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A Probabilistic Approach to Aircraft Conflict
Detection
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Abstract—Conflict detection and resolution schemes operating
at the mid-range and short-range level of the air traffic manage-
ment process are discussed. Probabilistic models for predicting
the aircraft position in the near-term and mid-term future are
developed. Based on the mid-term prediction model, the maximum
instantaneous probability of conflict is proposed as a criticality
measure for two aircraft encounters. Randomized algorithms
are introduced to efficiently estimate this measure of criticality
and provide quantitative bounds on the level of approximation
introduced. For short-term detection, approximate closed-form
analytical expressions for the probability of conflict are obtained,
using the short-term prediction model. Based on these expressions,
an algorithm for decentralized conflict detection and resolution
that generalizes potential fields methods for path planning to a
probabilistic dynamic environment is proposed. The algorithms
are validated using Monte Carlo simulations.

Index Terms—Air traffic management automation, conflict de-
tection, probabilistic modeling, randomized algorithms.

I. INTRODUCTION

DESPITE technological advances such as powerful
on-board computers, advanced flight management sys-

tems (FMS) and positioning and communication systems
such as the global positioning system (GPS) and automatic
dependence surveillance-broadcast (ADS-B), the current air
traffic management system (ATMS) is still, to a large extent,
based on:

• a rigidly structured airspace(Fig. 1), where the aircraft are
forced to fly along predefined jetways without the possi-
bility of selecting optimal routes and utilizing favorable
winds (with a few exceptions at altitudes where the air
traffic density is low);

• a centralized, mostly human-operated system architecture,
where the air traffic controller (ATC) on the ground is re-
sponsible of aircraft separation by issuing trajectory spec-
ifications to the pilots.
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Fig. 1. A sketch of the current ATMS structure organized in air route
traffic control centers (ARTCCs), special use airspace (SUA) areas,
TRACON facilities, with the aircraft flying along very high frequency (VHF)
omni-directional range (VOR) jetways and entering the TRACON through
gates.

For a more detailed account of the current ATMS practice (see,
for example, [1] and [2]).

The increasing demand for air travel is stressing the current
ATMS. This is likely to cause both safety and performance
degradation in the near future. It is believed that by increasing
the level of automation, the efficiency of the ATMS can be
improved and the tasks of human operators can be simplified.
This will allow them to handle the increased demand in air
traffic in a more reliable way, possibly enhancing the level of
safety over the current system.

The primary concern of all advanced ATMS is to guarantee
safety. Safety is typically quantified in terms of numbers of con-
flicts, i.e., situations where two aircraft come closer than a cer-
tain distance to one another. The safety distance is encoded by
means of a minimum allowedhorizontal separationand a min-
imum vertical separation.Currently, for en-route airspace the
minimum horizontal separation is 5 nmi, while inside the ter-
minal radar approach control (TRACON) area it is reduced to 3
nmi. The minimum vertical separation is 2000 ft above the alti-
tude of 29 000 ft (FL290), and 1000 ft below FL290.

The prevention of conflicts involves a two stage process. In
the first stage,conflict detectionis performed. The positions of
the aircraft in the future are predicted based on their current po-
sitions and flight plans. A potential conflict is declared if the
predicted positions of any two aircraft violate the safe separa-
tion requirements at some time in the future. In this case, the
trajectories of the aircraft involved in the conflict are replanned
in theconflict resolutionstage.
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Conflict detection and resolution is performed at three dif-
ferent levels of the ATM process.

1) Long Range:Some form of conflict prediction and reso-
lution is carried out at the level of the entire national airspace
system (NAS), over a time horizon of several hours [3]–[5].
It involves composing flight plans and airline schedules (on a
daily basis, for example) to ensure that airport and sector ca-
pacities are not exceeded. This is typically accomplished using
large-scale integer and linear programming techniques.

2) Mid-Range: Conflict prediction and resolution is carried
out by ATCs, over horizons of the order of tens of minutes. It
involves modifying the flight plan on-line to ensure adequate
aircraft separation. Semi-automated tools have been developed
to assist ATCs with these decisions. For example, the center
TRACON automation system (CTAS, [6]), which is based on
the algorithms of [7], [8], operates within the terminal area and
the en-route airspace around it. On the other hand, the conflict
probe based on the user request evaluation tool (URET, [9]),
operates within the en-route airspace. The algorithms and tech-
niques of [10], [11] can also be used at this level.

3) Short Range:Conflict prediction and resolution is also
carried out on board the aircraft by the FMS, over horizons of
seconds to minutes. The traffic alert and collision avoidance
system (TCAS, [12], [13]), currently operating on all commer-
cial aircraft carrying more than 30 passengers, is such a predic-
tion/resolution algorithm. The algorithms of [10] and [11] also
belong to this category.

An excellent survey of the different conflict detection and
resolution schemes found in the literature is presented in [14],
where the schemes are classified according to the modeling
method used for projecting the aircraft position in the future.

One of the difficulties in predicting aircraft positions is mod-
eling the perturbations influencing their motion. The future mo-
tion of the aircraft is affected by uncertainty, due primarily to
wind, but also to errors in tracking, navigation, and control.
However, the resultant deviation from the nominal trajectory can
reasonably be modeled as the sum of a large number of indepen-
dent random perturbations acting in disjoint time intervals and,
thus, it is expected to be Gaussian. This hypothesis was indeed
verified by air traffic data in [15], [16].

In a probabilistic approach to conflict prediction, the uncer-
tainty affecting the aircraft motion is taken into account by con-
sidering the ensemble of sample paths and computing the prob-
ability of projected conflicts. This avoids the conservativeness
of the worst-case approach (used in [11], [17], for example),
but is still robust with respect to uncertainty. The main issues
are then building a simple but realistic probabilistic prediction
model and computing the probability of conflict based on that
model.

In [7], [8], and [10], a probabilistic description of the global
effect of the perturbations entering the aircraft motion is pro-
posed. The tracking errors are described by zero-mean Gaussian
random variables, with the variance of the along-track compo-
nent growing quadratically with time

(1)

the variance of the horizontal cross-track component
growing quadratically with the traveled distance until it
saturates at a fixed value

(2)

and, finally, the variance of the vertical cross-track component
remaining constant. In [7], it is argued that this model is
fairly accurate for predicting the position of an aircraft over a
mid-term horizon of the order of 20 min, as it reflects the fact
that pilots tend to correct cross-track errors in the short term,
while dealing with along-track errors in the long term, using
small changes in speed.

Based on the above probabilistic description of the aircraft
motion, two main methods have been proposed for computing
the probability of conflict for two aircraft encounters. In [7],
a closed-form analytic expression for the probability of con-
flict for level flight is derived, assuming that the two aircraft
fly along straight lines with constant tracking errors over the
whole time horizon. In spite of its simplicity, which makes it
very attractive for on-line computation, the exact interpretation
of the proposed criticality measure is unclear when these sim-
plifying assumptions are not satisfied. In [10] and [18], Monte
Carlo simulation is used to compute the probability of conflict.
This approach does not require particular assumptions and can
be applied to many different scenarios, but is computationally
intensive and therefore may not be suitable for on-line imple-
mentation (though promising attempts have been reported in the
literature [18]).

In this paper, we introduce two probabilistic prediction
models, one for mid-range and one for short-range conflict
detection. Both are inspired by the empirically motivated
probabilistic model described above. The two models are
intended to work together at different levels of the ATMS.
The mid-range model is meant to provide centralized conflict
information to the ATC, in a role similar to that of CTAS in
the current ATMS. The short-range model on the other hand
operates at a “lower level” to provide decentralized advisories
to the pilots, in a role similar to the one currently played by
TCAS. For simplicity, we deal with the level flight case. The
extension of the proposed approaches to the nonlevel flight
case is straightforward as remarked in Section IV.

The prediction model developed for mid-range conflict de-
tection Section II, is simple and realistic, but does not allow
the derivation of a closed-form expression for the probability
of conflict. Based on this model, we propose a different mea-
sure of criticality for two aircraft encounters, give a procedure
for estimating it, and quantify the level of accuracy achieved. An
algorithm for mid-term conflict detection is then proposed and
its performance is compared to that of the algorithm in [7] by
Monte Carlo simulation. The simulations are based on a more
detailed, stochastic, ordinary differential equation model for the
motion of the aircraft. They suggest that the proposed mid-term
conflict detection algorithm has superior performance to the one
of [7], at the cost of increased computational load. However, we
show that, for the same level of approximation, the load in com-
puting our criticality measure does not significantly increase
when we go from the two-dimensional (2-D) to the three-di-
mensional (3-D) case; in contrast, the computational load for
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the algorithm of [7] is likely to increase substantially, since a
closed-form expression like the one used in [7] for level flight
is not available for nonlevel flight. Further work to evaluate the
performance of our approach in terms of computational load as
a function of the level of approximation introduced is currently
underway.

In Section III, we propose a model for short term prediction
based on an approximation of the mid-term prediction model.
The aircraft motion is modeled as a deterministic motion plus
a (scaled) Brownian motion perturbation whose variance grows
linearly with time, instead of quadratically. The probability of
conflict is shown to be the probability that a Brownian motion
escapes from a time-varying safe region. Approximate expres-
sions for the probability of conflict are obtained in closed form,
thus allowing for very fast computations. Based on these expres-
sions, an algorithm is proposed for decentralized conflict reso-
lution. This algorithm is used for evaluating the efficacy of the
proposed short-term criticality measure by Monte Carlo simu-
lations.

Developing tools for automated conflict detection and reso-
lution is currently a research topic of great interest to the air
traffic control community. This interest is motivated by the Fed-
eral Aviation Administration (FAA) “free flight” initiative [19],
an attempt to increase the ATMS flexibility by allowing aircraft
to fly more user preferred routes from origin to destination. Pos-
sible implications of our research on the current FAA program
are discussed in the conclusions.

II. M ID-RANGE CONFLICT DETECTION

A conflict prediction and resolution scheme at the ATC level
can be viewed as a feedback control scheme, where the ATC, air-
craft, and radar correspond to theplant (ATC and radar playing
the role of actuators and sensors respectively), and the detec-
tion and resolution components correspond to thecontroller.
Our goal is to design the two “controller” modules and verify
that the closed-loop system possesses certain desirable proper-
ties. In the present section, we restrict our attention to specific
suggestions for detection and validation, describing only briefly
in Section IV our current work on mid-range conflict resolution.

We consider two aircraft flying in the same region of the
airspace, each following its individualflight plan. The flight
plan is assumed to consist of a sequence ofway pointsand a se-
quence ofspeedsfor moving between them. Based on this infor-
mation and on the measurements of the current positions of the
aircraft, the models developed in [7] and [8] can be modified to
provide empirically motivated estimates of the probability dis-
tribution for the projected positions of the two aircraft in the near
future. One can then define theinstantaneous probability of con-
flict at a future time as the probability that one aircraft will
enter the protected zone around the other one. Conflict detection
consists of estimating this probability and initiating some action
when it is “high.” The design choices that enter into conflict de-
tection are the different ways of weighting the value of at
various time instants and the different ways of computing esti-
mates of . Here, we declare conflicts based on the maximum
value of over a prediction horizon. Randomized techniques

are used to both estimate and compute its maximum. The
advantage of randomized techniques is that they tend to be com-
putationally efficient. They also provide analytical bounds on
the accuracy of the approximation involved, provided one makes
appropriate design choices. The parameters that one needs to set
are the prediction horizon and the threshold for declaring a con-
flict. Systematic guidelines for setting threshold values can be
found in [20].

Performance of a conflict prediction/resolution scheme
is measured in terms of safety, impact on ATC workload,
and efficiency (impact on fuel consumption, deviations from
schedule, etc.). Here, we restrict our attention only to the issue
of safety. It should be noted, however, that safety is closely
coupled to ATC workload, as the controllers may choose to
disregard disruptive advisories. We model the aircraft motion
by means of a stochastic differential equation and evaluate the
performance of the detection scheme in terms of probability of
false alarms and successful alerts by Monte Carlo simulations.
The simulation results are also used to tune the threshold of
the algorithm, in an attempt to optimize the tradeoff between
the probability of successful alerts and the probability of false
alarms. At a later stage we hope to be able to provide theoret-
ical bounds on the safety of the proposed design—including
the resolution component—and estimate its impact on ATC
workload by means of human-in-the-loop simulations.

This section is organized as follows. In Section II-A, we in-
troduce the probabilistic models on which we base our detec-
tion scheme and the validation. In Section II-B, we describe the
detection scheme, explain how we deal with the computational
issues and formulate a randomized algorithm for its implemen-
tation. Simulation results are reported in Section II-C.

A. Probabilistic Models

We restrict our attention to the level flight case. This is pri-
marily for ease of exposition, since the generalization to the 3-D
case is straightforward, the only added difficulty being the more
complex notation [22]. We assume that the trajectory specifica-
tions the aircraft receives from the ATC are in terms of a se-
quence of way points , , and a sequence
of speeds, , , for moving between consec-
utive way points. These two sequences constitute theflight plan.
At a given time, way points in the past are discarded from the
flight plan. Therefore, at all times, the first way pointencodes
the current position of the aircraft. We assume that the flight
plan of the aircraft over the time horizon of interest is knowna
priori in its entirety, except, of course, , which is measured by
radar and depends on how well the aircraft is tracking the flight
plan. In this paper, we ignore errors in the radar measurements.
This assumption can be justified by noticing that uncertainty in
the initial position quickly becomes dominated by the perturba-
tion to the aircraft motion as time goes on [7], [10]. A model
including radar measurement errors is proposed in [21].

1) Prediction model:For the purpose of conflict prediction,
we assume that each aircraft tries to follow its flight plan moving
along the straight line joining successive way points and

with the prescribed speed . The nominal arrival times
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Fig. 2. Mid-range prediction model for the aircraft motion.

of the aircraft at the way points can be recursively
computed by

(3)

for , initialized with (recall that
encodes the current position of the aircraft). Based

on the nominal arrival times, thenominal distance trav-
eled by the aircraft, , and its nominal posi-
tion, , at time , are, respec-
tively, given by and

,
, initialized with and .

The prediction of the aircraft position in the future is af-
fected by uncertainty. Following [8] and [10], we assume that
the aircraft predicted position can be modeled as a multivariate
Gaussian random variable. Let
denote the aircraftpredicted positionat time . We assume that

is normally distributed with mean

(4)

For the covariance matrix , we assume that the variance
of the predicted position increases with time in every direction,
reflecting the fact that the uncertainty on the aircraft position
tends to increase the further we try to project into the future. Fol-
lowing [7] and [8], we assume that the variances of the predicted
position in the along-track and cross-track directions and

grow according to (1) and (2), respectively, and that the
along-track and cross-track error components are independent.

Denote by the heading of the aircraft at time
, i.e., the angle that vector makes

with the axis of the global framework in which the s are
given. Then, the covariance matrix for is
given by

(5)

where diag is the covariance matrix in
the body coordinate frame and is the rotation matrix asso-
ciated with the angle

(6)

In Fig. 2, the prediction model for the aircraft motion is drawn
with the ellipses representing equiprobability curves of the
probability distribution along the aircraft
nominal trajectory. Note that “jumps” instantaneously
at the way points; more precisely, it is discontinuous as a
function of time, with the discontinuity points being at the
time of heading changes. The assumption of
instantaneous turns introduces, in general, inaccuracy in the
evaluation of the probability of conflict near the way points.
These discontinuities can be avoided by using a more realistic
nominal trajectory with smooth turns, such as the one computed
by the trajectory synthesizer implemented in CTAS.

2) Validation model: To validate a mid-range conflict detec-
tion algorithm using statistics collected through Monte Carlo
simulation, we need stochastic models to generate trajectories
for the aircraft motion. The model proposed above for predicting
the position of an aircraft in the future is simple and allows fast
computations, which makes it ideal for on-line conflict detec-
tion. However, it has certain built-in inaccuracies, which may
make it inappropriate for generating trajectories for simulation
or validation. In particular, the prediction model:

1) does not describe the correlation among the random vari-
ables describing the projected positions of the aircraft at
different time instants;

2) ignores the possible correlation between the cross-track
and along-track errors;

3) uses simple nominal position assumptions and supposes
instantaneous turns.

For validation, we would like to have a model to generate trajec-
tories that alleviates as many of the drawbacks of the prediction
model as possible. This validation model will invariably be more
complicated than the prediction model and, therefore, more dif-
ficult to compute with; this is not a major concern however, as
it will only be used off line.
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We introduce a stochastic ordinary differential equation
model for the aircraft motion that succeeds in eliminating
one of the sources of inaccuracy: it provides a formal way of
correlating the positions of a single aircraft at different points
in time, while maintaining at each time instant the statistics of
the prediction model.

Consider an aircraft moving in and let
denote its position with respect to a global coordinate frame.
Assume its velocity has magnitudeand makes an angle
with respect to the axis. Consider a body coordinate frame

with aligned with the aircraft velocity and
perpendicular to it. The two frames are related through a coor-
dinate transformation

(7)

where is the rotation matrix of (6) anddenotes the posi-
tion of the origin of the body frame with respect to the inertial
frame.

In light of the above discussion, (7) can be reinterpreted as
follows:

• the origin of the body coordinate frame represents the
nominal position of the aircraft;

• and represent the variation of the aircraft position
with respect to the nominal in the along-track and cross-
track directions, respectively;

• represents the actual position of the aircraft once one
takes into account the uncertainty in the along-track and
cross-track directions.

We assume that the perturbation affecting the aircraft motion
is generated through the stochastic ordinary differential equa-
tion (ODE)

(8)

where and is a white
Gaussian noise process independent of , with zero mean
and covariance . We shall show below that by appropri-
ately selecting matrix and the covariance matrices and

, we are able to obtain uncorrelated Gaussian along-track
and cross-track errors whose variance mimics the behavior of
(1) and (2).

By differentiating (7) and using (8), we get a nonlinear kine-
matic model for the aircraft motion, which, by modeling turns
as discrete events occurring at the way points, reduces to the
piecewise linear stochastic differential equation

(9)

with , ,
, initial conditions , and

switching times given by (3).
The validation model can be thought of as astochastic hy-

brid dynamical system, with discrete eventsturn occurring at
the way points. The effect ofturn is to update and . Based on
this interpretation, we are currently studying a method for for-
mally evaluating the safety properties of detection algorithms
formulated in this probabilistic framework.

3) Tuning of the validation model parameters:For our sto-
chastic validation model to resemble the statistics derived from
air traffic data [15], [16], we need to appropriately tune its pa-
rameters, that is the covariance matrices and , and
the matrix . The tuning is based on the following proposition,
whose proof is omitted since it easily follows from standard re-
sults for stochastic ODEs [23].

Proposition 1: Consider the stochastic differential equation
, where is a white Gaussian

noise process with diag ,
, independent of diag .

Set

and

where (10)

Then, and are independent Gaussian processes with
zero mean and variance

(11)

(12)

By tuning the parameters in (8) according to (10), we can make
resemble the empirically observed characteristics of the

along-track and cross-track errors. In fact, var in (11)
has the same growth rate as the along-track variance in
(1) and var in (12) monotonically increases to the satura-
tion value as the cross-track variance in (2). The time
constant of the decaying exponential in (12) is equal to 1/2 of
the time required for to reach the saturation
value in the case when the aircraft trajectory is a straight line
traveled with speed . For and nmi (values
estimated on real traffic data [15], [16]) and for nmi/h
(typical cruising speed) this time is about 6 min. Therefore, by
setting , we get that var reaches 86% of
the saturation value in about 6 min.

B. Conflict Detection Algorithm

Consider aircraft sharing a region of the airspace and
flying at the same altitude. A conflict occurs when an aircraft
enters theprotected zone, , around another aircraft, which, for
level flight in the en-route space is a circle of radius nmi

(13)

We assume that each aircraft, say, has been assigned a flight
plan , and , .
Then, the overall encounter can be described through the
configuration of the aircraft system, which consists
of the flight plans of all aircraft, i.e., ,

.
Conflict detection involves extracting some measure of

how critical the current configurationis, comparing this mea-
sure to a threshold and declaring a conflict if the threshold is
exceeded. The process should be repeated every time the config-
uration changes, that is every time a new measurement comes
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in from the radar, or every time the ATC changes a flight plan.
In pseudocode, this can be encoded by the following.

Algorithm 1 ( General Conflict Detection )
when changes do
begin

Compute
if declare a conflict

end .

The rest of this section deals with the implementation of
this piece of pseudocode. This involves deciding on a measure
of criticality, , developing an efficient algorithm for com-
puting it for a given configuration and setting the threshold

. We first introduce a probabilistic measure of criticality for a
two aircraft encounter based on the prediction model presented
in Section II-A. We then present an algorithm for computing
it, making use of stochastic estimation algorithms. We post-
pone the discussion on the computation of the threshold to
Section II-C, where the performance of our detection algorithm
is validated by Monte Carlo simulations using the stochastic
ODE model of Section II-A.

1) Measure of criticality: Consider two aircraft A and B
flying at the same altitude and let and denote their posi-
tions in the inertial reference frame. Given the probability den-
sity function for the separation of
the two aircraft at time, the instantaneous probability of con-
flict at time is given by

(14)

In the algorithm proposed here, conflict detection is based on
the maximum value of the probability of conflict over a
finite horizon of length , i.e.,

(15)

The time horizon is chosen to be equal to 20 min. This is
because the computation of is based on the prediction
model introduced in Section II-A, which is valid over a 20 min
horizon [7]. As part of this work, other measures of criticality
were also considered, most notably, different weighted averages
of over the horizon , including the average value.
These measures were found to be less effective, since for most
conflicts tends to exhibit a sharp “spike” near the point of
conflict and is fairly low elsewhere.

Based on the prediction model in Section II-A, we consider
the case when the two aircraft positions and are
Gaussian random variables,1 ,

, with and given by (4) and (5). If we further
assume that and are uncorrelated, then the separation

between the predicted positions of two aircraft at time
is a Gaussian random variable, , with
mean and covariance matrix

.

1In principle, this algorithm can be used for any probability distribution of the
aircraft positions, the main problem being integrating the resultant distribution
for their separationd(t) over the protected zoneC.

It is important to note that the assumption that the positions
of the two aircraft are uncorrelated, though commonly used [8],
[10], is rather unrealistic. The tracking error is primarily due
to wind, which may correlate the positions of the two aircraft,
especially near the conflict point where the aircraft are close to
each other. Modeling the tracking error correlation properties
is not dealt with in this paper, though it obviously needs to be
addressed in future work.

2) A Randomized conflict detection algorithm:The major
obstacle in the implementation of the proposed conflict detec-
tion scheme is the computation of . The problem is that one
cannot derive an analytical expression for ; even the com-
putation of for a given is time consuming. This turns
out to be a major obstacle for on-line implementation, where
computation is subject to time constraints. To solve this problem
we introduce an algorithm for computing an approximate solu-
tion to the optimization problem and set up a methodology to
provide a quantitative estimate of the level of approximation in-
troduced. Our results build on the theory of empirical processes,
whose main aim is to study how to estimate unknown quantities
through experimentation [24].

Suppose for the time being that given a , we are
able to compute with no error. Then, we can resort to the
following algorithm to compute .

Algorithm 2 [ Randomized Estimate of ]
Initialization : Choose an integer and

set
for
begin

Extract at random according to
the uniform probability distribution
if then

end .

Clearly, since we are testing just values of for de-
termining the maximum over the time interval , will
be an approximation of . In addition, the quality of the ap-
proximation is random due to the stochastic selection of thes.
Nevertheless, a quantitative statement showing thatis a good
approximation in a probabilistic sense can be proved based on
the following theorem.

Theorem 1 (Randomized Optimization):Let be
a probability space and let be a measurable func-
tion. Extract independent samples from
according to the probability distribution and define

. Fix an arbitrary real number .
Then

(16)

with probability greater than .
Proof: See Lemma 11.1 in [24].

In the previous statement, is a random variable defined
on the product space with the product probability mea-
sure hosting the random extraction

. Thus, may or
may not be satisfied depending on the random extraction and,
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therefore, defines a probabilistic
event in the space . Theorem 1 says that probability of
this event is greater than .

A possible interpretation of (16) is the following. Suppose
that an opponent would like to determine asuch that
and she uses the same probabilistic strategy as in the randomized
algorithm: she randomly selects ain according to . Then,
her probability of “beating” is not greater than. In Theorem
1, parameter is arbitrary and, therefore, the probability of suc-
cess left to the opponent can be reduced at will. On the other
hand, (16) is not a deterministic statement and it only holds true
with probability at least equal to . As ap-
proaches zero, tends to zero and so the statement
becomes evanescent. In addition, we observe that statement (16)
quantifies the probability that one can improve resultby ran-
domly selecting a new parameter, but says nothing about how
large such an improvement can be.

In our case, we are interested in maximizing the probability
of conflict over the time interval . Note that the
function is not smooth since the Gaussian
probability density function appearing in the expression (14)

of loses smoothness in the set of instants
with ,

where is the nominal time of arrival of aircraftat its way
point and is the time instant when the cross-track error
variance of aircraft saturates. Since this set is finite, Theorem
1 can be applied to , , the Borel

-algebra on and the uniform probability distribution.
Denote by the smallest integer greater than. Then, we have
the following.

Assertion 1: Fix , and set
. Then, if the random extractions in Al-

gorithm 2 are independent, given by Algorithm 2 is an ap-
proximation of in the sense that there exists an exceptional
set of Lebesgue measure at most such that

with probability
at least .

Next, we introduce a method to compute a uniformly good
approximation of over a finite set of time instants

. This method will allow us not only to
circumvent the difficulty of integrating the probability density
function over the protected zone, but also to estimate
the maximum of over when combined with the
randomized optimization.

Recall that is the probability that a random variable
with time-dependent probability distribution
takes values in the protected zonegiven in (13). By an
appropriate change of coordinates, we can also treat as
the probability that a random variable with standard normal
distribution takes values in a time-dependent set.
The required change of coordinates is given in the following
proposition, whose proof is omitted since it is easy to verify. A
similar procedure is followed in [7].

Proposition 2: Set , where is
the Cholesky factorization of the covariance matrix . Then,

is a standard 2-D Gaussian random variable and can

be computed as the probability that takes values in the set
.

This suggests the following algorithm for probabilistically es-
timating for a given time instant.

Algorithm 3 ( Randomized Estimate of )
Initialization Choose an integer and

set
for do
begin

Extract at random according to
the standard Gaussian probability den-
sity function
if then

end
.

Again, is a random approximation of , due to
the stochastic selection of the s. Nevertheless, a quantitative
statement can be proved showing that it is a good approximation
in a probabilistic sense.

Theorem 2 (Estimation of Probability Measures):Let
be a probability space. Consider a finite collection

of sets . Extract independent
samples from in accordance with and de-
fine , , where

if , , otherwise. Fix . Then,

(17)

Proof: By the Chernoff bound (see [24]).
Equation (17) means that each finite collection of setshas

the property of uniform convergence of empirical probabilities
(UCEP) since, for each fixed accuracy level, the probability
that the approximation error in estimating the probability mea-
sure of a set in exceeds tends to zero uniformly over , as
the number of samples goes to infinity. It is quite intuitive
that the UCEP property is a necessary condition for success-
fully applying Algorithm 2 using an estimate of instead
of the true function. Since by Proposition 2 is the mea-
sure of the set : according
to , then, if is taken to be , the Borel -algebra
on and , Theorem 2 can be applied to get the
following result for the estimate in Algorithm 3.

Assertion 2: Fix , , and set
. Then, if the random extractions in Algo-

rithm 3 are independent, is a uniform approximation of
to accuracy with confidence over every finite

set of time instants , i.e.,
, with probability at least .

Combining the randomized estimation procedures for
and leads to a fully randomized implementation of Al-
gorithm 1.
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Algorithm 4 ( Randomized Conflict
Detection )
Initialization : Fix , ,

. Set

when changes do
begin

Extract at random , ,
according to the Gaussian density func-
tion
Extract at random , ,
according to the uniform density func-
tion
for do
begin

Compute and
Compute the Cholesky decomposition

Set
for do
begin

if then

end

if declare a conflict
end

end .

It is easy to see that the algorithm declares a conflict if and
only if

(18)

Under the assumption that all the random extractions are made
independently of one another, the following theorem provides
an estimate of the accuracy of our approximation. Similar
accuracy estimates are given in [25]–[27], where randomized
methods are applied to robust and adaptive control.

Theorem 3 (Approximate Estimation of ): Given
, and , is an ap-

proximate estimate of to accuracy and level with
confidence in the sense that

with probability greater than , where denotes the uniform
probability distribution on .

Proof: is a random variable on the probability space
. As the s and s are independent of one an-

other and the extraction is independent of the extrac-
tion , we can conclude that the probability measure on

is just the product probability measure
, where and respectively denote the uniform proba-

bility distribution on and the standard Gaussian proba-
bility distribution on . Now, according to Theorem 1 relation

(19)

holds with probability greater than . Set

(20)

Putting together these two results, we conclude that the fol-
lowing holds with a product probability not less than

where the first inequality follows from (20) and the second from
(19). Thus, maximizing over leads to an ap-
proximate maximum of to accuracy and level with
confidence where . If we now use
the estimate given by (17), we can easily con-
clude that using time instants
and vectors suffices to approxi-
mately maximize over to accuracy and level
with confidence .

Note that the number of samples needed to achieve a certain
approximation in terms of accuracy, level and confidence, is in-
dependent of the nature of the sample space and of the proba-
bility distribution. In particular, this means that it does not de-
pend on the dimension of the Euclidean space from which the

are extracted. Thus, the computational load does not signifi-
cantly increase in the 3-D case with respect to the 2-D case [22].
This is not the case if one resorts to numerical methods based on
gridding or to approximate analytic methods such the one pro-
posed in [8]. However, further work is required to fully evaluate
the computational efficiency of our approach as a function of
the accuracy, level, and confidence parameters.

C. Validation

To validate the conflict detection algorithm introduced in Sec-
tion II-B, we use Monte Carlo simulations based on the ODE
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model of the aircraft motion described in Section II-A. We com-
pare the performance achieved by Algorithm 4 with the one
achieved by the algorithm in [8]. The algorithm in [8] is based
on the same description of the uncertainty affecting the aircraft
motion. However, the criticality measure adopted in [8] for a two
aircraft encounter is an approximation of the probability of con-
flict. The approximation consists of computing the probability
of conflict as if each aircraft was flying at a constant velocity
and with constant tracking error statistics. The values for the
mean and variance of the Gaussian random variables describing
the tracking errors are set equal to the corresponding values at
the point of minimum nominal separation (see [7] for more de-
tails). For the 2-D case the probability of conflict is further over-
approximated by extending the protection zone by “sweeping”
the 5 nmi disc to in the direction of the relative velocity at
the point of minimum nominal separation. This leads to an ana-
lytical approximation for the probability of conflict in the level
flight case. For the 3-D case, one has to resort to a numerical
approximation procedure [28].

The protocol we adopt for evaluating the performance of the
detection algorithms consists of the following steps.

1) Given the flight plans of the two aircraft, generate pairs of
aircraft trajectories over a 20-min time horizon according
to a discretized version of the stochastic differential equa-
tion (9) (sample time set equal to 1 s), with
nmi/min, , and nmi.

2) For each pair of simulated trajectories, execute the con-
flict detection algorithm at every radar measurement time
(radar measurement time set equal to 12 seconds), each
time using the updated flight plans and time horizon.
These are obtained by removing the way points which
have been surpassed, setting the first way point equal
to the current radar measurement and subtracting the
elapsed time from the 20-min initial horizon. A conflict
is declared as soon as the estimated value of the criticality
measure exceeds the prescribed threshold.

3) Compute theprobability of false alarmP(FA) and the
probability of successful alertP(SA), i.e., the ratio of
the number of alerts issued when there was no conflict
over the total number of cases when there was no con-
flict [P(FA)] and the ratio of the number of alerts issued
before a situation of conflict effectively happens over the
total number of conflicts [P(SA)].

4) Plot thesystem operating characteristic(SOC) curve, i.e.,
the probability of successful alert versus the probability
of false alarm parameterized by the threshold and choose
the optimal threshold.

Note that the above definition of SA does not account for the fact
that a conflict may be detected when it is too late to do anything
about it. A more complete definition of SA should take into ac-
count the available conflict resolution strategies, the response
times of ATC and pilots and the aircraft maneuverability con-
straints. In this paper, we simply require that a conflict should
be detected at least 60 s before it occurs for a SA to be declared.
A more thorough study of this issue will be undertaken once a
resolution scheme has been developed.

It is evident that P(FA) and P(SA) are both decreasing func-
tions of the threshold used to decide whether an alert should

be issued. An ideal conflict detection scheme should operate at
the point P(FA) and P(SA) , where there are no false
alarms and all the conflicts are detected. Unfortunately, a real
conflict detection scheme cannot operate at this point due to the
uncertainty affecting the aircraft positions. However, the more
the SOC curve approaches the point , the better the per-
formance of the system is likely to be. The threshold can be
selected on the basis of this consideration, as the one that cor-
responds to the minimum distance of the SOC curve from the
ideal operating point , thus striking an “optimal” compro-
mise between the number of false alarms and successful alerts
as suggested in [20] and [29].

We now describe the results obtained by Monte Carlo sim-
ulations for two different encounter situations. In the first ex-
ample, the aircraft nominal trajectories are straight lines trav-
eled with constant speeds, whereas in the second example the
lines joining the way points form a more complex zig-zag pat-
tern. For these two cases, we draw the SOC curve and compare
the performance obtained by Algorithm 4 with that obtained by
implementing the detection algorithm described by Erzbergeret
al. [8]. The parameters , and are set equal to the empir-
ical values nmi/min, and nmi in
both the prediction and simulation models.

Example 1 (30 path crossing angle configuration,
Fig. 3): Consider the case when the two aircraft are flying
straight at the same altitude along paths whose crossing angle is
30 at speeds of 480 nmi/h and 500 nmi/h. For sake of clarity,
in the left side of Fig. 3 we have drawn a realization of the
trajectories. For each pair of trajectories, the initial nominal
minimum separation and time to minimum separation are,
respectively, 5 nmi and 4 min. Fig. 3(a) shows the SOC curves
of Algorithm 4 (solid line) and the algorithm of [8] (dashed
line). The curves were obtained using 1000 pairs of trajectories
generated by the stochastic ODE model. In this example, the
“optimal” threshold , i.e., the one corresponding to the point
of the SOC curve nearest to , and the “optimal” values for
P(FA) and P(SA) are similar for the two algorithms [ ,
P(FA) , P(SA) ].

Example 2 (zig zag flight paths configuration, Fig. 4):In this
example, we consider the case when the sequence of way points
in the flight plans describes a zig-zag configuration at a fixed al-
titude with speeds nmi/h, nmi/h,
nmi/h and nmi/h. The estimates of the probability
of successful alert and false alarm obtained by 1000 Monte
Carlo samples are used to plot the SOC curves in Fig. 4(a).
Again the solid line corresponds to the detection algorithm pro-
posed in this paper. The “optimal” threshold for Algorithm 4
is , corresponding to P(FA) and P(SA)

whereas the optimal threshold for the algorithm of
[8] is , corresponding to P(FA) and P(SA)

. Algorithm 4 has a slightly higher probability of suc-
cessful detection and a false-alarm probability of 16.4%, which
is 3/5 that of [8]. Note also that for each value of P(SA), the al-
gorithm of [8] results in a higher value of P(FA).

Summarizing, the two algorithms give similar results when
the aircraft are flying along straight lines. When the flight plans
are more complex, however, our algorithm generally performs
better than the algorithm of [8]. This also turns out to be the
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(a)

(b)

Fig. 3. (a) Sample pair of simulated trajectories. The? stand for the starting
points. (b) SOC curves for Algorithm 4 (solid) and Erzberger algorithm
(dashed). The� stand for the “optimal” threshold points (Example 1:� = 0:05;
� = 0:1; � = 0:05; 1000 simulations).

case when the trajectories are straight lines traveled at constant
speed, but the prediction models for the two algorithms take into
account the uncertainty in the current position [21]. Fig. 5 repre-
sents the plots of P(FA) and P(SA) as functions of the threshold
obtained by 1000 Monte Carlo simulations for the encounter
in Example 1, but considering a cross-track error with constant
variance in the prediction models. Note that in this
case, irrespective of the threshold, the P(FA) given by [8] is
higher than the P(FA) given by our approach, and the increase
is not compensated by an adequate increase in P(SA). Similar
behavior is observed in Example 2.

In our opinion, an explanation for the results is that the mea-
sure of criticality used in [8] is an over approximation of the
probability of conflict. In a sense, this criticality measure cap-
tures the probability of conflict for a fictitiousworst-case en-
counter, which extends to infinity for both positive and nega-
tive times, with the aircraft flying with constant velocities and
constant error statistics throughout. So, if the trajectories are not
straight lines or if they are diverging and the current position is

(a)

(b)

Fig. 4. (a) Sample pair of simulated trajectories. The? stand for the starting
points. (b) SOC curves for Algorithm 4 (solid) and Erzberger algorithm
(dashed). The� stand for the “optimal” threshold points (Example 2:� = 0:05;
� = 0:1; � = 0:05; 1000 simulations).

uncertain, the probability of conflict computed in [8] may highly
overestimate the probability of conflict of the real encounter.
This results in a higher probability of false alarms.

It is important to observe that different configurations lead to
different SOC curves and, therefore, to different optimal thresh-
olds. A sensitivity analysis of the dependence of the threshold
on the flight plans should be performed by parameterizing them
as a function of the crossing angles, minimum deterministic dis-
tance, and time to minimum distance.

III. SHORT-RANGE CONFLICT DETECTION

In this section, we adopt a sample path viewpoint to measure
the criticality of an encounter. The approach is motivated by the
fact that the motion of each aircraft involved in the encounter
is subject to perturbations, whose overall effect over short time
horizons can be modeled as a white noise affecting the aircraft
velocity. In this way a different likelihood is attributed to the
different admissible paths of each aircraft, and the probability
of conflict of the encounter can be computed as the probability



PRANDINI et al.: PROBABILISTIC APPROACH TO AIRCRAFT CONFLICT DETECTION 209

(a)

(b)

Fig. 5. (a) Plot of P(FA) and (b) plot of P(SA) versus threshold for our
algorithm (solid) and Erzberger algorithm (dashed) (Example 1 with constant
cross-track variance:� = 0:05; � = 0:1; � = 0:05; 1000 simulations). .

that a path of some aircraft enters the protected zone of another
aircraft. The proposed approach is briefly explained next; the
formal derivations are given in the following subsections.

Consider the following first-order stochastic differential
equation in :

(21)

where is a piecewise Lipschitz continuous function defined
on and is a white noise with power spectral density

, i.e., for all .
Equation (21) can be used to model the motion of an aircraft.

In such a case, represents the aircraft ground speed,is
the air speed which can be directly controlled by the aircraft,
and models local wind effects such as air turbulence, as well
as deviations due to mechanical and human factors [30]. Inte-
grating (21), we have

(22)

where is a Gaussian process with stationary,
independent increment, whose mean value and variance are re-
spectively and

. This last equation and the Kol-
mogorov continuity theorem imply that has a continuous
version , i.e., for all

, where is continuous in with proba-
bility one [31]. The continuity of is actually required when
(21) is used to model the aircraft motion. Note that, after scaling
by , is a standard Brownian motion (BM). A BM pos-
sesses many unusual local properties. For example, at any fixed
time its sample path is not differentiable with probability one.
However, this is not of a major concern since we are interested
in its collective properties, i.e., the probability that the perturbed
trajectory experiences a large deviation from the nominal one
or, more precisely, that evolves outside some safe set, thus
causing a conflict.

By subtracting the nominal motion and scaling,
we can reduce the perturbed motion in (22) to a standard BM.
Correspondingly, the safe set is transformed into some time-
varying set. The problem of computing the probability of con-
flict then reduces to calculating the escape probability of a stan-
dard BM with respect to a time-varying region. In general, it is
very difficult to get an analytical expression for such a proba-
bility. A case when this is possible is the following.

Lemma 1 (Bachelier–Levy [33]):Let be a standard
one-dimensional (1-D) BM starting at the origin. Fix
and define to be the first time

reaches a point, which is moving with speedtoward
the origin starting at position . Then, has probability
density function

(23)

This lemma will prove very useful for estimating the probability
of conflict in the more complex situations of real interest, which
will be reduced to the case described in the lemma by appro-
priate approximations. In [32] a similar approach was used for
highway safety analysis.

The rest of the section is organized as follows. We start by
introducing the prediction model we propose for short-range
conflict detection (Section III-A). In Section III-B, we derive
closed-form approximations of the probability of conflict. Fi-
nally, in Section III-C, we describe a decentralized conflict res-
olution algorithm based on these approximations and validate
the process by Monte Carlo simulations.

A. Prediction Model

Consider an aircraft flying with constant speed along a
straight line on a plane. Let denote its position
with respect to a global coordinate frame, denote
the aircraft velocity, and denote the angle that vectormakes
with the axis of the global frame. The aircraft motion can be
represented by the stochastic kinematic model

(24)
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where
standard 2-D BM;
rotation matrix of (6);

, with being the power-spectral
densities of the perturbations affecting the motion in
the along track and cross track directions.

Despite the nonlinear dependence on time in (1) and (2), over
short-time horizons and under the constant velocity assumption,
the variances of the along track and cross track perturbations
can be approximated by linear functions of time. This implies
that the proposed model may be used for short-term prediction.
As for the values of , setting and
nmi/min [10], [15] and considering standard cruising speeds of
commercial aircraft, e.g., nmi/h, the growth rate of

with time is given by nmi/min, which is lower
than the growth rate of . Hence, typically .
In all the examples and will be treated as a-dimensional
quantities with the understanding that their squares are equal to
the values in nmi/min of the along-track and cross-track power-
spectral densities.

The model of (24) also seems suitable for the free flight sce-
nario envisioned for the future ATMS [19]. In this case, the sat-
uration phenomenon, which in [7] is attributed to the pilots at-
tempt to track a specific trajectory, may not be so significant.
This is because in the free-flight paradigm, each aircraft receives
advisories rather than mandatory trajectory specifications from
the ATC. Moreover, under free-flight conflict, detection and res-
olution will be to a large extent carried out by individual air-
craft, using only partial information about the intentions of the
surrounding aircraft (primarily their current positions and head-
ings). For this type of resolution, one cannot rely on the assump-
tion that the intruder will make an effort to maintain its current
heading precisely.

B. Closed-Form Expressions for the Probability of Conflict

Consider two aircraft, labeled A and B, flying at the same
altitude. Assume without loss of generality that at time
aircraft A is at the origin of a global coordinate frame, flying
along the axis from left to right with a velocity ,
while aircraft B is at position , flying with a velocity

, which makes an angle with the axis. A conflict
occurs if aircraft B enters the protected zone of aircraft A or vice
versa (see Fig. 6).

Denote with and the position of aircraft A and B,
respectively. By the kinematic model (24), we get the following
description for the two aircraft system:

(25)

where and are standard 2-D BMs. As for the
mid-range prediction model, we assume that and
are independent and start at the origin (ignoring GPS and radar
errors). Subtracting the first equation from the second in (25)
leads to

(26)

Fig. 6. Encounter situation for two aircraft flying at the same altitude.

where we set , and
.

Equation (26) suggests that one can think of the motion of
aircraft A as consisting only of the perturbation , and the
motion of aircraft B as deterministic with constant velocity
starting at . One can show that the Gaussian process
can be reduced to a standard 2-D BM by a coordinate transfor-
mation, similar to the one used in Proposition 2.

Proposition 3: Set , with
diag , where

(27)

Then, the stochastic process is a standard 2-D
BM starting at zero.

Proof: The claim easily follows once one observes that
is the covariance matrix of and is

equal to .
Equation (26) can now be rewritten as

(28)

where is the relative position of the two
aircraft in the new coordinate system ,

and is a 2-D standard BM starting
at zero. Therefore, we can view the motion of aircraft A as a
standard 2-D BM starting at the origin and the motion of aircraft
B as a motion at constant velocitystarting at .

In the new coordinate system, the circular protection zone of
radius nmi around aircraft B is transformed into an el-
lipse initially centered at and then moving along
with aircraft B at velocity (see Fig. 7). The boundary of the
protected zone is given by

(29)
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Fig. 7. Transformed protection zone.

A conflict occurs if and only if the 2-D standard BM
starting at the origin (representing aircraft A in the new
coordinate system) ever wanders into this moving ellipse.

Let be the distance of the origin from the linealong
which aircraft B is flying, and to be the distance from the
position of aircraft B at to the projection of the origin
on , as indicated in Fig. 7. Then

(30)

Observe that a positive value forindicates that the two aircraft
are approaching each other, whereas a negative value forindi-
cates that they are flying away from each other. If we ignore the
effect of the noise, in the new coordinate system the minimal
distance during the encounter is given by if and by

, i.e., the distance at time , if .
Denote the conflict event by . Since the probability of con-

flict does not admit a closed-form formula, we will at-
tempt to approximate it. Let be the line passing through the
center of the ellipse and orthogonal towhich moves along with
the ellipse with velocity (see Fig. 7). The projected width
of the ellipse along line can be computed as follows:

(31)

where and are given in (27). Denote by the first time
hits and define to be the event that is within a

distance of from the center of the ellipse. One can show [34]
that is a good estimate of the probability of conflict
when the difference of the two aircraft velocities is much larger
than the growth rate of the variance of the BM, which is, in fact,
the case of interest. The intuition is that when the velocity of the
moving ellipse is high, the only dimension of the ellipse that is
relevant for the event is that perpendicular to (for a formal
discussion see [34]).

Assume that is aligned with the positive axis. This can
be done by without loss of generality by an appropriate rota-
tion, since the standard BM is invariant with respect to rotation.
Assume that the two aircraft are approaching each other, i.e.,

. Then the time for aircraft A to reach line has the dis-

tribution given by (23) with . The approximate
probability of conflict can then be written as

(32)

where .
Note that by Formula 1 in the Appendix, .

When is greater than one, concentrates near
. Then by taking the 0th order expansion of

and around in (32), we get the fol-
lowing.

Assertion 3: The probability of conflict can be approximated
by

(33)

where is given by (31), and are given by (30), and we set
.

In [34], it is shown that is a remarkably sharp estimate
of , even in the case when is much smaller than one
(the approximation error when is barely noticeable).
Higher order approximations of the probability of conflict can
also be obtained [34], but the resulting improvement in the ap-
proximation is not substantial.

Fig. 8 shows level curves of as a function of the initial
position of aircraft B for the path angles , 45 , 90 ,
180 . In each plot, aircraft A is moving from left to right with
velocity nmi/min starting at the origin and aircraft
B is moving with velocity nmi/min. To see the re-
sults more compactly, we used relatively large values forand

( and ). Observe that as the cross path angle
increases, the region delimited by the sameequiproba-

bility line gets more and more extended. This indicates that,
everything else being equal, the situation of head-on conflict
( ) is the most dangerous, whereas the situation of over-
take conflict ( ) is the least dangerous.

We now introduce an expression for the probability of conflict
within a time horizon . Limiting the prediction time horizon
to be finite makes much sense since, for the same value of the
probability of conflict, the more dangerous situations are the
ones with smaller projected collision time. Moreover, by con-
sidering a finite prediction horizon, we avoid problems similar
to those pointed out in Section II-C for the algorithm in [8]. The
probability of conflict within a fixed horizon is computed as
follows:

which, by using zero-order expansion of and
around , and Appendix, formula 2 leads to
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(a) (b)

(c) (d)

Fig. 8. (a)P for path angles# = 0 and (b)# = 45 with ku k = 7 nmi/min,ku k = 8 nmi/min,� = 2, � = 1. (c)# = 90 and (d)# = 180 with
ku k = 7 nmi/min,ku k = 8 nmi/min,� = 2, � = 1.

Assertion 4: The probability of conflict within time can
be approximated by

(34)

where is given by (31), and are given by (30), and we set
.

Fig. 9 shows level curves of for , in the two cases
when min and min. looks like a truncation
of the corresponding infinite horizon version. It is not surprising
that as and increase, the truncation becomes smoother. As
for the infinite horizon case, higher order approximations of the
probability of conflict do not seem to be significantly better.

In [35, eq. (33)], the probability of conflict is obtained by
a different approach, which mainly consists of computing the
probability that the aircraft distance at the nominal time of
closest approach is lower than the minimum allowed distance,
given that the initial positions and velocities are uncertain.

It is then proposed to use a level curve of (33) to delimit the
“alert zone,” which in the context of [35] is a region around the
aircraft where ATC assistance for conflict avoidance is required
in a free flight setting. By approaching the problem from the
process point of view, we get more general results which can,
for example, be easily extended to the finite horizon case. This
allows the alert zone to be appropriately chosen, based also on
the look-ahead time horizon.

C. Decentralized Conflict Resolution Algorithm

Many contributions in the literature deal with the issue of
providing safe, coordinated conflict resolution maneuvers for
two aircraft, both in a deterministic setting (see, for example,
[11], [12], [36], [37]) and in a probabilistic setting (see, for
example, [8], [35]). In comparison, there are relatively few
contributions treating directly the multiple aircraft case and
they mostly deal with a deterministic setting. Conflicts in-
volving multiple aircraft that may occur in high-traffic areas
are more general and more difficult to resolve. The reason is
that if one tries to resolve conflicts pairwise one may generate
a conflict with a third aircraft and may be unable to converge
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(a) (b)

(c) (d)

Fig. 9. (a)P for t = 10 min and (b)t = 15 min with # = 90 , ku k = 7 nmi/min,ku k = 8 nmi/min,� = 2, � = 1. (c)P for t = 10 min and
(d) t = 15 min with # = 90 , ku k = 7 nmi/min,ku k = 8 nmi/min,� = 2, � = 1.

to a feasible solution. In [38]–[41], multiple aircraft conflict
resolution is based on the optimization of a cost function,
which is suitably selected to take into account practical fac-
tors such as fuel consumption and passenger comfort. The
computational issues involved in the constrained optimization
problem are solved by genetic algorithms in [38], semidefi-
nite programming combined with a branch-and-bound search
in [39], and an iterative method based on approximating the
performance index as quadratic and the constraints as linear
in [40]. The main drawback of these approaches is that there
is no guarantee that the obtained solution is optimal. In [41],
resolution maneuvers are classified into different homotopy
types and the problem is reduced to a convex optimization
problem within each type. Therefore, one can, in principle,
compute the global optimum by comparing the optimal solu-
tions associated with all the different types of maneuvers. The
number of types, however, grows rapidly with the number of
aircraft involved in the encounter.

A completely different approach is taken in [42], where po-
tential and vortex field methods are applied to generate decen-
tralized resolution maneuvers for multiple aircraft encounters.

TCAS [12] also has some multiple aircraft resolution capabil-
ities, but is primarily geared toward pairwise, short range en-
counters. TCAS predicts conflicts using a deterministic model
and issues coordinated resolution advisories by selecting the
least aggressive among a predefined set of maneuvers in the ver-
tical plane. The goal is to ensure adequate vertical separation at
the point of closest approach.

Here, we introduce an algorithm for multiple aircraft conflict
resolution which uses the probability of conflict calculated in
Section III-B to guide each aircraft to its destination, while
avoiding conflict with other aircraft flying in the same region
of the airspace. Unlike TCAS and the optimization based
algorithms discussed above, in our algorithm the uncertainty
affecting the aircraft motion is explicitly taken into account.
Moreover, conflict resolution is decentralized since aircraft
resolve conflicts using only information about the positions,
headings, and speeds of neighboring aircraft without coordi-
nating with them. In contrast with the worst-case approach to
decentralized conflict resolution taken in [11], [17], where the
aircraft do not trust each other, the idea here is that each aircraft
assumes that the other aircraft will try to behave rationally, but
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their effort may be undermined by the uncertainties inherent in
the environment.

Our approach is most closely related to that of [42]. The main
difference is that we use information not only on the current
positions, but also on the current headings and speeds of the
surrounding aircraft to generate the repulsive force acting on the
aircraft. Thus, the two cases when two aircraft are at the same
distance, but approaching and flying away from each other, do
not lead to the same repulsive force and, hence, abrupt avoidance
maneuvers are avoided.

In this paper, the probabilistic algorithm for conflict resolu-
tion is used for assessing the merits of and as criticality
measures by Monte Carlo simulations. In [41], this algorithm is
also used as “random type chooser,” to provide a randomized
solution to the combinatorial optimization problem.

Consider the case when two aircraft (labeledand ) are
currently at positions and and have destinations and

, respectively. Assume their initial headings are toward their
destinations and that they fly at a constant speedand ,
respectively. At each time instant, the probability of conflict

can be calculated by (33) [or (34) for some finite horizon
] using the current positions and velocities

, of the two aircraft.
For each aircraft we define three particular headings of in-

terest.

• Current heading : direction along which the aircraft is
currently flying.

• Destination heading : direction defined by the current
aircraft position and its desired destination.

• Gradient heading : direction corresponding to the
highest decrease of the probability of conflict. Since both
aircraft maintain their velocities within a short time,
can be chosen as the direction of the negative gradient
of as a function only of the current positions of the
aircraft.

Our resolution strategy aims at making each aircraft reach
the desired destination while avoiding situations of conflict by
appropriately changing its heading. This is done by updating
the aircraft headings every time instants by means of the
following algorithm.

Algorithm 5 ( Decentralized Conflict
Detection and Resolution )
Compute based on
for do
begin

Compute , and given ,
, , .

Set .
Given choose the new headings at
step as follows:

if

sgn
otherwise

end

Here is the maximal turn angle allowed per time step and
for simplicity we use to denote .

The ideal new heading is the weighted sum of desti-
nation heading and gradient heading, with weights depending
on . Intuitively, if is high, then decreasing the
probability of conflict becomes a priority and, therefore, the
aircraft should pursue the gradient direction more. If, instead,

is negligible, then the aircraft should pursue the desti-
nation direction. Due to aircraft limitations, the deviation from
current heading is restricted by. This is the reason why the
new heading is chosen to be the one nearest to within the
allowed range.

The validation protocol adopted for performing the Monte
Carlo simulations is the following.

1) For every Monte Carlo run perform

a) initialization: given the flight plans of
the two aircraft, compute and set

, ,
, ,

and ;
b) resolution: choose the current heading at timeby

means of Algorithm 5;
c) update: update the aircraft velocities and positions

at time step as follows:

diag

, where is the rotation matrix of
angle , and and are independent 2-D white
Gaussian noises with unit covariance matrices;

d) termination: check if both aircraft have reached
their destinations; if not, set and return
to step b).

2) After a prescribed number of runs, build the histogram
of the minimum separation between the aircraft. The res-
olution algorithm can also be interpreted as a receding
horizon control algorithm, with playing the role of the
control horizon, and the interval over which is approxi-
mated (either or ) playing the role of the pre-
diction horizon. Therefore, in the simulations presented
below resolution is not performed at once over the entire
length of the simulation (of the order of 30 minutes). It is
performed by repeatedly invoking our short-range resolu-
tion algorithm over a horizon (of the order of 1 min).

Simulation results are shown in Fig. 10 for two typical
encounters: head-on encounter and orthogonal encounter. The
speeds of the two aircraft are chosen such that it takes 30 min
for them to fly from their starting positions (marked with stars)
to their destination positions (marked with diamonds) along
a straight line. We used (33) for computing and set

, , and . The values of
and are chosen to get a first-order approximation of the

growing rate of the along-track and cross-track variances in (1)
and (2). The histograms obtained by running 100 simulations
show that in both cases the minimum separation nmi
is respected and, moreover, most of the minimum separations
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(a) (b)

(c) (d)

Fig. 10. Resolution maneuver for two aircraft encounter situations (� = 0:35; � = 0:2,� = �=25).(a) Head-on encounter. (b) Minimum separation histogram
for (a). (c) Orthogonal encounter. (d) Minimum separation histogram for (c).

are greater than . The factor 2 arises since each aircraft tries
to maintain a distance of from the other one and there is no
coordination between them.

Zooming into the resolution trajectories reveals a lot of chat-
tering between positions corresponding to higherand lower

. This behavior is expected since the functionis very sen-
sitive to the heading of the two aircraft. To get flyable paths, we
can either increase the resolution horizonor take the average
of the resolution headings over a period of time (which would
act as a low-pass filter).

The algorithm can be extended to the multiple aircraft case.
Suppose we have aircraft sharing the same region of the
airspace. Then, the new heading of each aircraft has to be com-

puted taking into account the overall probability of conflict. For
each aircraft, say, , we compute the
probability of conflict between it and any of the other aircraft.
Denote with the probability of conflict between aircraft

and , and with the corresponding gradient heading.
Then, the new heading for aircraft is chosen based on
the expression given in Algorithm 5 for the two aircraft case,
but with the ideal heading computed as follows:
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(a) (b)

(c) (d)

Fig. 11. Resolution for three aircraft encounter situations (� = 0:35; � = 0:2, � = �=25). (a) Encounter. (b) Minimum separation histogram for (a). (c)
Orthogonal encounter. (d) Minimum separation histogram for (c).

where is the maximum probability
of conflict among all aircraft pairs involving aircraftand is
used as an indicator of the degree of danger for aircraftin the
multiple aircraft setting.

Simulation results for two encounter situations involving
three aircraft are shown in Fig. 11. All parameters remain
the same as in the two aircraft case. Since the airspace is not
considerably more congested all conflicts are successfully
resolved and most of the minimum separations are again
centered around .

The situation becomes more complicated when the number
of aircraft increases to, say, eight, as is shown in Fig. 12. The
first encounter is a symmetric encounter where the eight aircraft
pass through a common point at angles evenly distributed in

. In the second encounter, the eight aircraft are divided

into two groups. The aircraft in each group follow each other in a
streamline and the trajectories of the two groups are orthogonal
to each other. In this simulation, we set instead of 5 nmi,
just for the maneuvers to be more evident in the pictures. Note
that in this case, the minimum separation ofnmi is satisfied for
92 out of 100 runs for the first example and 94 out of 100 runs for
the second one. This shows that the algorithm cannot guarantee
absolute safety. We are currently analyzing the safety properties
of this algorithm as a function of the number of aircraft involved
in the encounter and the uncertainty level.

Computational load is an important issue for multiple aircraft
resolution. Because all probabilities are approximated in closed
form the load for pairwise resolution is very small with our al-
gorithm. However, for multiple aircraft encounters all pairs of
aircraft have to be tested, therefore, the number of operations
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(a) (b)

(c) (d)

Fig. 12. Resolution for eight aircraft encounter situations (� = 0:35; � = 0:2, � = �=25, � = 10 nmi). (a) Symmetric encounter. (b) Minimum separation
histogram for (a). (c) Streamline encounter. (d) Minimum separation histogram for (c).

that need to be performed grows roughly as the square of the
number of aircraft involved. This type of growth is also observed
in CTAS and has been addressed using a number of heuristics to
limit the search. Fortunately, the number of aircraft involved in
our case is likely to be much smaller than CTAS, because of the
short-range nature of our algorithm. Even though the computa-
tion becomes harder in the multiple aircraft case, our algorithm
scales better than most centralized resolution algorithms, whose
complexity grows exponentially in the size of the problem.

IV. SUMMARY AND CONCLUSION

In this paper, we addressed aircraft conflict detection at the
mid-range and short-range levels of the ATMS. Starting from

an empirically motivated probabilistic description of the air-
craft motion, stochastic models were developed for mid-term
and short-term prediction of the aircraft positions, thus allowing
the corresponding criticality measures to take into account the
various sources of uncertainty inherent in the environment.

For mid-term prediction, randomized algorithms were used
for estimating the criticality measure and formulating a con-
flict detection algorithm for two aircraft encounters. The perfor-
mance of the randomized detection algorithm was compared to
that of the detection algorithm integrated in CTAS using Monte
Carlo simulations. The simulations suggest that the two algo-
rithms have similar performance for simple encounters, whereas
our algorithm tends to perform better for more complex encoun-
ters. Further study is needed to evaluate the performance of the
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randomized algorithm in terms of computational load as a func-
tion of the level of approximation introduced.

For short-term prediction closed-form approximations for the
probability of conflict were derived for a two aircraft encounter.
Based on these approximations, we formulated a conflict reso-
lution algorithm and used Monte Carlo simulations to demon-
strate the efficacy of the use of the probability of conflict to gen-
erate safe resolution maneuvers. The extension of the approach
to multiple aircraft conflict resolution revealed potential prob-
lems with this approach when the airspace becomes very con-
gested. We are currently analyzing the effect of the uncertainty
level and the number of aircraft involved in the encounter on the
performance of the resolution algorithm.

Although we focused on the planar case, the extension to the
3-D case is straightforward. For mid-term conflict detection, the
computation of the proposed criticality measure can still be per-
formed in an efficient way by the randomized methods as re-
marked at the end of Section II-B. For the short-range conflict
detection, in a similar way to the 2-D case, analytical approxi-
mations for the probability of conflict can be computed for the
3-D case and then be used to derive a decentralized 3-D resolu-
tion algorithm. However, it is considerably harder to get mean-
ingful bounds for the error of such approximations.

Both the approaches introduced here have potential applica-
tion to the airborne conflict management (ACM) operational
concept, which is being developed by the radio technical com-
mission for aeronautics (RTCA) and the FAA [43]. The ACM
concept includes detecting conflict situations, monitoring for
conflicts that might arise if the current flight plan is changed
and suggesting resolution maneuvers to prevent a violation of
the separation criteria. It is envisioned that these functionalities
(respectively namedconflict detection, conflict prevention, and
conflict resolution) will be available not only to the ATC but also
to the pilots. The enabling technologies are GPS, ADS-B and
cockpit display of traffic information (CDTI). Multiple levels of
alert are proposed for conflict detection in ACM. Depending on
the airspace domain and the operating flight rules, the actions in
response to the different alerts may have to be coordinated with
the ATC or may be undertaken autonomously by the pilot.

In this context, the mid-term detection algorithm proposed
here could be used for the conflict prevention function of ACM
since it can deal with longer look-ahead horizons. Besides pro-
viding warnings for potential conflicts, it may also be possible
for the ATC to query the system about the safety of the changes
he would like to make to the flight plans. Moreover, the level sets
for the probability of conflict obtained for short-term prediction
could be used to define the different alert zones, with the lower
alert zone being delimited by the level curve corresponding to
the lower probability of conflict. The proposed conflict resolu-
tion algorithm could be used to suggest to the pilots maneuvers
to resolve short range conflicts. Notice that ADS-B and GPS
together provide the position and intent (velocity) information
necessary for our decentralized resolution algorithm to be im-
plemented.

We are currently working on formulating algorithms for
mid-range conflict resolution and investigating different de-
sign alternatives. We are pursuing a model predictive control
approach to achieve this goal. The idea is to use the current

radar measurements, the detection module and an optimization
algorithm to minimize an appropriateresolution cost function
over all possible flight plans. ATC is notified if changes
in the upcoming way points are imminent, and the process
is repeated every time a new radar measurement becomes
available. The design choices that enter into conflict resolution
are the different resolution cost functions and the different
optimization techniques. The optimization could be carried out
by randomized algorithms, but one has to carefully investigate
the smoothness properties of the cost to be optimized as a
function of the flight plans. The parameters one needs to set
significantly influence the acceptability of the advisories by
the ATC. These parameters include how far in advance should
ATC be notified of flight plan changes and the bounds on the
allowable flight plans (partly determined by aircraft capability).
Once the prediction/resolution algorithm has stabilized, we
hope to be able to test it in human-in-the-loop simulations.
This will allow us to tune the various parameters, and assess its
impact on ATC workload.

In parallel we are working toward a methodology for formally
evaluating the safety properties of the proposed algorithms. This
will hopefully lead to a more general probabilistic verification
methodology for hybrid systems.

APPENDIX I
FORMULAS

The formulas reported in this section are derived in [34]. The
proofs are omitted for brevity.

Formula 1: If , then

Formula 2: Define .
Then, for
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