternate” image of the scenario in front of the
vehicle. Thus the radar image, regardless the illumination sit-
uations, can give us the pavement boundary information, and
the precise geometry of the pavement boundaries can be subse-
quently used in a number of driver warning and vehicle control
tasks. The downside of the radar image though is its notoriously
poor SNR and low spatial resolution when compared to a visual
image of the same road scene.

Since the optical and radar sensors provide different but com-
plementary information about the road scene ahead of the ve-
hicle, if the two types of information are combined appropri-
ately and efficiently, the accuracy of the detected lane and pave-
ment boundaries can be improved. The optical and radar fusion
system shown in Fig. 3 exploits this redundancy, diversity and
complementarity between the two modalities.
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Redundancy is caused by the use of two sensors to measure
the same entity. It is well known that redundancy reduces un-
certainty. This can be appreciated from the fact that for two sen-
sors, the signal related to the measured quantity is often corre-
lated, whereas the uncertainty associated with each individual
sensor tends to be uncorrelated. To be specific, the lane and
pavement boundaries in the visual and radar images, respec-
tively, are highly correlated since they are concentric arcs on the
ground-plane and the lane boundaries are inside the road region,
while the degradations of this boundary information introduced
by the visual and radar imaging processes have completely dif-
ferent characteristics.

Since the vision and radar sensors measure the same scene
with different laws of physics, we obtain physical sensor diver-
sity. Another diversity, spatial diversity, which offers different
viewpoints of the sensed environment simply by having sensors
in different locations, also plays a very important role in multi-
sensor fusion. In our case, since both sensors are placed at al-
most the same location, spatial diversity is not an issue in our
work. However, it is because of the absence of spatial diversity
that we can greatly simplify the registration process, which is
usually very complicated.

Since the imaging system is made up of sensors each of which
observes a subset of the environment space (the optical sensor
offers information about the lane boundaries, while the radar
sensor offers information about the pavement boundaries), and
the union of these subsets makes up the whole road scenario, we
achieve data complementarity.

In order to realize the advantage of multisensor systems, in-
formation from multiple sources needs to be effectively com-
bined in a coherent and efficient manner to compensate for the
individual limitations and deficiencies of sensors. According to
the correlation level among data from different sensors, the fu-
sion methods can be classified into two major classes—weakly
coupled and strongly coupled data fusion [28]. In weak cou-
pling, the outputs of two or more algorithms that produce in-
formation independently are combined. The basic approach of
weakly coupled sensory fusion has been to pool the informa-
tion using what is essentially “weighted averaging” techniques
of varying degrees of complexity. In strong coupling, on the
other hand, the operation of one sensory module is affected by
the output of a second sensory module, so that the outputs of
the two modules are no longer independent. Since the lane and
pavement boundaries are concentric and the lanes are restricted
inside the pavement region, their geometric shapes are highly re-
lated. Specifically, the curvature and orientation of the lane and
pavement boundaries are nearly identical in the ground plane.
Also, the left and right lane markers have to necessarily fall in
the pavement region. Thus the problem of simultaneous estima-
tion of the lane and pavement boundaries falls into the strongly
coupled fusion category.

III. D EFORMABLE TEMPLATE MODELS OFLANE AND

PAVEMENT BOUNDARIES

In most cases, we can assume thata priori knowledge re-
garding the shape of the lane and pavement boundaries in the
optical and radar images is available. A commonly used shape

model for lane and pavement boundaries assumes that they can
be approximated by concentric circular arcs on a flat ground
plane. Such arcs, at least within a reasonable field of view, for
small-to-moderate curvatures, are well approximated by para-
bolic curves

(1)

where the parameteris the curvature of the arc, is the tan-
gential orientation, and is the offset. While the radius of cur-
vature and tangential orientation of left and right lane/pavement
boundaries will differ slightly, constraining the left and right
lane/pavement boundaries to have the same parametersand

closely approximates the actual edge shapes for all but very
small radii of curvature. Therefore, it is assumed that concentric
lane and pavement boundaries share the same parametersand

.
The radar image is composed of reflections from the ground,

and its domain is indeed the ground plane. Therefore, (1) can be
directly applied to model the shape of pavement boundaries in
the radar image. The domain of the visual image, however, is a
perspective projection of the ground plane, and hence (1) needs
to be rewritten in order to model the shape of lane boundaries
in the image plane. Assuming a tilted pinhole camera perspec-
tive projection model, parabolic curves in the ground plane (1)
transform into hyperbolic curves in the image plane:1

(2)

where

and

(3)

In other words, the parameter is linearly proportional to the
curvature of the arc on the ground plane. Theparameter is
a function of the tangential orientation of the arc on the ground
plane, with some coupling to the arc curvature as well. Thepa-
rameter is a function of the offset of the arc from the camera on
the ground plane, with couplings to arc curvature and tangential
orientation. The constants , and
depend on the camera geometry (resolution, focal length, height
of the camera from the ground plane, and camera tilt).

Let and de-
note the unknown lane and pavement boundaries’ parameters,
respectively. Let denote their adjoinment. By
changing the values of, various lane and pavement boundary
shapes can be realized (see Fig. 4).

The templates of the upper row in Fig. 4 illustrate a straight
road scenario with the deformation parameters ,

, , , , , .
The templates of the lower row demonstrate a curved road scene
with , , , , ,

, .

1See [6] for a derivation.
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Fig. 4. Boundary templates for the optical and radar images.

The problem of simultaneous detection of the lane and pave-
ment boundaries is now equivalent to the problem of estimating
. The elements of have to satisfy some constraints, and for

some elements of the range of physically meaningful values
they can possibly assume is knowna priori. Given a hypo-
thetical , its fidelity to the observed optical and radar images
can also be assessed. In this paper, we choose a probabilistic
Bayesian framework to express the constraints, thea priori be-
liefs, and the assessment of fidelity to data.

We present the so-called prior pdf here (fidelity to the data is
discussed in the next section)

(4)

where is an indicator function,

if satisfies relation

otherwise

and is the Kronecker delta function,

if

otherwise.

The terms on the first two lines of (4)’s RHS, correspond to
the constraints that the elements ofhave to satisfy. The first
two terms impose the constraint that the lane markers be con-
tained within the pavement region, the last two terms impose
the constraint that the lane boundaries’ curvature and orienta-
tion be precisely related to the pavement boundaries’ curvature
and offset via (3). The terms on the last two lines of (4)’s RHS

expresses thea priori beliefs that lanes and pavements can be
neither be too narrow nor too wide.

IV. RADAR IMAGING LIKELIHOOD

The true boundaries of the pavement separate the observed
radar image into three regions associated with the road surface,
the left side of the road, and the right side of the road. Given a

, its fidelity to the observed radar image is assessed by how
homogeneous the corresponding three (road, left, and right) re-
gions are. A log normal probability law [29] is used to derive
the homogeneity criteria.

We caution the reader that the radar returns over the the left,
right and road regions are not truly homogeneous. Sources
for nonhomogeneity including point-like scatterers (cars, sign
posts, retro-reflectors, etc.), changes in the off-road surface
(grass, gravel, etc.) and presence of periodic off-road structures
(bridges, fences, trees, etc.). Modeling all such variability is
impossible. The log-normal pdf is meant to be a reasonable but
low-complexity (two parameters per region) approximation to
the actual variations in the data.

The rationale for using the log-normal law, as opposed to
normal, exponential, or Rayleigh laws, is due to previous studies
[30]–[32]. To appreciate the appropriateness of the log-normal
pdf to describe radar returns, we refer the reader to Fig. 5, which
demonstrates that log-normal is an excellent approximation to
the radar return.

Let de-
note the range and azimuth coordinates of the pixels in the mil-
limeter-wave radar image . is a random field representing
the power of radar returns over the domain. Given the pave-
ment boundaries, it is assumed that the conditional probability
of taking on a realization (corresponding to a single ob-
servation) is given by the log-normal pdf

(5)

where , denote the mean and variance of the
region to which the pixel belongs. In (5), is used to
emphasize the dependencies of means and variances
on the unknown parameters. However, henceforth, in order
to make the representations concise, we will omit the explicit
references to .

In its present form, (5) is not very useful for assessing the
data fidelity of , due to the presence of nuisance parameters

and . In the sequel, (5) is rewritten as a function of these
nuisance parameters, and it reveals an intuitively appealing ho-
mogeneity criterion. Some additional notations are necessary:

• Let denote the number of pixels in
• Also let , , denote the Cartesian coordinates of

the pixels in the road, left-side and right-side regions, re-
spectively, and , and

denote the means, variances and the
numbers of pixels of the corresponding regions.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 6, 2009 at 14:29 from IEEE Xplore.  Restrictions apply.



140 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2000

Fig. 5. Rationale for using log-normal pdf. (a) shows a radar image overlayed with the correct positions for the left and right pavement boundaries. (b), (c), and
(d) show histograms of the actual radar returns for the three regions—the road, the left-side and right-side of the road. Also shown in (b), (c), and (d)are the
maximum likelihood fits of the log-normal, Rayleigh, and Gaussian pdf’s to the radar return histograms.

• Define

and

• Finally, let denote an indicator matrix defined as fol-
lows:

...

where for every such that , if belongs to th
region

if

if

These notations used to modify (5) can be expressed in terms
of the above notations
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(6)

Given a hypothetical shape of the pavement boundaries,
the nuisance parametersand , corresponding to the means
and variances of the three regions, can be empirically estimated
from the observed radar image by a maximum likelihood
method. Note that the likelihood is in a normal form, and so the
maximum likelihood and least squares estimate of the nuisance
parameters are equivalent

(7)

Substituting these estimates ofand back into (6), and
taking the logarithm results in

(8)

This result leads to the following interpretation:

Given a hypothetical pavement boundary shape, the
fidelity of this shape to the observed radar imageis as-
sessed by the sum of the variances of the observed image
over the corresponding three (road, left-side, and right-
side) regions. The smaller the sum of these variances, the
better the fidelity.

Weighted Log-Normal Likelihood

It is indicated in (8) that part of the objective is trying to maxi-
mize , i.e., to minimize

, i.e., trying to minimize the standard deviations, and
hence, variances of the three regions. However, in the radar im-
ages, it is clear that the backscatter distribution of the pavement
is virtually homogeneous while the backscatter distributions of
the roadsides are much more complicated. Therefore, we might
prefer having an even smaller variance in the road region at the
price of having slightly larger variances in the roadside regions.

In the above method, the variances are weighted propor-
tionately to the number of pixels in their respective regions.
In order for the standard deviation of the road, , to weigh
more heavily, in terms of its contribution to the likelihood,
would have to be proportionately large. The same is true for
the other two regions as well.

In order to re-enforce oura priori belief that road pixels tend
to be homogeneous (at least compared to the pixels belonging
to either side of the road), and to overcome the undue influence
of bright point scatterers in the roadside regions, we propose
a function that gives the region of the road a different weight

from those given to the roadside regions

(9)

In this paper, we will utilize (9) to describe the log-likelihood
of radar imaging process in a Bayesian estimation scheme

(10)

where

(11)

is the effective matching part of the log-likelihood
while is a constant for a specified image and thus can be
neglected in the estimation process.

V. OPTICAL IMAGING LIKELIHOOD

Recall that the radar likelihood evaluates the merit of a pave-
ment boundary hypothesis based on how homogeneous the cor-
responding radar returns over the corresponding left, right, and
road regions are. In the case of the optical image, given a hy-
pothetical lane boundary shape, the expectation is that pixels
in the observed optical image on and around the hypothetical
lane boundary will possess “lane-like” brightness features. The
brightness features of pixels that are further away from the hy-
pothetical lane boundary are unpredictable, and hence trimmed.
The optical likelihood evaluates the merit of each hypothesis in
terms how lane-like the coresponding (trimmed) optical image
pixels are. In this paper we use the likelihood pdf in [33], without
any modification, for evaluating the merit of a hypothetical lane
shape.

The likelihood described in [33] encodes the knowledge that
the edges of the lane should be near intensity gradients whose
orientation should be perpendicular to the lane edge. More
specifically, given a hypothetical parameter set of underlying
edges , we assume that the likelihood
of observing the optical image is given by

(12)

where denotes an energy function and is a
normalizing constant for a given optical deformation parameter
set

(13)

The energy function can be described in the fol-
lowing steps:

• Define the Cauchy density function

(14)

where is a pre-determined constant to control the width
of the Cauchy density function. It takes different values
when evaluating the contribution of the magnitude and di-
rection of the gradient at a pixel to the likelihood. In (16)

controls the portion of the contribution of magnitude
to the energy function, which is 0.01 in our experiment;
while controls the portion of the contribution of direc-
tion to the energy function, which is 1.13 in our experi-
ment.
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• Let be the gradient magnitude at pixel ,
with being the corresponding gradient direction.
Instead of the observed optical image, the gradient fea-
tures are used in the representation of the energy function.

• Define the edges of the lane in the image by the curves

(15)

Given these definitions, the energy function that is related to
the probability of observing an image gradient field given a set
of lane shape parameters is

(16)

Then is an unnormalized likelihood function. In
other words, the contribution made by a pixel to this function
is the gradient magnitude ( ) at that pixel, multiplied by a
function whose value decreases as the pixel column gets further
from the lane edge (effectively the data is trimmed) and a func-
tion whose value decreases as the gradient direction () at the
pixel becomes less perpendicular to the tangent to the lane edge.

The logarithm of the optical imaging likelihood is

(17)

VI. JOINT MAP ESTIMATE FOR LANE AND PAVEMENT

BOUNDARIES

Since the prior distributions of the deformation parameters
and the imaging likelihood pdfs are available, we shall pose the
lane and pavement edge detection problem in a Bayesian frame-
work. Let be a realization of the radar random field and

be a realization of the optical random field . The optical
and radar fusion detection problem can be solved by the joint
MAP estimate

(18)

According to the Bayes’ rule, we have

(19)

Since the denominator is fixed by the observation,
the above formula can be rewritten as

(20)

By the chain rule of conditional probability, we have

(21)
Given the road shape parameter, the lane shape parameter
is independent of the radar observation, i.e.,

(22)

and also given the lane shape parameter, the optical obser-
vation is independent of the radar observationand road
shape parameter , i.e.,

(23)

Substituting (22) and (23) into (21), and then substituting (21)
into (20), we have

(24)

Making use of the logarithm of the density functions, the joint
MAP estimate turns to

(25)

Calculating is intractable, as it involves an integration
over all the realizations of [see (13)]. We will use a relative
weighting to compensate for neglecting .

VII. EMPIRICAL MAP

Since in (25) is intractable, it is impossible to obtain a
theoretical estimate for deformation parametersbased on (25).
The primary difficulty we met in this edge detection problem
is that for the two imaging likelihood pdfs, the radar imaging
likelihood is normalized, while the optical imaging likelihood
is not. Instead of computing the normalizing factor , we
turn to the empirical MAP estimate

(26)
We expect the weighting factor to play the same role as the
normalizing constant .

The matching functions and are rel-
ative rather than absolute measure. This is the root cause of
the problem—the matching functions are of different dynamic
ranges within the parameter space of interest. Fig. 6 shows an
example of the different dynamic ranges. The dynamic range
of the radar matching function is , while the dynamic

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 6, 2009 at 14:29 from IEEE Xplore.  Restrictions apply.



MA et al.: SIMULTANEOUS DETECTION OF LANE AND PAVEMENT BOUNDARIES 143

Fig. 6. Different dynamic range of the matching functions for optical and radar
images. (a) Radar matching function. (b) Vision matching function.

Fig. 7. Wrong edge detection by no-weight scheme.

range of the optical matching function is . The instant
result of the difference in dynamic ranges is that in most cases,
the optical image dominates the joint estimate (Fig. 7).

In order to overcome this inherent deficiency, we scale (using
the weight ) one of the matching functions so that the ranges of
variation for the weighted matching functions are approximately
the same. This fixed weight is empirically derived by exam-
ining the individual matching functions for a (training) set of vi-
sion and radar image pairs. Our extensive experiments seem to
indicate that gives good performance for most image
pairs (Fig. 8).

VIII. C OMPUTATION OF THEEMPIRICAL MAP ESTIMATE

The problem is one of obtaining the maximum in (26), which
is equivalent to finding the mode of a six-dimensional density
surface. The surface is nonconcave with many local maxima,
hence we can not just apply the greedy search algorithms such

Fig. 8. Edge detection by fixed weight scheme.

as conjugate gradient methods. In this paper, we suggest two
techniques to find the global maximum:

A. Multi-Resolution Pseudo-Exhaustive Search

Exhaustive search can find the optimal solutions at the cost
of unacceptable computation resources in some optimization
problems. For the problem addressed in this paper, exhaustive
search is not feasible due to the large searching space. Instead,
a multi-resolution pseudo-exhaustive search method is studied.
First, we constrain the parameters in appropriate ranges. Then
we select a set of coarse step sizes (coarse grid) for the
parameters and do the pseudo-exhaustive search to find the
maximum of the joint MAP objective function (26). Once
this coarse maximum is found, the corresponding estimated
parameters are taken as the center of a finer search procedure
with finer step sizes (finer grid) and smaller ranges of the
parameters. Repeat the above step until the desired parameter
grid size is reached.

B. Metropolis Algorithm with Geometric Annealing

Although the multi-resolution pseudo-exhaustive search
gives us relatively accurate solutions, since we have six
parameters to estimate, the search procedure is very time
consuming (almost minutes per image pair). To accelerate the
maximization procedure, we employ a sub-optimal approach,
the Metropolis algorithm [9] with a geometric annealing
schedule [34], to perform this maximization,

1) Set , and initialize .
2) Calculate .
3) Pick at random among all the possible parameter values

in the neighborhood of .
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Fig. 9. Comparison of the fusion method and single sensor-based method.

4) Calculate .

5) Calculate

where .
6) Update the curve deformation parameters

if

w.p. if

otherwise

7) Set and go to Step 2.
The running time is now about 20 s per image pair. We are

confident that by optimizing our implementation, we can run
this algorithm in real-time.

IX. PERFORMANCECOMPARISON

We have applied the proposed multisensor fusion method
to jointly detect the lane and pavement boundaries in reg-
istered radar and optical images. We have implemented
the scheme described in this paper on a data set con-
taining 25 vision and radar image pairs. These image pairs
were acquired under a variety of imaging conditions (see
http://www.eecs.umich.edu/~bingm/database.pdf) including
nighttime, fog, rain, snow, etc. In some of the optical images
the lane boundaries are not so easily discerned and extracted,

conversely in some radar images the pavement boundaries are
not so easily discerned and extracted. Figs. 9(a) and (b) and
Figs. 10(a) and (b) show examples of optical and radar image
pairs where such problems occur.

Since multiple (radar and optical) sensors provide more
information and hence a more precise interpretation of the
sensed environment, the performance of lane and pavement
boundary detection is robust and accurate. For representative
road scenes, the results obtained via independent optical and
radar edge detection algorithms are illustrated in Figs. 9(a)
and (b) and Figs. 10(a) and (b), and the results with the fusion
method are shown in Figs. 9(c) and (d) and 10(c) and (d).
Fig. 9 demonstrates that the radar image improves the lane
detection in the optical image in some situations, while Fig.
10 demonstrates that the optical image improves the pavement
edge detection in the radar image in other situations. Both
examples indicate that the fusion method outperforms edge
detection independently extracted from single sensors. We also
noticed that fusion does not degrade the performance of the
individual detection results when they are good by themselves.

To compare the advantage of the fusion method over the
single sensor detection methods and to appreciate the role of
likelihood weighting, we undertake a large experiment. For
the database of 25 vision and radar image pairs referred to
earlier, we hand-picked ground truth and plot the average
detection errors compared to ground truth in Figs. 11 and
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Fig. 10. Comparison of the fusion method and single sensor-based method.

Fig. 11. Advantage of the fusion method over single sensor-based method.

12. Fig. 11 shows the reduction in detection errors when the
two data modalities are fused, compared to processing them
individually. Fig. 12 shows the reduction in detection errors
when the likelihoods are relatively weighted using ,
compared to when no weighting is used.

X. DISCUSSION ANDCONCLUSION

One of the emerging problems in intelligent vehicle and
highway systems, the simultaneous detection of lane and
pavement boundaries, is investigated in this paper. We employ a
novel Bayesian multisensor fusion technique to locate the lane

and pavement edges in the optical and radar images. We make
use of the deformable template model to globally describe
the lane and pavement boundary shapes. This global shape
model enables the method to successfully disregard extraneous
edges. Likelihood models of the radar and optical imaging
processes are introduced, and the simultaneous boundary
detection problem is posed in a Bayesian framework. It is
shown that the resulting joint MAP estimate is intractable.
This difficulty is overcome by a likelihood weighting scheme,
resulting in an empirical Bayes’ estimate, which is entirely
tractable. Experimental results are used to demonstrate that
this fusion method operates robustly in detecting the lane and
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Fig. 12. Advantage of the fixed weighting scheme over no weight scheme.

pavement boundaries. A comparison is made between the
results of this fusion method and those obtained by processing
the individual modalities separately, and also those obtained
when no likelihood weighting is used.

Although we have found the performance of the empirically
determined weight to be satisfactory, we are still interested in a
better weight selection scheme. We are currently studying the
role of likelihood curvatures in determining this weight. Since
likelihood curvature is intimately related to estimator variance,
we hope to obtain a more mathematically appealing approxima-
tion to the true joint MAP estimate in future.
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