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Abstract—In future wireless communication networks, existing
active localization will gradually evolve into more sophisticated
(passive) sensing functionalities. One main enabler for this pro-
cess is the merging of information collected from the network’s
nodes, sensing the environment in a multi-static deployment.
The current literature considers single sensing node systems
and/or single target scenarios, mainly focusing on specific issues
pertaining to hardware impairments or algorithmic challenges.
In contrast, in this work we propose an ensemble of techniques
for processing the information gathered from multiple sensing
nodes, jointly observing an environment with multiple targets. A
scattering model is used within a flexibly configurable framework
to highlight the challenges and issues with algorithms used in this
distributed sensing task.
We validate our approach by supporting it with detailed link
budget evaluations, considering practical millimeter-wave sys-
tems’ capabilities. Our numerical evaluations are performed in
an indoor scenario, sweeping a variety of parameter to analyze
the KPIs sensitivity with respect to each of them. The proposed
algorithms to fuse information by multiple nodes show significant
gains in terms of targets’ localization performance, with up to
35% for the probability of detection, compared to the baseline
with a mono-static setup.

Index Terms—Integrated sensing and communication, 6G,
OFDM Radar, multi-target localization, multi-static sensing.

I. INTRODUCTION

The next generation of cellular wireless communication
systems 6G, like the previous ones, will bring the neces-
sary evolution regarding transfer speed, latency, etc. for the
upcoming years [1]. On top of this, a novel topic called
integrated sensing and communication (ISAC) draws a lot
of attention in the research community. In this vision, the
network incorporates sensing capabilities on top of the al-
ready existing communications [2]. This is enabled by the
improvements in hardware performance, with massive antenna
arrays and aggregation of new frequency bands with enormous
bandwidths. One obvious implementation would incorporate
radar functionality for the first time in cellular networks,
directly in the existing system, making it cheaper and more
sustainable. The ability of the network to localize and classify
even passive objects – compared to 5G’s active localization
– would be a major game changer for specialized services,
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general improvement of the quality of service, and a plethora
of other use cases imaginable [3], [4].
Current research in the field of ISAC is concerned with all
kinds of related research topics, essential for a later successful
deployment. Examples are improved power allocation between
the communications and radar functionalities [5] and optimiz-
ing angular sampling [6]. A more system-centric view is given
in [7] and [8] with the detection and angulation of one and
multiple targets with the help of a single mono-static system
setup and deep learning (DL). Given the inherent network
structure of cellular systems, it seems beneficial to leverage
this multi-static setup to improve coverage and reliability of
future sensing setups. The authors of [9] demonstrate the track-
ing of a single target observed by multiple mono-static systems
via different tracking algorithms. In [10], a single transmitter
illuminates the scene while multiple receivers extract and fuse
the observation with the help of DL.
From the mentioned literature, we deduce that a holistic
view on the multi-static sensing problem is still missing. We
propose a model-based end-to-end methodology to process
and fuse sensing acquisitions from multi-static operations,
locating multiple targets in the environment. To the best of our
knowledge, this is the first work in ISAC literature targeting
multi-static sensing for multiple target localization.
This work contributes by highlighting localization limitations,
challenges, solutions, and by presenting:

• a complete (classical) sensing pipeline, resembling exist-
ing cellular networks,

• an ensemble of techniques to perform multi-node peak
extraction and fusion,

• numerical evaluations in a realistic multiple scattering
targets scenario with focus on physical practicability and
consistency at millimeter wave frequencies.

Our results show the gains and benefits from single-node to
multi-node fusion, and performance for different constraints
regarding link budget and system parameters.
The paper structure is as follows: Section II introduces the
system model and existing orthogonal frequency-division mul-
tiplexing (OFDM) radar processing. On top of this, Section III
describes the methodology necessary for the complete multi-
static sensing task. Section IV provides information on the
investigated scenario, the modelled effects, and its limitations.
After presenting our results in Section V, a summary con-
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cludes the paper (Section VI).
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Fig. 1: Proposed sensing network structure with targets and
nodes/sensing access points (SAPs) connected to the central
sensing management function (SeMF). The transmitted wave-
front is indicated in blue, the back-scattered received signal in
red.

II. OFDM RADAR AND SYSTEM MODEL

In this work we study wireless network based radar de-
tection and localization using multiple spatially distributed
nodes, referred to as sensing access points (SAPs), that could
represent any access point or user terminal performing sensing
operations. We consider OFDM radar [11], compliant with
cellular network waveforms [12], for the parameter estimation
within each SAP.
While we focus on extracting single snapshot (azimuth) angle
and range information for localization, an extension to include
elevation angle and Doppler information would be straightfor-
ward.

A. OFDM Radar

For each SAP, we consider a typical OFDM system oper-
ating at a carrier frequency fc with bandwidth B and Nsub
subcarriers, spaced by ∆f = B/Nsub. Each SAP senses the
environment with mono-static acquisitions, thus just receiving
the signal transmitted at the same site. The transmitter (Tx)
is a single illuminating antenna, while the receiver (Rx)
uniform linear array (ULA) comprises K antenna elements
with spacing d. Note that the achievable sensing resolution
depends just on the sum co-array between transmitter and
receiver [13], thus it is equivalent for any combination of Tx
and Rx with a total number of elements equal to k + 1.
The transmitted complex symbols modulated onto each subcar-
rier n are denoted with x = [x1, x2, . . . , xN ] and the received
signal is y = [y1, y2, . . . , yN ]. We define the Nsub×K channel
transfer function (CTF) matrix H. The entry corresponding

to the n-th subcarrier and k-th antenna is deduced from the
frequency domain response of the superposition of signal
reflections from each scatterer p ∈ P in the environment

hn,k =
∑
p∈P

αpe
j2π(− 2n∆f

c lp+
dkfc

c sin(θp)) (1)

The complex coefficient αp of each path is influenced by a
variety of parameters, further described in Sec. IV-B. The
phase shift over the subcarriers is determined by the path’s
propagation distance lp, corresponding to twice the target
distance to the SAP, while the phase shift over the antennas is
determined by the impinging angle θp of the path on the ULA.
The vector z = [z1, z2, . . . , zN ] represents random complex
additive white Gaussian noise (AWGN) samples drawn from
zn ∼ CN (0, σ2), resulting in a noise power over the whole
bandwidth of PN = σ2Nsub.
Accordingly, the noisy received OFDM symbols are given by

yn,k = xn · hn,k + zn,k . (2)

Single-tap equalization is applied to extract an estimate of the
CTF Ĥ, assuming known transmit symbols, through

ĥn,k =
yn,k
xn

. (3)

B. Periodogram

We estimate the angle and range of targets from the CTF
by periodogram computation, as described in [11]. Angular
information is inferred from the discrete Fourier transform
(DFT), where the linear phase shifts over the receiving ULA
elements due to the azimuth angle of arrival. Range informa-
tion is derived via the inverse DFT from the phase shift over
consecutive subcarriers [14]. The two DFT-based operations
can be combined for joint angle-range estimation through

Pn′,k′ =
1

N ′K ′

∣∣∣∣∣∣
N ′−1∑
m=0

K′−1∑
i=0

ĥm,ie
−j2π ik′

K′

 ej2π
mn′
N′

∣∣∣∣∣∣
2

.

(4)
The CTF is zero-padded to shape N ′ ×K ′ for simple global
interpolation. Suitable DFT parametrization ensures mapping
from respective bins to the correct angle and range labels.

C. Signal-to-Noise Ratio

We define the symbol-wise communication-centric signal-
to-noise ratio (SNR) γcom with the received symbol power
PS,com as

γcom =
PS,com

PN
(5)

For target extraction, the respective peak with power PS,imag

in the periodogram is to be considered. With the processing
gain provided by the DFTs size in the periodogram [14], this
raises the SNR to the sensing SNR given by

γimag =
PS,imag

PN
=

PS,com

PN
·NsubK . (6)

For the case of a single impulsive target with no (i.e., rectangu-
lar) windowing applied, γimag corresponds to the ratio between



periodogram peak power and noise floor power. Otherwise, the
peak power and processing gain is decreased.

III. NETWORK STRUCTURE AND PROCESSING

Our implemented network structure resembles already exist-
ing cellular networks with multiple SAPs and a central sensing
management function (SeMF) located in the core network,
similarly to the 5G location management function (LMF) for
active localization introduce by 3GPP with Release 15 [15].
Fig. 2 depicts the flow of information within the scenario
and the channel model, the target extraction process inside
the individual SAPs, and the aggregation in the SeMF. Here,
compared to the mono- and bi-static case with a single pair of
Tx and Rx, we want to highlight the challenges and proposed
solutions which enable the multi-static sensing task.

A. Scenario

This interchangeable block provides the received signal
for each SAP based on the scenario. For the contribution
of this paper we found sufficient to leverage a simplified
raytracer to determine the different channels, similar to related
literature [5], [8]–[10]. In principle, any channel model, fully
fledged raytracers [16] or even measured data could be injected
at this point.
The basis is a fully configurable scenario, with targets and
arbitrary numbers and configurations of Tx and Rx antenna
arrays. The simple raytracer determines all paths between
antenna elements and the |P| scattering points, and imposes
propagation specific effects as described in Sec. IV. Based on
these paths, for one colocated Tx-Rx antenna array combina-
tion corresponding to a SAP, the static and bandwidth-limited
CTF H is calculated. Finally, we multiply the CTF with the
transmitted OFDM symbol and add noise, according to Eq. (2).

B. Sensing Access Point (SAP)

We assume a bandwidth-limited link between the SAPs
and the SeMF, which is to be expected in reality. Given
the system parameters, raw IQ samples would easily ex-
ceed 100 Gbit/s (8 antennas × 800 MHz bandwidth × 10 bit res-
olution × 2 IQ) and periodogram-based signalling would be
beyond 50 Mbit/image (128 beams × 2984 subcarriers × 64 bit
resolution × 2 IQ). This renders full processing in the SeMF
infeasible and requires extraction to be done in the individual
SAPs. Given the colocated Tx and Rx in each SAP and
therefore known transmit signal, the noisy bandwidth limited
CTF ĥ can be extracted from the received signal – provided
by the scenario – via Eq. (3). To facilitate later interpolation
in amplitude and location, each symbol, i.e., dimension of
antennas and subcarriers, is padded by at least a factor of four.
Windowing with a Chebyshev window ensures control over
constant sidelobe-levels. We fixed the sidelobe attenuation to
30 dB for low resolution degradation while still ensuring that
targets in reasonable distance are not covered by sidelobes.
We use a statistical constant false alarm rate (CFAR) threshold
approach for detection and extraction of peaks [17]. The power
threshold ζCFAR is determined with a certain probability of

false alarm PFA of detecting targets in a noisy but target-less
scenario with

ζCFAR =

√
−PN ln

(
1− (1− PFA)

1
NsubK

)
. (7)

We assume that the noise power is known by taking the ground
truth added PN , which is consistent with the noise power in the
periodogram. In reality, this has to be estimated, for example
from target less bins or by the communications part of the sys-
tem. Further comparing this threshold to the expected sidelobe
level of the maximum peak ζSL,max, including an empirically
found factor κ = 4, decreases the probability of detecting
sidelobes and their constructive inter-target interference in high
SNR regimes

ζ ′CFAR = max {ζCFAR, κ · ζSL,max} . (8)

While there are other extraction approaches such as
(OS-)CFAR [18], they are heavily dependent on suitable
parameterization for the given scenario, which is an open
research topic and not within the scope of this work.
For the extraction itself, we chose binary successive cancel-
lation [14]. We extract the maximum bin of the periodogram
and cancel it by setting an ellipsoidal region based on the peak
size to zero. This is iteratively repeated for all peaks until no
bin exceeds the previously set ζ ′CFAR. We found that typical
coherent cancellation algorithms designed for impulsive tar-
gets [14] do not yield the desired suppression effect. This is
due to the fact that targets might be distributed in larger areas
than the resolution limit of the system, generating a distributed
– and not impulsive – echo. The extracted peak positions and
powers are quadratically interpolated to reduce scalloping loss.
Both are sent to the SeMF together with information such as
noise power and peak size, amongst others.
Given our focus on consistent power considerations throughout
the processing, up to the periodogram noise floor, we can infer
realistic system performance under the to be expected noise
power induced by the receiver.

C. Sensing Management Function (SeMF)

The SeMF accumulates all extracted targets from the dif-
ferent SAPs to be subsequently replaced by estimates in the
fusion process. Each target is transformed to global coordi-
nates according to its parent SAP location and rotation. Several
steps are applied to account for the non-perfect extraction
process: First, we apply a geometric intra-SAP clustering
via DBSCAN [19]. We take double the range resolution
as the merging distance. Given the applied windowing, this
fuses those extracted targets closer together than physically
resolvable.The subsequent inter-SAP fusion process relies on
the same algorithm for geometric merging between peaks of
different SAPs.
To reduce false positives, we neglect peaks outside the inves-
tigated room size or “multi-node” requirement, filtering out
peaks not observed by at least two SAPs.
The main idea is to use more and more information available
from the extracted peaks to do more intelligent fusion in
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Fig. 2: Processing pipeline from raytracing of scenario to acquisitions in sensing access points (SAPs) and overall estimate in
the sensing management function (SeMF).

the future, e.g., by incorporating the peak power and shape.
Statistical approaches could include metrics already existing in
standards such as angle/range resolution, in addition to new
metrics, like the probability that a certain target truly exists.

IV. SCENARIO SETUP

We conduct our investigation in a factory-like free-space
scenario as proposed in the majority of current literature,
e.g., [5], [8]–[10]. The scene is observed by up to four SAPs
positioned centered on each wall. Each consists of a single
room-illuminating Tx and a λ/2-spaced Rx ULA, both with
patch radiation patterns for the individual elements.
Up to eight targets are placed in random positions inside a
10 × 10 × 3 m cube with no minimal target separation distance.
To mimic radar fluctuations, the targets consist of 15 individual
scattering points which together resemble the radar cross-
section (RCS) of a human with 1 m2. The scattering points are
Gaussian distributed in x-, y-, and z-direction with standard
deviations of 0.1, 0.03, and 0.5 m, respectively.
The simulation calculates each path with the assumption of
free-space propagation (path-loss exponent η = 2) including
the typical losses and gains for such a system [3]. Occlusions
from other targets are accounted for by intersection with their
scatter point bounding box.
Fig. 3 shows the scenario with exemplary targets, observed
periodograms, as well as extracted and fused results. The
periodograms show different occuring effects, such as non-
ellipsoidal peaks from the scattering model, occlusion in the
first and multiple extractions in the second, leading to a
decreased precision in the evaluation.

A. Limitations

This static scenario to investigate fundamental sensing
performance contains a number of limitations. The simple
raytracer model assumes free-space propagation without any
clutter, no near-field effects, and no multipath effects between
similar constant RCS targets justified with the high losses at
mmWave frequencies. The SAPs are assumed to be full-duplex
capable, i.e., there is no self-interference due to the colocated
Tx and Rx.
The transmitted OFDM signal is modulated with a constant
power scheme such as 4-QAM and is assumed orthogonal
between SAPs via time- or frequency-division multiplexing.
The single-snapshot merging of two-dimensional extractions

is purely geometry-based with suitable, empirically found
merging distances.
Nonetheless, we believe that the mentioned points do not
diminish the validity of this work, and that it can serve as a
baseline for future research in the area of multi-node sensing.

B. Link Budget

In this subsection, we discuss results without sweeping noise
power, adopting values that should resemble the performance
of a real world system as close as possible. Therefore, we
introduce the link budget model from Fig. 4. It depicts the
flow of power – with losses and gains – along the propagation
path and also serves for validation purposes. The individual
parameters with descriptions and values for the link budget
considerations and simulations are given in Tab. I.

TABLE I: Parameters for Link Budget Model and Simulations

Variable Description Value

PTx Tx power for whole array 29 dBm
GTx Tx antenna gain (here: single patch) 6.6 dBi
GP Path gain (one way) variable
GRCS Radar cross-section 1 m2

GRx Rx antenna gain (here: 16 × 1 patch array) 18.6 dBi
PRx Rx power variable
GPer Processing gain of periodogram 42 dB
γcom Signal-to-noise ratio (communication signal) variable
γimag Signal-to-noise ratio (periodogram) γcom +GPer
B System bandwidth 800 MHz
F Receiver noise figure 8 dB
Pn Thermal noise power for B and 21 °C -84.9 dBm
PN Equivalent noise power Pn + F =

−76.9 dBm

C. Evaluation metrics

For this passive localization task, we use three evaluation
metrics. Let o denote one (estimated) target location vector,
one element from a set O with cardinality |O|.
With the probability of detection Pdet, we evaluate the correct
detections, i.e., the true positives o+

true ∈ O+
true with respect

to the ground truth actual positives o+ ∈ O+. For a detected
element o+

det ∈ O+
det to be part of the true positives o+

det ∈
O+

true ⊆ O+
det, it must not be farther located than distance r

away from the next undetected ground truth target∥∥o+
det − o+

∥∥
2
≤ r , (9)
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with distance given by the ℓ2-norm ∥ · ∥2. Thus, we get

Pdet =
|O+

true|
|O+|

. (10)

We cannot rasterize the scenario in e.g., range bins to infer
the set of actual negatives O− due to the multiple overlapping
SAPs. Therefore, to assess false detections, we use the preci-
sion ρ which relates the true positives to the overall detected
targets

ρ =
|O+

true|
|O+

det|
. (11)

The F1-score combines the two metrics through their harmonic
mean with

F1 =
2Pdetρ

Pdet + ρ
(12)

and serves as a combined performance metric.

V. RESULTS

In the following, we summarize our findings for different
configurations and their performance trade-offs with respect
to multi-SAP fusion, number of antenna elements, bandwidth,
target density, and room size.
In contrast to the SNR sweep typically done in communica-
tions, we vary the noise power at the Rx array of each SAP.
This is due to the fact that the SNR changes based on the re-
ceived signal power, which is, among other things, dependent
on the targets’ scattering characteristics and their distances
to the SAPs. If no noise power value is explicitly given, we
determine the operating point through the link budget with
thermal noise floor according to the given bandwidth and noise
figure (e.g. 800 MHz: -84.9 dBm + 8 dB).

A. Multi-SAP Fusion Performance
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Fig. 5: Probability of detection for varying noise power and
number of sensing access points (SAPs).



In general, Fig. 5 shows higher probabilities of detection
for lower noise powers. The 70% for the single SAP case
is consistent with related work [8]. The implemented fusion
process of multiple SAPs yields a probability of detection gain
throughout the whole noise power range. This improvement
thanks to fusion is most significant with 27% from a single to
two SAPs and reduces to 2% from three to four nodes in the
saturated low noise power regime.
The dotted baseline curve is supposed to approximate a
theoretically best achievable performance for a single SAP
given a single, non scattering target, estimated by taking the
maximum peak in the periodogram. While we do not beat
this very simplified reference throughout the whole range with
multiple SAPs, we observe gains from -20 to -50 dBm and
come close for lower noise powers. This additionally gained
reliability/certainty can be leveraged in different ways, with
the most obvious one being a reduction in the number of
false detections. The worse precision performance in the low
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Fig. 6: Precision for varying noise power and number of
sensing access points (SAPs).

noise regime in Fig. 6 can be completely traced back to the
used scattering model. Its fluctuation loss and associated non-
ellipsoidal peak shape in combination with ellipsoidal binary
extraction aggravates correct peak detection. This reduces pre-
cision – even more for multiple SAPs – by 1) causing multiple
detections in cases where only a single target is present and
2) shifted peak locations outside the target matching radius.
While the 2-SAP filter can mitigate this effect to some extent,
we did not give further attention to the open research question
of peak extraction. The baseline curve shows the expected
behavior with no false detections for high SNRs. Combining
both previous metrics to the F1-score in Fig. 7 shows marginal
improvements due to the precision issue, which again can be
completely mitigated through the 2-SAP filter for a probability
of detection converging to 92% with 4 SAPs.

B. Influence of Bandwidth and Number of Antennas

Fig. 8 depicts the operating points for different antenna
and bandwidth configurations in the SAP. The link budget
parameters for antenna gain and thermal noise power are
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Fig. 7: F1-score for varying noise power and number of
sensing access points (SAPs).

adapted accordingly. More antennas and more bandwidth
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Fig. 8: Probability of detection (left) and Precision (right) for
different configurations of number of antenna elements and
bandwidth. Left half-circle with single node, right half-circle
with three node fusion. Noise power is determined by the
bandwidth.

yield a higher probability of detection by providing higher
resolutions in their respective domains. This allows resolving
closely spaced targets and increases peak isolation in the
periodogram. Inherently, the peak power is also positively
influenced through the higher processing gain, resulting in
better extraction performance overall.
The smallest configuration with 4 antennas and 100 MHz
bandwidth results in 37% detection probability. Increasing
the antenna size or bandwidth 8-fold yields 65% and 62%,
respectively, and their combination up to 72% in probability
of detection. Again, leveraging the fusion of multiple SAPs
provides an additional performance increase of 25 – 35%.
While precision also improves up to 78% with additional
antennas and higher bandwidth, at a certain point performance
decreases again. This is due to the resolution being so high
that the individual scattering points have significant impact on
the peak shape. Then, simple peak extraction, even more so
by ellipsoidal binary cancellation, is not sufficient anymore.
Better metrics than precision (and also detection with respect
to location) – which is suitable only for impulsive scattering



objects or low enough resolution – have to be found.

C. Dependence on Number of Targets
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Fig. 9: Probability of detection for varying number of targets
and number of sensing access points (SAPs).

Running the simulations for a fixed number of targets in
Fig. 9 shows an overall decrease in probability of detection
with increasing number of targets and decreasing number of
SAPs. This can be attributed to a higher likelihood of targets
being occluded by others, as well as a higher probability of
being closer together than resolvable by the system.
Again, the benefits of multi-static sensing become clear, as
the fusion of multiple SAPs with their different observation
points can mitigate this effect to some extent. For instance, by
increasing the SAP number from one to four, the 44% loss in
performance for going from 1 to 9 targets can be reduced to
only 8%.

D. Influence of Room Size
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Fig. 10: Performance for varying room sizes and number of
sensing access points (SAPs).

Finally, Fig. 10 shows the performance for different
(quadratic) room side lengths. With increasing room size, the
percentage of occluded targets Pocc decreases due to the bigger
area in which the 1 to 8 random targets can be placed. For
a single SAP, the best probability of detection is achieved

around 13 m room side-length and drops rapidly afterwards.
Here, the probability of occluded and therefore undetectable
targets is relatively small, and they are still close enough to
the SAP to allow correct detection. Multiple SAPs on the
other hand can maintain their higher detection probability
for a larger range of room sizes from 10 – 35 m with a
slower decrease afterwards. This is reasoned with the higher
probability that targets are located in a good detection position
for at least one SAP, which further underlines the advantages
of fusing multiple SAPs.
The dynamic range of detecting far targets in presence of
a close strong target is limited by the window sidelobe
attenuation. To facilitate higher detectable ranges, transmitter
beamforming with a ULA in combination with beam steering
to scan the room would be necessary.

VI. CONCLUSION

In this work, we defined a framework with all the necessary
steps to perform sensing of multiple targets in a multi-
static scenario, from the creation of a non-impulsive scatterer
scenario, over peak extraction and fusion.
It was shown that fusing diverse acquisitions from multiple
SAPs increases the overall system performance and robustness
significantly. Our approach achieves gains of up to 35% in
probability of detection, demonstrating the practical advan-
tages over a single node setup, which is more prone to e.g.,
occluded or weakly reflecting targets.
Future investigations will focus on optimizing the different
subsystems, especially the extraction process, and on more
sophisticated fusion techniques. We also plan to expand the
setup to more realistic raytraced and measured scenarios,
including clutter, as well as the fusion of bi-static acquisitions.
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[5] Z. Behdad, Ö. T. Demir, K. W. Sung, E. Björnson, and C. Cavdar,
“Power Allocation for Joint Communication and Sensing in Cell-Free
Massive MIMO,” in GLOBECOM 2022-2022 IEEE Global Communi-
cations Conference. IEEE, 2022, pp. 4081–4086.

[6] S. Mandelli, M. Henninger, and J. Du, “Sampling and Reconstructing
Angular Domains with Uniform Arrays,” 2022.

[7] J. M. Mateos-Ramos, J. Song, Y. Wu, C. Häger, M. F. Keskin, V. Ya-
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