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A Probabilistic Approach to Aircraft Conflict
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Abstract—Conflict detection and resolution schemes operating
at the mid-range and short-range level of the air traffic manage-
ment process are discussed. Probabilistic models for predicting
the aircraft position in the near-term and mid-term future are
developed. Based on the mid-term prediction model, the maximum
instantaneous probability of conflict is proposed as a criticality
measure for two aircraft encounters. Randomized algorithms
are introduced to efficiently estimate this measure of criticality
and provide quantitative bounds on the level of approximation
introduced. For short-term detection, approximate closed-form
analytical expressions for the probability of conflict are obtained,
using the short-term prediction model. Based on these expressions,
an algorithm for decentralized conflict detection and resolution
that generalizes potential fields methods for path planning to a
probabilistic dynamic environment is proposed. The algorithms
are validated using Monte Carlo simulations. GATES

Index Terms—Air traffic management automation, conflict de-

tection, probabilistic modeling, randomized algorithms. Fig. 1. A sketch of the current ATMS structure organized in air route
traffic control centers (ARTCCs), special use airspace (SUA) areas,

TRACON facilities, with the aircraft flying along very high frequency (VHF)
|. INTRODUCTION omni-directional range (VOR) jetways and entering the TRACON through

ates.
ESPITE technological advances such as powerf%l
on-board Comp“‘_efs' _advanced flight m_ane_lgement S¥%r a more detailed account of the current ATMS practice (see,
tems (FMS) and positioning and communication syste St example, [1] and [2])
such as the global positioning system (GPS) and automati ! .
dependence surveillance-broadcast (ADS-B), the current ﬁif

Lrafflcdma-nagement system (ATMS) is still, to a large exten&egradation in the near future. It is believed that by increasing
ase gn.. ] ) ] the level of automation, the efficiency of the ATMS can be
* arigidly structured airspac€Fig. 1), where the aircraftare jmproved and the tasks of human operators can be simplified.
forced to fly along predefined jetways without the posSirhjs will allow them to handle the increased demand in air
bility of selecting optimal routes and utilizing favorableyaffic in a more reliable way, possibly enhancing the level of
winds (with a few exceptions at altitudes where the alfafety over the current system.
traffic density is low); _ The primary concern of all advanced ATMS is to guarantee
* acentralized, mostly human-operated system architectutgfety. Safety is typically quantified in terms of numbers of con-
where the air traffic controller (ATC) on the ground is resjicts, j.e., situations where two aircraft come closer than a cer-
sponsible of aircraft separation by issuing trajectory spegjin distance to one another. The safety distance is encoded by
ifications to the pilots. means of a minimum alloweldbrizontal separatiomnd a min-
imum vertical separationCurrently, for en-route airspace the
minimum horizontal separation is 5 nmi, while inside the ter-
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Conflict detection and resolution is performed at three difhe variance of the horizontal cross-track componef(t)

ferent levels of the ATM process. growing quadratically with the traveled distans&) until it
1) Long Range:Some form of conflict prediction and reso-saturates at a fixed value?

lution is carried out at the level of the entire national airspace 5 . (o9, o

system (NAS), over a time horizon of several hours [3]-[5]. o (t) ~ min{ris* (1), 77 } @

It involves composing flight plans and airline schedules (ongnd, finally, the variance of the vertical cross-track component
daily basis, for example) to ensure that airport and sector ¢gamaining constant. In [7], it is argued that this model is
pacities are not exceeded. This is typically accomplished usipgrly accurate for predicting the position of an aircraft over a
large-scale integer and linear programming techniques.  mjd-term horizon of the order of 20 min, as it reflects the fact
2) Mid-Range: Conflict prediction and resolution is carriedthat pilots tend to correct cross-track errors in the short term,
out by ATCs, over horizons of the order of tens of minutes. {hile dealing with along-track errors in the long term, using
involves modifying the flight plan on-line to ensure adequatémall changes in speed.
aircraft separation. Semi-automated tools have been developedased on the above probabilistic description of the aircraft
to assist ATCs with these decisions. For example, the cenggbtion, two main methods have been proposed for computing
TRACON automation system (CTAS, [6]), which is based othe probability of conflict for two aircraft encounters. In [7],
the algorithms of [7], [8], operates within the terminal area angl closed-form analytic expression for the probability of con-
the en-route airspace around it. On the other hand, the conffigt for level flight is derived, assuming that the two aircraft
probe based on the user request evaluation tool (URET, [9]} along straight lines with constant tracking errors over the
operates within the en-route airspace. The algorithms and te@ltole time horizon. In spite of its simplicity, which makes it
niques of [10], [11] can also be used at this level. very attractive for on-line computation, the exact interpretation
3) Short Range:Conflict prediction and resolution is alsoof the proposed criticality measure is unclear when these sim-
carried out on board the aircraft by the FMS, over horizons gfifying assumptions are not satisfied. In [10] and [18], Monte
seconds to minutes. The traffic alert and collision avoidanggarlo simulation is used to compute the probability of conflict.
system (TCAS, [12], [13]), currently operating on all commerthis approach does not require particular assumptions and can
cial aircraft carrying more than 30 passengers, is such a predie-applied to many different scenarios, but is computationally
tion/resolution algorithm. The algorithms of [10] and [11] alsthtensive and therefore may not be suitable for on-line imple-
belong to this category. mentation (though promising attempts have been reported in the
An excellent survey of the different conflict detection anditerature [18]).
resolution schemes found in the literature is presented in [14],In this paper, we introduce two probabilistic prediction
where the schemes are classified according to the modeligdels, one for mid-range and one for short-range conflict
method used for projecting the aircraft position in the future. detection. Both are inspired by the empirically motivated
gProbabilistic model described above. The two models are

One of the difficulties in predicting aircraft positions is mo :
eling the perturbations influencing their motion. The future m ptendgd to work toggther at d|fferent. levels of 'the ATMS.'
he mid-range model is meant to provide centralized conflict

tion of the aircraft is affected by uncertainty, due primarily to : . - :
wind, but also to errors in tracking, navigation, and contro pformation to the ATC, in a role similar to that of CTAS in

However, the resultant deviation from the nominal trajectory ¢ Re current ATMS. The short-range model on the other hand

reasonably be modeled as the sum of a large number ofindep%%@rates at a “lower level” to provide decentralized advisories

dent random perturbations acting in disjoint time intervals an the p'IOtS’.m a r.°|e similar to _the one currgntly played by

thus, it is expected to be Gaussian. This hypothesis was indeeC S'. For simplicity, we deal with the level flight case. The

verified by air traffic data in [15], [16]. extension o_f the proposed approaches to_the nonlevel flight
case is straightforward as remarked in Section IV.

In a probabilistic approach to conflict prediction, the uncer- The prediction model developed for mid-range conflict de-
tainty affecting the aircraft motion is taken into account by coRaction Section II, is simple and realistic, but does not allow
sidering the ensemble of sample paths and computing the prghs derivation of a closed-form expression for the probability
ability of projected conflicts. This avoids the conservativenegs conflict. Based on this model, we propose a different mea-
of the worst-case approach (used in [11], [17], for exampl&yre of criticality for two aircraft encounters, give a procedure
but is still robust with respect to uncertainty. The main issuggr estimating it, and quantify the level of accuracy achieved. An
are then building a simple but realistic probabilistic predictiog|gorithm for mid-term conflict detection is then proposed and
model and computing the probability of conflict based on thag performance is compared to that of the algorithm in [7] by
model. Monte Carlo simulation. The simulations are based on a more

In [7], [8], and [10], a probabilistic description of the globaldetailed, stochastic, ordinary differential equation model for the
effect of the perturbations entering the aircraft motion is pranotion of the aircraft. They suggest that the proposed mid-term
posed. The tracking errors are described by zero-mean Gaussiainflict detection algorithm has superior performance to the one
random variables, with the variance of the along-track compef [7], at the cost of increased computational load. However, we
nento2(t) growing quadratically with time show that, for the same level of approximation, the load in com-

puting our criticality measure does not significantly increase
when we go from the two-dimensional (2-D) to the three-di-
o2(t) ~r2t? (1) mensional (3-D) case; in contrast, the computational load for
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the algorithm of [7] is likely to increase substantially, since are used to both estimaféC and compute its maximum. The
closed-form expression like the one used in [7] for level flightdvantage of randomized techniques is that they tend to be com-
is not available for nonlevel flight. Further work to evaluate thputationally efficient. They also provide analytical bounds on
performance of our approach in terms of computational load #he accuracy of the approximation involved, provided one makes
a function of the level of approximation introduced is currentlgppropriate design choices. The parameters that one needs to set
underway. are the prediction horizon and the threshold for declaring a con-
In Section IIl, we propose a model for short term predictiofiict. Systematic guidelines for setting threshold values can be
based on an approximation of the mid-term prediction modébund in [20].
The aircraft motion is modeled as a deterministic motion plus performance of a conflict prediction/resolution scheme
a (scaled) Brownian motion perturbation whose variance groyés measured in terms of safety, impact on ATC workload,
linearly with time, instead of quadratically. The probability oind efficiency (impact on fuel consumption, deviations from
conflict is shown to be the probability that a Brownian motiogchedule, etc.). Here, we restrict our attention only to the issue
escapes from a time-varying safe region. Approximate expreg-safety. It should be noted, however, that safety is closely
sions for the probability of conflict are obtained in closed formgoupled to ATC workload, as the controllers may choose to
thus allowing for very fast computations. Based on these exprésregard disruptive advisories. We model the aircraft motion
sions, an algorithm is proposed for decentralized conflict resgy means of a stochastic differential equation and evaluate the
lution. This algorithm is used for evaluating the efficacy of thperformance of the detection scheme in terms of probability of
proposed short-term criticality measure by Monte Carlo simgalse alarms and successful alerts by Monte Carlo simulations.
lations. The simulation results are also used to tune the threshold of
Developing tools for automated conflict detection and resgne algorithm, in an attempt to optimize the tradeoff between
lution is currently a research topic of great interest to the afie probability of successful alerts and the probability of false
traffic control community. This interest is motivated by the Fedalarms. At a later stage we hope to be able to provide theoret-
eral Aviation Administration (FAA) “free flight” initiative [19], ical bounds on the safety of the proposed design—including
an attempt to increase the ATMS flexibility by allowing aircrafthe resolution component—and estimate its impact on ATC
to fly more user preferred routes from origin to destination. Pogrorkload by means of human-in-the-loop simulations.
sible implications of our research on the current FAA program This section is organized as follows. In Section II-A, we in-
are discussed in the conclusions. troduce the probabilistic models on which we base our detec-
tion scheme and the validation. In Section II-B, we describe the
detection scheme, explain how we deal with the computational
II. MID-RANGE CONFLICT DETECTION issues and formulate a randomized algorithm for its implemen-
tation. Simulation results are reported in Section II-C.
A conflict prediction and resolution scheme at the ATC level
can be viewed as a feedback control scheme, where the ATC, air-
craft, and radar correspond to thlant (ATC and radar playing A. Probabilistic Models
the role of actuators and sensors respectively), and the detec-
tion and resolution components correspond to ¢baetroller. We restrict our attention to the level flight case. This is pri-
Our goal is to design the two “controller” modules and verifynarily for ease of exposition, since the generalization to the 3-D
that the closed-loop system possesses certain desirable progase is straightforward, the only added difficulty being the more
ties. In the present section, we restrict our attention to specifiomplex notation [22]. We assume that the trajectory specifica-
suggestions for detection and validation, describing only brieflijons the aircraft receives from the ATC are in terms of a se-
in Section IV our current work on mid-range conflict resolutionquence of way point§P;};—o, .. », P; € R?, and a sequence
We consider two aircraft flying in the same region of thef speeds{v,};=1. . »,v; € Ry, for moving between consec-
airspace, each following its individudlight plan. The flight utive way points. These two sequences constitutéitiie plan.
plan is assumed to consist of a sequencsaf pointsand a se- At a given time, way points in the past are discarded from the
quence ospeed$or moving between them. Based on this inforflight plan. Therefore, at all times, the first way poiff encodes
mation and on the measurements of the current positions of the current position of the aircraft. We assume that the flight
aircraft, the models developed in [7] and [8] can be modified faan of the aircraft over the time horizon of interest is kna@vn
provide empirically motivated estimates of the probability digpriori in its entirety, except, of coursé&y, which is measured by
tribution for the projected positions of the two aircraft in the neaadar and depends on how well the aircraft is tracking the flight
future. One can then define threstantaneous probability of con- plan. In this paper, we ignore errors in the radar measurements.
flict PC at a future time as the probability that one aircraft willThis assumption can be justified by noticing that uncertainty in
enter the protected zone around the other one. Conflict detectiba initial position quickly becomes dominated by the perturba-
consists of estimating this probability and initiating some actidion to the aircraft motion as time goes on [7], [10]. A model
when itis “high.” The design choices that enter into conflict déncluding radar measurement errors is proposed in [21].
tection are the different ways of weighting the valuertf' at 1) Prediction model: For the purpose of conflict prediction,
various time instants and the different ways of computing estire assume that each aircraft tries to follow its flight plan moving
mates ofPC'. Here, we declare conflicts based on the maximualong the straight line joining successive way poifs; and
value of PC over a prediction horizon. Randomized techniqueB; with the prescribed speed;. The nominal arrival times
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P. uncertainty at way point j
(before the turn)

uncertainty at way point j
(after the turn)

uncertainty at way point j+1

i1

uncertainty at way point j-1

Fig. 2. Mid-range prediction model for the aircraft motion.

{T;}j=o,... n Of the aircraft at the way points can be recursivelwhereV(¢) := diag(c2(t), 02(t)) is the covariance matrix in

computed by the body coordinate frame at{+) is the rotation matrix asso-
ciated with the angle
|15 — Pj—1l cos?¥ —sind
T, =——-—7+T;_ 3 =
! vj - ®) E(9) <Sin19 COSt?) ) )
. o _ In Fig. 2, the prediction model for the aircraft motion is drawn
for j = 1,...,n, initialized with 7o = 0 (recall that with the ellipses representing equiprobability curves of the

P, encodes the current position of the aircraft). Basgstobability distribution A'(m(t), V(¢)) along the aircraft
on the nominal arrival times, th@ominal distance trav- nominal trajectory. Note that/(t) “jumps” instantaneously
eled by the aircraft,s(f) € Ry, and its nominal posi- at the way points; more precisely, it is discontinuous as a
tion, p(t) € R? attimet € (I;-1,T}], are, respec- function of time, with the discontinuity points being at the

tively, given by s(t) = wv;(t — Tj_1) + s(Tj—1) and time {T;},—, .., of heading changes. The assumption of
p(t) = p(L-1)+v; (¢t =Tj—1) (P —p(L;-1))/ |2 =p(Tj-1)ll.  instantaneous turns introduces, in general, inaccuracy in the
Jj=1,..., n, initialized with (7o) = 0 andp(To) = Fo. evaluation of the probability of conflict near the way points.

The prediction of the aircraft position in the future is afThese discontinuities can be avoided by using a more realistic
fected by uncertainty. Following [8] and [10], we assume thaominal trajectory with smooth turns, such as the one computed
the aircraft predicted position can be modeled as a multivariagg the trajectory synthesizer implemented in CTAS.

Gaussian random variable. Lett) := (z1(t), z2(t)) € R? 2) Validation model: To validate a mid-range conflict detec-
denote the aircraftredicted positiorat time¢. We assume that tion algorithm using statistics collected through Monte Carlo
z(t) is normally distributed:(¢) ~ N (m(t), V(¢)) with mean simulation, we need stochastic models to generate trajectories
for the aircraft motion. The model proposed above for predicting
_ the position of an aircraft in the future is simple and allows fast
m(t) = p(t). @) : ; g . :
computations, which makes it ideal for on-line conflict detec-
tion. However, it has certain built-in inaccuracies, which may

For the covariance matrix'(t), we assume that the variancenake it inappropriate for generating trajectories for simulation
of the predicted position increases with time in every directiogy y;jidation. In particular, the prediction model:

reflecting the fact that the uncertainty on the aircraft position
tends to increase the further we try to project into the future. Fol-
lowing [7] and [8], we assume that the variances of the predicted
position in the along-track and cross-track directioié) and
o2(t) grow according to (1) and (2), respectively, and that the
along-track and cross-track error components are independent

Denote by ¢; the heading of the aircraft at time
t € [T;-1, Tj), i.e., the angle that vectd?; — F;_; makes
with the ., axis of the global framework in which thg;s are
given. Then, the covariance matix(t) for t € [T;_1, T};) is
given by

1) does not describe the correlation among the random vari-
ables describing the projected positions of the aircraft at
different time instants;

2) ignores the possible correlation between the cross-track
and along-track errors;

3) uses simple nominal position assumptions and supposes
instantaneous turns.

For validation, we would like to have a model to generate trajec-

tories that alleviates as many of the drawbacks of the prediction

model as possible. This validation model will invariably be more
complicated than the prediction model and, therefore, more dif-
ficult to compute with; this is not a major concern however, as

V(t) = R(9;)V()R(9;)T (5) it will only be used off line.
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We introduce a stochastic ordinary differential equation 3) Tuning of the validation model parameterBor our sto-
model for the aircraft motion that succeeds in eliminatinghastic validation model to resemble the statistics derived from
one of the sources of inaccuracy: it provides a formal way afr traffic data [15], [16], we need to appropriately tune its pa-
correlating the positions of a single aircraft at different pointemeters, that is the covariance matri¢g$0) andV;,(¢), and
in time, while maintaining at each time instant the statistics tfie matrix4. The tuning is based on the following proposition,
the prediction model. whose proof is omitted since it easily follows from standard re-

Consider an aircraft moving iR? and letx = (1, 7o) sults for stochastic ODEs [23].
denote its position with respect to a global coordinate frame.Proposition 1. Consider the stochastic differential equation
Assume its velocity has magnitudeand makes an anglé  x(¢) = Ax(t)+n(t),t € [0, T, wheren(-) is a white Gaussian
with respect to the;; axis. Consider a body coordinate framenoise process witly(¢t) ~ N(0, diagV,, (¢), Vi, (8)), t €
x = (x1, x2) with x; aligned with the aircraft velocity ang> [0, 77, independent of(0) ~ A(0, diagV,, (0), V,,(0))).
perpendicular to it. The two frames are related through a co@et

dinate transformation
Vi (0) =V, (0) =0, V,, (t) =2r7t, Vi, (t) = 2007

r=R@)x+p ™ and
vyhereR(ﬁ) is the rotation matrix of (6)' angd denotes the posi- A= _ where o= e . (10)
tion of the origin of the body frame with respect to the inertial 0 —a T

frame.

In light of the above discussion, (7) can be reinterpreted 28€Nx1(-) andx(-) are independent Gaussian processes with
zero mean and variance

follows:
« the originp of the body coordinate frame represents the var[yi ()] = r2t2 (11)
nominal position of the aircraft; ,
» x1 andy» represent the variation of the aircraft position var[xz(t)] =72 <1 — exp <—2 = v1t>> . (12)
with respect to the nominal in the along-track and cross- ¢
track directions, respectively; By tuning the parameters in (8) according to (10), we can make

* x represents the actual position of the aircraft once ong.) resemble the empirically observed characteristics of the
takes into account the uncertainty in the along-track argong-track and cross-track errors. In fact, [ya(t)] in (11)
cross-track directions. has the same growth rate as the along-track variafj¢e in

We assume that the perturbation affecting the aircraft moti¢n) and vafy.(¢)] in (12) monotonically increases to the satura-
is generated through the stochastic ordinary differential equfon valuez? as the cross-track varianeé(t) in (2). The time
tion (ODE) constant of the decaying exponential in (12) is equal to 1/2 of

. the timet = 7. /r.v; required foro2(¢) to reach the saturation
X =Ax+n (®) valuez? in the case when the aircraft trajectory is a straight line
where x(0) ~ AN(0, V,,(0)) andn := (n1, 72) is a white trayeled with speed,;. .Forrc =1/57 andz,. = 1 nmi (valqes
Gaussian noise process independent @), with zero mean €Stimated on real traffic data [15], [16]) and far = 500 nmi/h
and covariancd’, (¢). We shall show below that by appropri-(typ_'cal crmsmg_speed) this time is about 6 min. Therefore, by
ately selecting matrixi and the covariance matricég(0) and S€ttinga = (rc/ac)vi, we get that véji(#)] reaches 86% of
V,,(£), we are able to obtain uncorrelated Gaussian along-traf)¢ Saturation value in about 6 min.
and cross-track errors whose variance mimics the behavior of ) ) )
(1) and (2). B. Conflict Detection Algorithm
By differentiating (7) and using (8), we get a nonlinear kine- ConsiderN,, aircraft sharing a region of the airspace and
matic model for the aircraft motion, which, by modeling turnflying at the same altitude. A conflict occurs when an aircraft
as discrete events occurring at the way points, reduces to ¢émers thgrotected zong’, around another aircraft, which, for

piecewise linear stochastic differential equation level flight in the en-route space is a circle of radius: 5 nmi
{@IA(@)(w—p)+B(9J)UJ+C(9J)77 C={deR%|d|<p}. (13)
b= D(ej)vj’ ] ) )

te [Ty, T)), i>1 ©) We assume that each aircraft, saynas been assigned a flight

plan {P;};=o,..n,;» Pj € R* and {v'};=1 . n,, vi € Ry.
with A(9) := R(9)AR(NT, B(¥) = D) = R(¥)[1 0]*, Then, the overall encounter can be described through the
C(¢) = R(9), initial conditionsz(0) = p(0) = F,, and configuration v of the N, aircraft system, which consists
switching times{7};} given by (3). of ‘the flight plans of all aircraft, i.e.;y = {{Pj}jzojmjni,

The validation model can be thought of astachastic hy- {v}}sz mibi=1 N, -
brid dynamical systepmwith discrete eventturn occurring at  Conflict detection involves extracting some meadiife) of
the way points. The effect ¢firnis to update) andv. Based on how critical the current configuratiopis, comparing this mea-
this interpretation, we are currently studying a method for fosure to a threshol@ and declaring a conflict if the threshold is
mally evaluating the safety properties of detection algorithnexceeded. The process should be repeated every time the config-

formulated in this probabilistic framework. urationv changes, that is every time a new measurement comes
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in from the radar, or every time the ATC changes a flight plan. It is important to note that the assumption that the positions

In pseudocode, this can be encoded by the following. of the two aircraft are uncorrelated, though commonly used [8],
[10], is rather unrealistic. The tracking error is primarily due

Algorithm 1 ( General Conflict Detection ) to wind, which may correlate the positions of the two aircraft,

when ~ changes do especially near the conflict point where the aircraft are close to

begin each other. Modeling the tracking error correlation properties
Compute C(~v) is not dealt with in this paper, though it obviously needs to be
if C(y) > C declare a conflict addressed in future work.

end. 2) A Randomized conflict detection algorithithe major

obstacle in the implementation of the proposed conflict detec-
The rest of this section deals with the implementation (glfon scheme is the computation@fy). The problemis that one

this piece of pseudocode. This involves deciding on a measﬁamot derive an analytical expressionfur'(-); even the com-

re . . o i )
of criticality, C(-), developing an efficient algorithm for com-plﬁatIOn of PC(z) for a givent is time consuming. This turns

o ; ; . . out to be a major obstacle for on-line implementation, where
puting it for a given configuration and setting the threshold o . : ) :
= C - o computation is subject to time constraints. To solve this problem
C. We first introduce a probabilistic measure of criticality for &

; o %introduce an algorithm for computing an approximate solu-
two aircraft encounter based on the prediction model presenie e
10N to the optimization problem and set up a methodology to

in Section II-A. We then present an algorithm for computin . o . A
. . . L . rovide a quantitative estimate of the level of approximation in-
it, making use of stochastic estimation algorithms. We post- . N

{oduced. Our results build on the theory of empirical processes,

pone the discussion on the computation of the threshold A . o
. . . whose main aim is to study how to estimate unknown quantities
Section 1I-C, where the performance of our detection algorith . .
rough experimentation [24].

is validated by Monte Carlo simulations using the stochastlcSuppOse for the time being that givert & [0, 7], we are

ODE model of Sect|_o_n ”.'Aj . . able to computé’C(¢) with no error. Then, we can resort to the
1) Measure of criticality: Consider two aircraft A and B . .
following algorithm to compute&’(v).

flying at the same altitude and let* andz” denote their posi-
tions in the inertial reference frame. Given the probability den- ) )
sity functionpy, (1) for the separation(#) := «4(¢) —xB(¢)of Algorithm 2 [Randomized Estimate of ~ C(y)]

the two aircraft at time, theinstantaneous probability of Con_lnitializati?n : Choose an integer N and
flict at time¢ is given by set C'(y) =0
for i=1,---, N
PC(t) = / pa, () dy. 14) begin
€ ycC (@) a4 Extract at random t; € [0,T] according to

In the algorithm proposed here, conflict detection is based ont'€ uniform probability distribution

the maximum value of the probability of confli@C(t) overa I C'(7) < PC(%) then  C'(v) = PC(t:)
finite horizon of lengthT’, i.e., end.

C() = tg[}f% PO(®). (15) Clearly, since we are testing just values of PC(¢) for de-
) ) . . __termining the maximum over the time interv@l, 77, ¢’ will

The time horizon!" is chosen to be equal to 20 min. This igye an approximation of. In addition, the quality of the ap-
because the computation &C(-) is based on the prediction yroximation is random due to the stochastic selection of the
model introduced in Section II-A, which is valid over a 20 MirfNevertheless, a quantitative statement showing@hé a good
horizon [7]. As_part of this work, othe.r measures of crltlcall%pproximation in a probabilistic sense can be proved based on
were also considered, most notably, different weighted averaggs following theorem.
of PC(t) over the horizor{0, 77, including the average value. Theorem 1 (Randomized Optimizatioret (Z, F, P) be
These measures were found to be less effective, since for mé?ﬁrobability space and lgt Z — R be a measurable func-
conflicts PC' tends to exhibit a sharp “spike” near the point ofioy. Extract vV independent samples,, z», ..., zy from Z
conflict and is fairly low elsewhere. according to the probability distributio® and definef :=

Based on the prediction model in Section II-A, we considqﬁax‘c[‘_}N f(2). Fix an arbitrary real numbes € (0, 1).
the case when the two aircraft positiond(t) andz”(t) are  Then

Gaussian random variablesy®(t) ~ N(m'(t), Vi(t)), i = 3
A, B, with mi(t) andV*(¢) given by (4) and (5). If we further Plze Z: f(z) > f} <8 (16)
assume that* andz? are uncorrelated, then the separation

d(t) between the predicted positions of two aircraft at tite With probability greater tha — (1 — 8).

is a Gaussian random variablét) ~ N (u(t), Q(t)), with Proof: See Lemma 11.1in [24]. m

meanyu(t) := m*(t) — m®?(t) and covariance matriQ(t) := In the previous statemenf, is a random variable defined

VAR + VEB(). on the product spacg? with the product probability mea-
surePV := P x ... x P hosting the random extraction

1In principle, this algorithm can be used for any probability distribution of th . b
aircraft positions, the main problem being integrating the resultantdistributizﬁl’ R29 0wy ZN?' Thus*P{Z € Z: f(z) > [} <8 may or
for their separatior(t) over the protected zor@ may not be satisfied depending on the random extraction and,
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therefore,P{» € Z: f(») > f} < /3 defines a probabilistic be computed as the probability thattakes values in the set

event in the spac&” . Theorem 1 says that probabiliB of C; := {w € R? : L(t)w + p(t) € C}.

this event is greater than— (1 — 8). This suggests the following algorithm for probabilistically es-
A possible interpretation of (16) is the following. Supposémating PC(t) for a given time instant.

that an opponent would like to determing such thatf (z) > f

and she uses the same probabilistic strategy as in the randomi&@%rithm 3 (Randomized Estimate of PO)

algorithm: she randomly selectszan Z according to”. Then, |hitialization Choose an integer M and
her probability of “beating’f is not greater thag. In Theorem  gg¢ PC'(t) = 0

1, parameteg is arbitrary and, therefore, the probability of sucfor j =1, ..., M do

cess left to the opponent can be reduced at will. On the othgigin

hand, (16) is not a deterministic statement and it only holds trueExtract at random w; € R? according to
with probability P at least equal td — (1 — ). As 3 ap-  the standard Gaussian probability den-
proaches zerd, — (1 — 3)" tends to zero and so the statement sity function N(0, I)

becomes evanescent. In addition, we observe that statement (1) w,; € C; then PC'(t) = PC'(t) +1
quantifies the probability that one can improve regulty ran- end

domly selecting a new parametgtbut says nothing about how £’C’(t) = PC'(t)/M.

large such an improvement can be.

In our case, we are interested in maximizing the probability Again, PC’(t) is a random approximation dPC(t), due to
of co.nﬂ|ct PC(t) over the t|'me intervalo, T_]' Note that thg the stochastic selection of the;s. Nevertheless, a quantitative
function PC: [0, 7] — [0, 1] is not smooth since the Gaussianaiement can be proved showing that it is a good approximation
probability density functiop,, appearing inthe expression (14, g probabilistic sense.
PO(2) of PC(¢) loses smoothness in the set of instafiss  Theorem 2 (Estimation of Probability Measured)et
{Ti*} =0, .oms U{TF }j=0, . m» VT, TP} with t < T}, (7 F,P) be a probability space. Consider a finite collection

whereT? is the nominal time of arrival of aircraftat its way of setsA = {A;, ..., Ax} C F. ExtractM independent
point j and 77 is the time instant when the cross-track errasampleszy, ..., zy; from Z in accordance with? and de-
variance of aircraft saturates. Since this set is finite, Theorerfine P(4;) := (1/M) Zj\il lican i = 1,..., N, where

1 can be applied tg(z) = PC(z), Z = [0, T], F the Borel 1. c4, =1if z; € A;, 0, otherwise. Fix € (0, 1). Then,
o-algebra orf0, 7] andP the uniform probability distribution.

Denote by[¢| the smallest integer greater tharThen, we have

the following. pM {(zl, ) €ZM sup |[P(A) — P(A)] > e}
Assertion 1:Fix 6 € (0,1), 4 € (0,1) and setN = Ae{A,

[In(6)/(In(1 — 3))]. Then, if the random extractions in Al- < o exp(—2Mé?). (17)

gorithm 2 are independent}’ given by Algorithm 2 is an ap-
proximation ofC' in the sense that there exists an exceptional
setS C [0, T] of Lebesgue measure at mast” such that

supp, rj\s PC(t) < ¢ < supy gy PC() with probability -, property of uniform convergence of empirical probabilities
at leastl — 6 ) (UCEP) since, for each fixed accuracy levethe probability

Next, we introduce a method to compute a uniformly goog 4t the approximation error in estimating the probability mea-
approximation of PC(t) over a finite set of time instants g ,re of a set ind exceeds tends to zero uniformly over, as
{t1, 2, ..., ty}. This method will allow us not only 0 the numbers of samples goes to infinity. It is quite intuitive
circumvent the difficulty of integrating the probability densitythat the UCEP property is a necessary condition for success-
function p, (-) over the protected zon@ but also to estimate fyjly applying Algorithm 2 using an estimate &C( - ) instead
the maximum ofPC(t) over [0, T] when combined with the of the true function. Since by PropositionfZ”(#) is the mea-
randomized optimization. sure of the sef;, = {w € R%: L(t)w + u(t) € C} according

Recall thatPC(t) is the probability that a random variabletg N(0, I), then, if Z is taken to béR?, F the Borels-algebra
with time-dependent probability distributioh/(4(t), Q(t)) onR? and? = A(0, I), Theorem 2 can be applied to get the
takes values in the protected zodegiven in (13). By an following result for the estimat&C’ in Algorithm 3.
appropriate change of coordinates, we can also #éatt) as  Assertion 2:Fix § € (0,1), ¢ € (0,1), and setM =
the probability that a random variable with standard norm&l1/2¢%)1n(2N/§)]. Then, if the random extractions in Algo-
distribution A/(0, I') takes values in a time-dependent gt rithm 3 are independenf?C’(t) is a uniform approximation of
The required change of coordinates is given in the followinBC(¢) to accuracye with confidencel — § over every finite
proposition, whose proof is omitted since it is easy to verify. Aet of time instant§ty, ..., tx}, .., sup,ey 3y |PC(t) —
similar procedure is followed in [7]. PC(t)] < ¢, with probability at least — 6.

Proposition 2: Setw := L(t)~1[d(t) — u(t)], whereL(¢) is Combining the randomized estimation procedures¥6r)
the Cholesky factorization of the covariance mai¢¢). Then, andPC(t) leads to a fully randomized implementation of Al-
w is a standard 2-D Gaussian random variable Bad¢) can gorithm 1.

Proof. By the Chernoff bound (see [24]). O
Equation (17) means that each finite collection of sétsas



206 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 4, DECEMBER 2000

Algorithm 4 ( Randomized Conflict
Detection )
Initialization cFix ee€(0,1), Be(0,1), é§¢€
(0,1). Set
In <é>
2 1 4N
N=|—""2 M=|—lnh—
m(1-g) |’ [262 ; w
when ~ changes do
begin
Extract at random w; € R%, j = 1,..., M,
according to the Gaussian density func-
tion N0, I)

Extract at random t, € 0,7, ¢« = 1,..., N,
according to the uniform density func-
tion
for ¢i=1,...,N do
begin
Compute u(¢;) and Q(¢t;)
Compute the Cholesky decomposition
Q(t:) = L(t:)L(t:)"
Set PC'(t;) =0
for 5=1,...,M do
begin
if L(ti)wj+ﬂ(ti) € C then PCl(tZ) = PCl(tZ)—i-
1
end
PC'(t;)) = PC'(t;))/M
if PC'(t;) > C declare a conflict
end
end.

[0, T)Y x R?M is just the product probability measuRs’ x
QM whereP and Q respectively denote the uniform proba-
bility distribution on[0, 7] and the standard Gaussian proba-
bility distribution onR?. Now, according to Theorem 1 relation

max
teft: }7N:1

P {t € [0T]: PC(t) > PC(t)} <p (19)
holds with probability?? greater tharl — (1 — 3)V. Set

q .= QJW {(wl, ceey UI]w) c RQJW:

sup
tC [tf ;V:l

|PC’(t) — PC(t)| > e} . (20)

Putting together these two results, we conclude that the fol-
lowing holds with a product probabilit™ x Q* not less than
1-[1-8)N +4]

P {t € [0, T}: PC(t)

tE{tf}{-Vzl

> PC <arg max PC’(t)) +2¢}
<P {t € [0, T]: PC(¢)
max

> PC <arg PC’(t))} <p
te{t: 1V,

where the first inequality follows from (20) and the second from

It is easy to see that the algorithm declares a conflict if af@9). Thus, maximizingPC’(t) over {¢;}/)_, leads to an ap-

only if

M
1 —
max Y Lriyw, +umecy > C

tC{t: 3,

O'(v) = (18)

i=1

Under the assumption that all the random extractions are mab )
independently of one another, the following theorem provid@gth confidencel —¢.
an estimate of the accuracy of our approximation. Similar
accuracy estimates are given in [25]-[27], where randomiz&8H

methods are applied to robust and adaptive control.

Theorem 3 (Approximate Estimation of): Given

proximate maximum of”C(t) to accuracy2e and level3 with
confidencel — 6§ where§ = (1 — B)Y + q. If we now use

the estimatey < 2Ne=2M<" given by (17), we can easily con-
clude that usingV = [(In(6/2))/(In(1 — 3))] time instantg;
andM = [(1/2¢?)1n(4N/6)] vectorsw; suffices to approxi-
ately maximize’C(¢) over|[0, 7] to accuracye and level3

O

Note that the number of samples needed to achieve a certain
8 proximation in terms of accuracy, level and confidence, is in-
dependent of the nature of the sample space and of the proba-
bility distribution. In particular, this means that it does not de-

e € (0,1),3 € (0,1) ands € (0,1), C'(v) is an ap- pend on the dimension of the Euclidean space from which the

proximate estimate of’(+y) to accuracy2e and level3 with
confidencel — é in the sense that

P{t e [0T): PC(t) > C'(y) + 2} <

w are extracted. Thus, the computational load does not signifi-
cantly increase in the 3-D case with respect to the 2-D case [22].
This is not the case if one resorts to numerical methods based on
gridding or to approximate analytic methods such the one pro-
posed in [8]. However, further work is required to fully evaluate

with probability greater thah— &, whereP denotes the uniform the computational efficiency of our approach as a function of

probability distribution or0, 7.

the accuracy, level, and confidence parameters.

Proof: C’ is a random variable on the probability space

[0, T1Y x R?M . As thet;s andw,s are independent of one an
other and the extractioft; }Y ; is independent of the extrac-

C. Validation

To validate the conflict detection algorithm introduced in Sec-

tion {wj}}il, we can conclude that the probability measure dion 11-B, we use Monte Carlo simulations based on the ODE
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model of the aircraft motion described in Section II-A. We conbe issued. An ideal conflict detection scheme should operate at
pare the performance achieved by Algorithm 4 with the orthe point P(FA)= 0 and P(SA)= 1, where there are no false
achieved by the algorithm in [8]. The algorithm in [8] is basedlarms and all the conflicts are detected. Unfortunately, a real
on the same description of the uncertainty affecting the aircrafinflict detection scheme cannot operate at this point due to the
motion. However, the criticality measure adopted in [8] for atwancertainty affecting the aircraft positions. However, the more
aircraft encounter is an approximation of the probability of corthe SOC curve approaches the pdiat 1), the better the per-
flict. The approximation consists of computing the probabilitformance of the system is likely to be. The threshold can be
of conflict as if each aircraft was flying at a constant velocitgelected on the basis of this consideration, as the one that cor-
and with constant tracking error statistics. The values for thesponds to the minimum distance of the SOC curve from the
mean and variance of the Gaussian random variables describa®al operating point0, 1), thus striking an “optimal” compro-

the tracking errors are set equal to the corresponding valuesrage between the number of false alarms and successful alerts
the point of minimum nominal separation (see [7] for more das suggested in [20] and [29].

tails). For the 2-D case the probability of conflict is further over- We now describe the results obtained by Monte Carlo sim-
approximated by extending the protection zone by “sweepingfations for two different encounter situations. In the first ex-
the 5 nmi disc tatco in the direction of the relative velocity at ample, the aircraft nominal trajectories are straight lines trav-
the point of minimum nominal separation. This leads to an analed with constant speeds, whereas in the second example the
lytical approximation for the probability of conflict in the levellines joining the way points form a more complex zig-zag pat-
flight case. For the 3-D case, one has to resort to a numeritain. For these two cases, we draw the SOC curve and compare

approximation procedure [28]. the performance obtained by Algorithm 4 with that obtained by
The protocol we adopt for evaluating the performance of tlimplementing the detection algorithm described by Erzbezger
detection algorithms consists of the following steps. al. [8]. The parameters,, r. andz, are set equal to the empir-

1) Given the flight plans of the two aircraft, generate pairs é§al valuesr, = 0.25 nmi/min,r. = 1/57 andz.. = 1 nmi in
aircraft trajectories over a 20-min time horizon accordingoth the prediction and simulation models.
to a discretized version of the stochastic differential equa-Example 1 (30 path crossing angle configuration,
tion (9) (sample time set equal to 1 s), with = 0.25 Fig. 3): Consider the case when the two aircraft are flying
nmi/min, . = 1/57, andz. = 1 nmi. straight at the same altitude along paths whose crossing angle is

2) For each pair of simulated trajectories, execute the co#’ at speeds of 480 nmi/h and 500 nmi/h. For sake of clarity,
flict detection algorithm at every radar measurement tinié the left side of Fig. 3 we have drawn a realization of the
(radar measurement time set equal to 12 seconds), eti@ectories. For each pair of trajectories, the initial nominal
time using the updated flight plans and time horizorminimum separation and time to minimum separation are,
These are obtained by removing the way points whidiespectively, 5 nmi and 4 min. Fig. 3(a) shows the SOC curves
have been surpassed, setting the first way point equlAlgorithm 4 (solid line) and the algorithm of [8] (dashed
to the current radar measurement and subtracting thige). The curves were obtained using 1000 pairs of trajectories
elapsed time from the 20-min initial horizon. A conflictgenerated by the stochastic ODE model. In this example, the
is declared as soon as the estimated value of the criticaligptimal” thresholdC, i.e., the one corresponding to the point
measure exceeds the prescribed threshold. of the SOC curve nearest (0, 1), and the “optimal” values for

3) Compute theprobability of false alarmP(FA) and the P(FA)and P(SA) are similar for the two algorithnis f= 0.85,
probability of successful aledP(SA), i.e., the ratio of P(FA)~ 0.18, P(SA)~ 0.78]. O
the number of alerts issued when there was no conflictExample 2 (zig zag flight paths configuration, Fig. 4n this
over the total number of cases when there was no caexample, we consider the case when the sequence of way points
flict [P(FA)] and the ratio of the number of alerts issuedn the flight plans describes a zig-zag configuration at a fixed al-
before a situation of conflict effectively happens over thttude with speeds;* = 505 nmi/h,v3 = 455 nmi/h,v¥ = 460
total number of conflicts [P(SA)]. nmi/h andvy = 470 nmi/h. The estimates of the probability

4) Plotthesystem operating characteris{i8OC) curve, i.e., of successful alert and false alarm obtained by 1000 Monte
the probability of successful alert versus the probabilit€arlo samples are used to plot the SOC curves in Fig. 4(a).
of false alarm parameterized by the threshold and choo&gain the solid line corresponds to the detection algorithm pro-
the optimal threshold. posed in this paper. The “optimal” threshold for Algorithm 4

Note that the above definition of SA does not account for the fdétC' = 0.62, corresponding to P(FAy= 0.164 and P(SA)
that a conflict may be detected when it is too late to do anythirg 0.778 whereas the optimal threshold for the algorithm of
about it. A more complete definition of SA should take into ad8] is C' = 0.79, corresponding to P(FA} 0.264 and P(SA)
count the available conflict resolution strategies, the resporse0-727. Algorithm 4 has a slightly higher probability of suc-
times of ATC and pilots and the aircraft maneuverability corgessful detection and a false-alarm probability of 16.4%, which
straints. In this paper, we simply require that a conflict shouid 3/5 that of [8]. Note also that for each value of P(SA), the al-
be detected at least 60 s before it occurs for a SA to be declargarithm of [8] results in a higher value of P(FA). O
A more thorough study of this issue will be undertaken once aSummarizing, the two algorithms give similar results when
resolution scheme has been developed. the aircraft are flying along straight lines. When the flight plans
It is evident that P(FA) and P(SA) are both decreasing funare more complex, however, our algorithm generally performs
tions of the threshold used to decide whether an alert sholletter than the algorithm of [8]. This also turns out to be the
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Fig. 3. (@) Sample pair of simulated trajectories. &hatand for the starting Fig- 4. (&) Sample pair of simulated trajectories. khtand for the starting
points. (b) SOC curves for Algorithm 4 (solid) and Erzberger algorithRoints. (b) SOC curves for Algorithm 4 (solid) and Erzberger algorithm
(dashed). The stand for the “optimal” threshold points (Examplesk= 0.05;  (dashed). The stand for the “optimal” threshold points (Example=2= 0.05;

6 = 0.1; 8 = 0.05; 1000 simulations). 6 = 0.1; 5 = 0.05; 1000 simulations).

case when the trajectories are straight lines traveled at consté#ertain, the probability of conflict computed in [8] may highly
speed, but the prediction models for the two algorithms take ifyerestimate the probability of conflict of the real encounter.
account the uncertainty in the current position [21]. Fig. 5 repr&]is results in a higher probability of false alarms.

sents the plots of P(FA) and P(SA) as functions of the threshold't is important to observe that dlfferent_conflguratl.ons lead to
obtained by 1000 Monte Carlo simulations for the encountéjfferent SOC curves and, therefore, to different optimal thresh-
in Example 1, but considering a cross-track error with constafifiS: A sensitivity analysis of the dependence of the threshold
variances? = @2 in the prediction models. Note that in thisO" the flight plans should be performed by parameterizing them
case, irrespective of the threshold, the P(FA) given by [8] ?Ssafunctloq ofthe crossing aqgles, minimum deterministic dis-
higher than the P(FA) given by our approach, and the incre4@8¢€: and time to minimum distance.

is not compensated by an adequate increase in P(SA). Similar
behavior is observed in Example 2. [ll. SHORT-RANGE CONFLICT DETECTION

In our opinion, an explanation for the results is that the mea-In this section, we adopt a sample path viewpoint to measure
sure of criticality used in [8] is an over approximation of thehe criticality of an encounter. The approach is motivated by the
probability of conflict. In a sense, this criticality measure cagact that the motion of each aircraft involved in the encounter
tures the probability of conflict for a fictitious/orst-case en- is subject to perturbations, whose overall effect over short time
counter which extends to infinity for both positive and negahorizons can be modeled as a white noise affecting the aircraft
tive times, with the aircraft flying with constant velocities andrelocity. In this way a different likelihood is attributed to the
constant error statistics throughout. So, if the trajectories are wiifferent admissible paths of each aircraft, and the probability
straight lines or if they are diverging and the current position & conflict of the encounter can be computed as the probability
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whereb(t) = jot w(z) dz is a Gaussian process with stationary,
independent increment, whose mean value and variance are re-
spectivelyE[b(t)] = [ E[w(z)]dz = 0 andVar[b(t)] = J; /s
Elw(z1)w(z2)] dz dz, = v2t. This last equation and the Kol-
mogorov continuity theorem imply tha@(t) has a continuous
version B(t), i.e., P{w: b(t,w) = B(t,w)}) = 1 for all
t > 0, where{B(t, w), ¢t > 0} is continuous irt with proba-
bility one [31]. The continuity ob(¢) is actually required when
(21) is used to model the aircraft motion. Note that, after scaling
by 1/v, b(t) is a standard Brownian motion (BM). A BM pos-
sesses many unusual local properties. For example, at any fixed
time its sample path is not differentiable with probability one.
However, this is not of a major concern since we are interested
in its collective properties, i.e., the probability that the perturbed
trajectory experiences a large deviation from the nominal one
or, more precisely, tha - ) evolves outside some safe set, thus
causing a conflict.

By subtracting the nominal motioy”bt f(2)dz and scaling,
we can reduce the perturbed motion in (22) to a standard BM.
Correspondingly, the safe set is transformed into some time-
varying set. The problem of computing the probability of con-
flict then reduces to calculating the escape probability of a stan-
dard BM with respect to a time-varying region. In general, it is
very difficult to get an analytical expression for such a proba-
bility. A case when this is possible is the following.

Lemma 1 (Bachelier-Levy [33])Let B(¢) be a standard
one-dimensional (1-D) BM starting at the origin. Fix € R
and definer := inf{t > 0: B(¢) = a — ut} to be the first time
B(t) reaches a point, which is moving with spegedoward
the origin starting at position > 0. Then,r has probability
density function

exp [—%} , t>0. (23)

p-(t) = \/26;?

algorithm (solid) and Erzberger algorithm (dashed) (Example 1 with constant
cross-track variance:= 0.05; 6 = 0.1; 8 = 0.05; 1000 simulations). .

This lemma will prove very useful for estimating the probability
of conflictin the more complex situations of real interest, which

that a path of some aircraft enters the protected zone of anotWél be reduced to the case described in the lemma by appro-
aircraft. The proposed approach is briefly explained next; tfiate approximations. In [32] a similar approach was used for

formal derivations are given in the following subsections.

highway safety analysis.

Consider the following first-order stochastic differential The rest of the section is organized as follows. We start by
equation inR:

wheref(-) is a piecewise Lipschitz continuous function deflneﬁ1
on |0, oo) andw(-) is a white noise with power spectral density

ds
B0 = 1)+ wit

V2, ie., Elw(t)w(t + 2)] = v?8(z) forall z, t > 0.

Equation (21) can be used to model the motion of an aircraft.
In such a caseis/dt represents the aircraft ground spegds

(21)

introducing the prediction model we propose for short-range
conflict detection (Section IlI-A). In Section 11I-B, we derive
closed-form approximations of the probability of conflict. Fi-
nally, in Section 11I-C, we describe a decentralized conflict res-
ution algorithm based on these approximations and validate
e process by Monte Carlo simulations.

. Prediction Model
Consider an aircraft flying with constant speed along a

the air speed which can be directly controlled by the aircrafitraight line on a plane. Let = (z1, 2) denote its position
andw models local wind effects such as air turbulence, as waith respect to a global coordinate frame= (u1, u2) denote
as deviations due to mechanical and human factors [30]. Intge aircraft velocity, and denote the angle that vectomakes
grating (21), we have

s(t) = /0 £(2) dz + b(t)

(22)

with the z; axis of the global frame. The aircraft motion can be

represented by the stochastic kinematic model

z(t) = ut + R(O)SB(1) (24)
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where X

B(t) standard 2-D BM;

R(¥) rotation matrix of (6); protected zone

¥ diag(va, ), with 2, »2 being the power-spectral

densities of the perturbations affecting the motion in
the along track and cross track directions.

Despite the nonlinear dependence on time in (1) and (2), ove /
short-time horizons and under the constant velocity assumptior‘t\ """" ‘ff/ T
the variances of the along track and cross track perturbation \ N /
can be approximated by linear functions of time. This implies
that the proposed model may be used for short-term predictior
As for the values of,, v., settingr. = 1/57 andr, = 0.25
nmi/min [10], [15] and considering standard cruising speeds of
commercial aircraft, e.gy = 480 nmi/h, the growth rate of
o.(t) with time is given byr.v ~ 0.14 nmi/min, which is lower
than the growth rate,, of o,(t). Hence, typicallyr, > v..

In all the examples,, andv. will be treated as a-dimensional
guantities with the understanding that their squares are equa]L.to
the values in nnfimin of the along-track and cross-track power- 9
spectral densities. B A B A

The model of (24) also seems suitable for the free flight sc‘é"z'l’)ariwggféf(f)}é@fzgg(t)_”“" (8), Au = u u™ and
narip envisioned for the f‘!t“r.e ATMS [19.]' In this case, T[he sat- Equation (26) suggests that one can think of the motion of
uration phenomenon, which in [7] is attributed to the pilots a!‘-iircraft A as consisting only of the perturbatiefit), and the

tempt to track a specific trajectory, may not be so significa otion of aircraft B as deterministic with constant velocity

This is because in the free-flight paradigm, each aircraft receiv&grting atAzo. One can show that the Gaussian prooes

advisories rather than mandatory trajectory specifications fro&gn be reduced to a standard 2-D BM by a coordinate transfor-
the ATC. Moreover, under free-flight conflict, detection and res tion. similar to the one used in Proposition 2

olution WI|| be to a Igrg_e extent_carrled out by |nd|y|dual air- Proposition 3: Set P = V2R(J/2)A, with A =
craft, using only partial information about the intentions of th§.

. : S . " iag( A1, A2), where
surrounding aircraft (primarily their current positions and head-

ings). For this type of resolution, one cannot rely on the assump- 9
AL = \/1/3 cos? <—> + 12 sin” <—>

—

6. Encounter situation for two aircraft flying at the same altitude.

tion that the intruder will make an effort to maintain its current
heading precisely.

(27)

. Y 9
B. Closed-Form Expressions for the Probability of Conflict Ao = \/1/3 sin® <§> + 12 cos? <§>

Consider two aircraft, labeled A and B, flying at the same

altitude. Assume without loss of generality that at titne 0 Then, the stochastic proces&) := P~ n(t) is a standard 2-D
aircraft A is at the origin of a global coordinate frame, flyindBM starting at zero.

along thex; axis from left to right with a velocity:* € R2, Proof: The claim easily follows once one observes that
while aircraft B is at positiom\z € R?, flying with a velocity [2 + R(9)%2R(9)?]t is the covariance matrix of(t) and is
uB € R?, which makes an anglé with thez; axis. A conflict equal toPPT¢. U

occurs if aircraft B enters the protected zone of aircraft A or vice Equation (26) can now be rewritten as
versa (see Fig. 6).

Denote withz* () andz"(¢) the position of aircraft A and B, As(t) = Aso +ut —n(?) (28)
respectively. By the kinematic model (24), we get the following . . N
description for the two aircraft system: whereAs(t) :== P~'Az(t) is the relative position of the two

aircraft in the new coordinate systefws, := P 1Az, u =
P~'Ay andn(t) = P~'n(t) is a 2-D standard BM starting
(25) at zero. Therefore, we can view the motion of aircraft A as a
standard 2-D BM starting at the origin and the motion of aircraft
B as a motion at constant velocitystarting atAsy.
where BA(¢) and B(t) are standard 2-D BMs. As for the  |n the new coordinate system, the circular protection zone of
mid-range prediction model, we assume that(t) and B®(¢)  radiusp = 5 nmi around aircraft B is transformed into an el-
are independent and start at the origin (ignoring GPS and raggge initially centered af\s(0) = As, and then moving along
errors). Subtracting the first equation from the second in (2jth aircraft B at velocityx (see Fig. 7). The boundary of the
leads to protected zone is given by

s (t) = utt + TBA(Y)
{ 2B(t) = Axg +uPt + R(9)XBB(¢)

Az(t) = Azg + Aut — n(t) (26) M(z1 — Asy(£)? 4+ M(zo — Asa(t))? = p?/2. (29)
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tx tribution p.-( - ) given by (23) withy, = ||u||. The approximate
probability of conflict P(£") can then be written as
, =) 1 y2
‘0 B P = () —expl| —= ) dydt
""""""""""""""""""""""""""""" \h;‘ 0 ly—za|<L 2t 2t
\Xd /Oo zq — L g+ L
A = [ no]e("2E) o at
k ; \'\\x"' 0 \/E \/E
T (32)
\L’// whereQ(y) = [7°(1/v/2r) exp(—#2/2) dz.
//'”/«f"></u a Note that by Formula 1 in the Appendig&[r] = a/||u||.
( Ase 7)o When ||u|| is greater than ones.(t) concentrates neap :=
\\¥Q;~,\;/ a/||v||. Then by taking the Oth order expansion @f(zy —
E L)/vt) andQ((z4 + L)/+/t) aroundt, in (32), we get the fol-
lowing.
Fig. 7. Transformed protection zone. A Assertion 3: The probability of conflict can be approximated
y
A conflict occurs if and only if the 2-D standard BM(¢) xg—L g+ L
. . . . . PO .= Q -Q (33)
starting at the origin (representing aircraft A in the new Vo NG

coordinate system) ever wanders into this moving ellipse.

Let z, be the distance of the origin from the lidealong WhereL is given by (31)a andz, are given by (30), and we set
which aircraft B is flying, anda to be the distance from theto := a/llull.
positionAs, of aircraft B att = 0 to the projection of the origin N [34], it is shown thatP® is a remarkably sharp estimate

on h, as indicated in Fig. 7. Then of P(F"), even in the case whdfu|| is much smaller than one
- (the approximation error whejfi|| > 1 is barely noticeable).
|AsER (5) u AsTy Higher order approximations of the probability of conflict can
Td=——7771 a=—-="2 (30) also be obtained [34], but the resulting improvement in the ap-

[l [Jull -

o e ) proximation is not substantial.
Observe that a positive value feindicates that the two aircraft Fig. 8 shows level curves aP® as a function of the initial

are approaching each other, whereas a negative valueridi- positionAz, of aircraft B for the path angles = 0°, 45°, 90,
cates that they are flying away from each other. If we ignore th@e . In each plot, aircraft A is moving from left to right with
effect of the noise, in the new coordinate system the minimgjq ity |lu?|| = 7 nmi/min starting at the origin and aircraft
distance during the encounter is givendyif o > 0 and by B js moving with velocity|[«?|| = 8 nmi/min. To see the re-
[[Aso||, i-e., the distance at time= 0, if a < 0. sults more compactly, we used relatively large valuesfand
Denote the conflict event b¥'. Since the probability of con- ve (v, = 2 andr, = 1). Observe that as the cross path angle
flict P(F") does not admit a closed-form formula, we will at increases, the region delimited by the saffeequiproba-
tempt to approximate it. Let be the line passing through theyjjity jine gets more and more extended. This indicates that,
center of the ellipse and orthogonattevhich moves along with everything else being equal, the situation of head-on conflict
the ellipse with velocity. (see Fig. 7). The projected widtl, (9 — 180°)is the most dangerous, whereas the situation of over-
of the ellipse along lin& can be computed as follows: take conflict ¢ = 0°) is the least dangerous.
WA? 4 U2 A2 We now introduce an expression for the probability of conflict
-7 L2 (31) within a time horizont;. Limiting the prediction time horizon
Atz 2(uf +u3) to be finite makes much sense since, for the same value of the
where); and ), are given in (27). Denote by the first time probability of conflict, the more dangerous situations are the
7i(t) hits k and defineF” to be the event that(+) is within a ones with smaller projected collision time. Moreover, by con-
distance ofL from the center of the ellipse. One can show [343idering a finite prediction horizon, we avoid problems similar
thatP(F") is a good estimate of the probability of confliet /')  to those pointed out in Section II-C for the algorithmin [8]. The
when the difference of the two aircraft velocities is much largé@robability of conflict within a fixed horizort s is computed as
than the growth rate of the variance of the BM, which is, in factpllows:
the case of mte_rest_. The intuition is that_when the ve_IOC|ty ofthe PF O {r <))
moving ellipse is high, the only dimension of the ellipse that is

t
relevant for the evertt’ is that perpendicular ta (for a formal = / ' p-(t) / Lexp<_y_2> dy dt
discussion see [34]). 0 ly—zal<L 27t 2t
Assume that. is aligned with the positive; axis. This can ty — P
be done by without loss of generality by an appropriate rota- = / (1) [Q < 7 ) -Q < Ny )} dt
0

tion, since the standard BM is invariant with respect to rotation.
Assume that the two aircraft are approaching each other, iwhich, by using zero-order expansion®f(x, — L)/+/t) and
a > 0. Then the time- for aircraft A to reach liné: has the dis- Q((xq4 + L)/+/t) aroundt,, and Appendix, formula 2 leads to
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Fig. 8. (a)P° for path angleg’ = 0° and (b)? = 45° with ||«®|| = 7 nmi/min, ||«B|| = 8 nmi/min,v, = 2,v. = 1. (c) ¥ = 90° and (d)? = 180° with
[le®]| = 7 nmi/min, ||«B]| = 8 nmi/min,v, = 2, v, = 1.

Assertion 4: The probability of conflict within timet; can It is then proposed to use a level curve of (33) to delimit the
be approximated by “alert zone,” which in the context of [35] is a region around the
aircraft where ATC assistance for conflict avoidance is required
P = [Q <a — [ull tf) + exp(2alu])Q <a + |l tf)} in a free flight setting. By approaching the problem from the
! Vi Vi process point of view, we get more general results which can,
P I, for example, be easily extended to the finite horizon case. This
d Tg+ .
: {Q < N ) -Q < N )} (34) allows the alert zone to be appropriately chosen, based also on
0 0

the look-ahead time horizon.

whereL is given by (31) ¢z andx 4 are given by (30), and we set ) ) ) )
to := af||ul|. C. Decentralized Conflict Resolution Algorithm

Fig. 9 shows level curves d?tof for9 =90°,inthe two cases  Many contributions in the literature deal with the issue of
whent; = 10 minandty = 15 min.P,Pf looks like a truncation providing safe, coordinated conflict resolution maneuvers for
of the corresponding infinite horizon version. It is not surprisintyo aircraft, both in a deterministic setting (see, for example,
that as/, andv, increase, the truncation becomes smoother. A¥1], [12], [36], [37]) and in a probabilistic setting (see, for
for the infinite horizon case, higher order approximations of trexample, [8], [35]). In comparison, there are relatively few
probability of conflict do not seem to be significantly better. contributions treating directly the multiple aircraft case and

In [35, eq. (33)], the probability of conflict is obtained bythey mostly deal with a deterministic setting. Conflicts in-
a different approach, which mainly consists of computing thelving multiple aircraft that may occur in high-traffic areas
probability that the aircraft distance at the nominal time aire more general and more difficult to resolve. The reason is
closest approach is lower than the minimum allowed distandbat if one tries to resolve conflicts pairwise one may generate
given that the initial positions and velocities are uncertaim. conflict with a third aircraft and may be unable to converge
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Fig. 9. (a)P? fort, = 10 minand (b)t; = 15 min with ¥ = 90°, ||u*|| = 7 nmi/min, ||u®|| = 8 nmi/min,v, = 2,v. = 1.(c) Pff fort; = 10 min and
(d)t, = 15 minwith 9 = 90°, ||«®|| = 7 nmi/min, ||«8|| = 8 nmi/min,v, = 2,v. = 1.

to a feasible solution. In [38]-[41], multiple aircraft conflictTCAS [12] also has some multiple aircraft resolution capabil-
resolution is based on the optimization of a cost functioitjes, but is primarily geared toward pairwise, short range en-
which is suitably selected to take into account practical faceunters. TCAS predicts conflicts using a deterministic model
tors such as fuel consumption and passenger comfort. Tdred issues coordinated resolution advisories by selecting the
computational issues involved in the constrained optimizatidmast aggressive among a predefined set of maneuvers in the ver-
problem are solved by genetic algorithms in [38], semidefiical plane. The goal is to ensure adequate vertical separation at
nite programming combined with a branch-and-bound searttte point of closest approach.
in [39], and an iterative method based on approximating theHere, we introduce an algorithm for multiple aircraft conflict
performance index as quadratic and the constraints as linezsolution which uses the probability of conflict calculated in
in [40]. The main drawback of these approaches is that the®ection 11I-B to guide each aircraft to its destination, while
is no guarantee that the obtained solution is optimal. In [4yoiding conflict with other aircraft flying in the same region
resolution maneuvers are classified into different homotof the airspace. Unlike TCAS and the optimization based
types and the problem is reduced to a convex optimizati@tgorithms discussed above, in our algorithm the uncertainty
problem within each type. Therefore, one can, in principlaffecting the aircraft motion is explicitly taken into account.
compute the global optimum by comparing the optimal soldoreover, conflict resolution is decentralized since aircraft
tions associated with all the different types of maneuvers. Thesolve conflicts using only information about the positions,
number of types, however, grows rapidly with the number dfeadings, and speeds of neighboring aircraft without coordi-
aircraft involved in the encounter. nating with them. In contrast with the worst-case approach to
A completely different approach is taken in [42], where padecentralized conflict resolution taken in [11], [17], where the
tential and vortex field methods are applied to generate decaircraft do not trust each other, the idea here is that each aircraft
tralized resolution maneuvers for multiple aircraft encounterassumes that the other aircraft will try to behave rationally, but
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their effort may be undermined by the uncertainties inherent inHere 3 is the maximal turn angle allowed per time step and
the environment. for simplicity we usez(k) to denotez(kAt).

Our approach is most closely related to that of [42]. The main The ideal new heading’(k) is the weighted sum of desti-
difference is that we use information not only on the curremiation heading and gradient heading, with weights depending
positions, but also on the current headings and speeds of @émeP. (k). Intuitively, if P.(k) is high, then decreasing the
surrounding aircraft to generate the repulsive force acting on thebability of conflict becomes a priority and, therefore, the
aircraft. Thus, the two cases when two aircraft are at the samiecraft should pursue the gradient direction more. If, instead,
distance, but approaching and flying away from each other, db(%) is negligible, then the aircraft should pursue the desti-
not lead to the same repulsive force and, hence, abrupt avoidanaton direction. Due to aircraft limitations, the deviation from
maneuvers are avoided. current heading is restricted b This is the reason why the

In this paper, the probabilistic algorithm for conflict resolunew heading is chosen to be the one nearegt(tb) within the
tion is used for assessing the merits/tf andPtO[ as criticality allowed range.
measures by Monte Carlo simulations. In [41], this algorithm is The validation protocol adopted for performing the Monte
also used as “random type chooser,” to provide a randomiz@drlo simulations is the following.

solution to the combinatorial optimization problem. 1) For every Monte Carlo run perform
Consider the case when two aircraft (labelédnd B) are a) initialization: given the flight plans of
currently at positiona* anda® and have destinatiorig* and the two aircraft, compute?’(0) and set
B, respectively. Assume their initial headings are toward their 2i(0) = df, ¥i(-1) = Qgi(éo), W) =
destinations and that they fly at a constant spe&dand v>, (vt cos(9(—1)) ¥ Sin(ﬁi(_l)))(é“, i = A B,
respectively. At each time instafitthe probability of conflict andk ::co; ’ ‘ ’
P.(t) can be calculated by (33) [or (34) for some finite horizon b) resolution choose the current heading at timéy
ts] using the current positions*(¢), 22(¢) and velocities means of Algorithm 5:
ut(t), wB(t) of the two aircraft. c) update update the aircraft velocities and positions
For each aircraft we define three particular headings of in- at time stept + 1 as follows:
terest.

« Current heading.: direction along which the aircraft is u'(k+ 1) = (v cos(V;(k)), v sin(Ve.(k)))
currently flying. o' (k+ 1) =2' (k) + At (k + 1) + R(9(k))

 Destination heading/,: direction defined by the current - diag(va, 1) Atni(k + 1)
aircraft position and its desired destination. ’

» Gradient heading?,: direction corresponding to the i = A, B, whereR(%) is the rotation matrix of
highest decrease of the probability of conflict. Since both angle?, andn® andn® are independent 2-D white
aircraft maintain their velocities within a short timég Gaussian noises with unit covariance matrices;
can be chosen as the direction of the negative gradient  d) termination check if both aircraft have reached
of P. as a function only of the current positions of the their destinations; if not, sét:= %k + 1 and return
aircraft. to step b).

Our resolution strategy aims at making each aircraft reach 2) After a prescribed number of runs, build the histogram
the desired destination while avoiding situations of conflict by of the minimum separation between the aircraft. The res-
appropriately changing its heading. This is done by updating  g|ytion algorithm can also be interpreted as a receding
the aircraft headings everxt time instants by means of the horizon control algorithm, witi# playing the role of the
following algorithm. control horizon, and the interval over whi&h is approxi-

mated (eithef0, o) or[0, t]) playing the role of the pre-
diction horizon. Therefore, in the simulations presented
below resolution is not performed at once over the entire
length of the simulation (of the order of 30 minutes). Itis
performed by repeatedly invoking our short-range resolu-
tion algorithm over a horizorh¢ (of the order of 1 min).

Simulation results are shown in Fig. 10 for two typical
encounters: head-on encounter and orthogonal encounter. The

Algorithm 5 ( Decentralized Conflict
Detection and Resolution )
Compute P.(k) based on z2(k), zB(k), u™(k), uB(k)
for i = A, B do
begin
Compute #(k), and o' (k) given z*(k),

xB(k)’_i u(k), “B(’?)- ‘ speeds of the two aircraft are chosen such that it takes 30 min
Set ¥ (k) := Pe(k)0y (k) + (1 — Pe(k))95(k). for them to fly from their starting positions (marked with stars)
Given 9.(k — 1) choose the new headings at to their destination positions (marked with diamonds) along
step k as follows: a straight line. We used (33) for computing.(¥) and set
- _ ‘ At = 1,8 = 7/25, v, = 0.35 andv. = 0.2. The values of
‘ 9 (k), if  |9(k) —9uk)| < B v, andr. are chosen to get a first-order approximation of the
¥e(k) = 9 (k — 1) + 3 -sgn (gi(k) — 9 (k — 1)) growing rate of the along-track and cross-track variances in (1)
¢ otherwise ¢ and (2). The histograms obtained by running 100 simulations

show that in both cases the minimum separapos- 5 nmi
end is respected and, moreover, most of the minimum separations



PRANDINI et al. PROBABILISTIC APPROACH TO AIRCRAFT CONFLICT DETECTION 215

200

180

160} 7| e

60

401

201 [13

0 20 40 60 80 100 120 140 160 180 20 m ==
X 1 (nmi)

I e |

(@) (b)

2001
180

160 25

frequency(%)‘

140

60
40

201

0 20 40 60 80 100 120 140 160 180 20

. 7 8 9 10 "
X 1 (nmi) dmin (nmi)

(© (d)

Fig. 10. Resolution maneuver for two aircraft encounter situatiens< 0.35, v. = 0.2, 3 = =/25).(a) Head-on encounter. (b) Minimum separation histogram
for (a). (c) Orthogonal encounter. (d) Minimum separation histogram for (c).

are greater thaBp. The factor 2 arises since each aircraft trieguted taking into account the overall probability of conflict. For
to maintain a distance gf from the other one and there is noeach aircraft, say, ¢ € {A;, Az, ..., A4,}, we compute the
coordination between them. probability of conflict between it and any of the other aircraft.
Zooming into the resolution trajectories reveals a lot of chaenote withF;’ (k) the probability of conflict between aircraft
tering between positions corresponding to higheand lower ¢ andj, and with?;/ (k) the corresponding gradient heading.
P,. This behavior is expected since the functi@nis very sen- Then, the new heading.(k) for aircrafti is chosen based on
sitive to the heading of the two aircraft. To get flyable paths, wiBe expression given in Algorithm 5 for the two aircraft case,
can either increase the resolution horizohor take the average but with the ideal heading computed as follows:
of the resolution headings over a period of time (which would

act as a low-pass filter). Z P (k)0 (k)
The algorithm can be extended to the multiple aircraft case. W(k) _ pz‘(k) Pl + (1 _P (k)) 292(16)
Suppose we have aircraft sharing the same region of the ¢ chii(k) ¢

airspace. Then, the new heading of each aircraft has to be com- i
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Fig. 11. Resolution for three aircraft encounter situations € 0.35, v. = 0.2, 3 = 7/25). (a) Encounter. (b) Minimum separation histogram for (a). (c)
Orthogonal encounter. (d) Minimum separation histogram for (c).

where Pi(k) = max;z; P (k) is the maximum probability into two groups. The aircraftin each group follow each otherin a
of conflict among all aircraft pairs involving aircraftand is streamline and the trajectories of the two groups are orthogonal
used as an indicator of the degree of danger for air¢iafthe to each other. In this simulation, we et 10 instead of 5 nmi,
multiple aircraft setting. just for the maneuvers to be more evident in the pictures. Note

Simulation results for two encounter situations involvinghat in this case, the minimum separatiopoimi is satisfied for
three aircraft are shown in Fig. 11. All parameters remaBR out of 100 runs for the first example and 94 out of 100 runs for
the same as in the two aircraft case. Since the airspace is thetsecond one. This shows that the algorithm cannot guarantee
considerably more congested all conflicts are successfulligsolute safety. We are currently analyzing the safety properties
resolved and most of the minimum separations are agafthis algorithm as a function of the number of aircraft involved
centered aroundp. in the encounter and the uncertainty level.

The situation becomes more complicated when the numbeiComputational load is an important issue for multiple aircraft
of aircraft increases to, say, eight, as is shown in Fig. 12. Thesolution. Because all probabilities are approximated in closed
first encounter is a symmetric encounter where the eight aircrédtm the load for pairwise resolution is very small with our al-
pass through a common point at angles evenly distributedgorithm. However, for multiple aircraft encounters all pairs of
[0, 27]. In the second encounter, the eight aircraft are dividedrcraft have to be tested, therefore, the number of operations
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Fig. 12. Resolution for eight aircraft encounter situations £ 0.35, v. = 0.2, 8 = /25, p = 10 nmi). (@) Symmetric encounter. (b) Minimum separation
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that need to be performed grows roughly as the square of #re empirically motivated probabilistic description of the air-
number of aircraft involved. This type of growth is also observectaft motion, stochastic models were developed for mid-term
in CTAS and has been addressed using a number of heuristicarnd short-term prediction of the aircraft positions, thus allowing
limit the search. Fortunately, the number of aircraft involved ithe corresponding criticality measures to take into account the
our case is likely to be much smaller than CTAS, because of tharious sources of uncertainty inherent in the environment.
short-range nature of our algorithm. Even though the computa-or mid-term prediction, randomized algorithms were used
tion becomes harder in the multiple aircraft case, our algorithior estimating the criticality measure and formulating a con-
scales better than most centralized resolution algorithms, whdiget detection algorithm for two aircraft encounters. The perfor-
complexity grows exponentially in the size of the problem. mance of the randomized detection algorithm was compared to
that of the detection algorithm integrated in CTAS using Monte
Carlo simulations. The simulations suggest that the two algo-
rithms have similar performance for simple encounters, whereas
In this paper, we addressed aircraft conflict detection at tler algorithm tends to perform better for more complex encoun-
mid-range and short-range levels of the ATMS. Starting froters. Further study is needed to evaluate the performance of the

IV. SUMMARY AND CONCLUSION
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randomized algorithm in terms of computational load as a fun@dar measurements, the detection module and an optimization
tion of the level of approximation introduced. algorithm to minimize an appropriatesolution cost function

For short-term prediction closed-form approximations for thever all possible flight plans. ATC is naotified if changes
probability of conflict were derived for a two aircraft encountelin the upcoming way points are imminent, and the process
Based on these approximations, we formulated a conflict rede-repeated every time a new radar measurement becomes
lution algorithm and used Monte Carlo simulations to demomvailable. The design choices that enter into conflict resolution
strate the efficacy of the use of the probability of conflict to gerare the different resolution cost functions and the different
erate safe resolution maneuvers. The extension of the approaptimization techniques. The optimization could be carried out
to multiple aircraft conflict resolution revealed potential probby randomized algorithms, but one has to carefully investigate
lems with this approach when the airspace becomes very ctile smoothness properties of the cost to be optimized as a
gested. We are currently analyzing the effect of the uncertairitynction of the flight plans. The parameters one needs to set
level and the number of aircraft involved in the encounter on tisggnificantly influence the acceptability of the advisories by
performance of the resolution algorithm. the ATC. These parameters include how far in advance should

Although we focused on the planar case, the extension to tNEC be notified of flight plan changes and the bounds on the
3-D case is straightforward. For mid-term conflict detection, thellowable flight plans (partly determined by aircraft capability).
computation of the proposed criticality measure can still be pégpnce the prediction/resolution algorithm has stabilized, we
formed in an efficient way by the randomized methods as reepe to be able to test it in human-in-the-loop simulations.
marked at the end of Section II-B. For the short-range confli¢his will allow us to tune the various parameters, and assess its
detection, in a similar way to the 2-D case, analytical approXimpact on ATC workload.
mations for the probability of conflict can be computed for the In parallel we are working toward a methodology for formally
3-D case and then be used to derive a decentralized 3-D res@\aluating the safety properties of the proposed algorithms. This
tion algorithm. However, it is considerably harder to get meamill hopefully lead to a more general probabilistic verification

ingful bounds for the error of such approximations. methodology for hybrid systems.
Both the approaches introduced here have potential applica-

tion to the airborne conflict management (ACM) operational APPENDIX |

concept, which is being developed by the radio technical com- FORMULAS

mission for aeronautics (RTCA) and the FAA [43]. The ACM
concept includes detecting conflict situations, monitoring fog
conflicts that might arise if the current flight plan is change
and suggesting resolution maneuvers to prevent a violation o
the separation criteria. It is envisioned that these functionalities 0o

(respectively namedonflict detectionconflict preventionand / T exp [_
conflict resolution will be available not only to the ATC but also o V2rt

to the pilots. The enabling technologies are GPS, ADS-B and

cockpit display of traffic information (CDTI). Multiple levels of ~ Formula 2: DefineQ(z) := [~ (1/v2r) exp(—22/2) dz.
alert are proposed for conflict detection in ACM. Depending ohhen, fora > 0, b # 0, s > 0

the airspace domain and the operating flight rules, the actions in

The formulas reported in this section are derived in [34]. The
roofs are omitted for brevity.
Formula 1. If z > 0,v > 0, then

QP
2t v

response to the different alerts may have to be coordinated with *a (a —bt)?
the ATC or may be undertaken autonomously by the pilot. /0 Norr R [_ of } dt
In this context, the mid-term detection algorithm proposed
here could be used for the conflict prevention function of ACM —Q <a — bs) + exp(2ab)Q <a - bs) )
since it can deal with longer look-ahead horizons. Besides pro- Vs Vs

viding warnings for potential conflicts, it may also be possible

for the ATC to query the system about the safety of the changes

he would like to make to the flight plans. Moreover, the level sets ACKNOWLEDGMENT
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