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Abstract—In different new and emerging technologies, where
high frequency offsets (FOs) are expected due to the low-cost
nature of the local oscillators, and low sampling rates are chosen
for the sake of power efficiency, accurate FO estimation becomes
a challenging task. This work proposes a frequency synchro-
nization approach based on a dual-chirp training sequence. Its
performance is evaluated by means of simulations and validated
with the derived Cramer-Rao lower bound. It is shown that the
proposed method achieves near-optimum performance with lower
complexity than the state-of-the-art approach.

Index Terms—Frequency offset estimation, synchronization,
up-down-chirp, dual-chirp, reference sequences, CRLB.

I. INTRODUCTION

The cost-effectiveness sought by different new and emerging

technologies entails the choice of low-cost local oscillators.

Therefore, due to their low accuracy, high frequency offsets

(FOs) may appear between the reference frequency at the

receiver used for down-conversion and the carrier frequency

of the received signal. Moreover, in order to achieve low

complexity at the end device, a low sampling rate for initial

synchronization is commonly selected. Thus, the low accuracy

associated to a low sampling rate, together with the potentially

high FOs, poses an important challenge in the FO estimation, a

crucial task that has to be appropriately accomplished to avoid

performance degradation at the receiver.

Aiming at high probability of detection in the low signal-

to-noise ratio (SNR) regime and moderate latency, a detection

approach based on matched filtering is widely used in the liter-

ature. The robustness of chirp sequences against high FOs in a

matched filter-based detection, as well as their special time and

frequency properties, have motivated their application in the

detection process and in the estimation of the synchronization

parameters [1] [2]. In [1], a training sequence consisting of a

linear up-chirp followed by its conjugate, known as linear up-

down-chirp, assists the synchronization process under additive

white Gaussian noise (AWGN) channel conditions. For the

sake of low latency, fractional and integer frequency offsets

are estimated independently. The periodicity obtained after

downsampling a linear chirp is utilized for the estimation of

the fractional frequency offset (FFO) with an approach based

on autocorrelation (AC). For the calculation of the integer

frequency offset (IFO), a laborious algorithm is implemented,

which requires the center value above a certain threshold at

the output of each matched filter (MF).

A dual-chirp, which consists of a linear up-chirp transmitted

simultaneously with its complex conjugate down-chirp, acts

as a reference signal for synchronization in AWGN channels

in [3]. The outputs of the MFs matched to each of the

linear chirps are exploited for the estimation of the FO in

frequency domain. However, its performance is linked to a

high computational complexity due to the calculation of a

discrete Fourier transform (DFT) with an upsampling factor

and a subsequent polynomial interpolation.

This work proposes a frequency synchronization approach

with a dual-chirp as a reference signal, suitable for flat fading

channels under high FOs. Unlike in [3], the FO estimation

is accomplished in time domain. The FFO, obtained through

AC, is compensated in the reference signal prior to the IFO

estimation. The IFO can thus be easily estimated using the

positions of the global maxima at the outputs of the MFs.

Under the assumption of perfect time synchronization, the

proposed approach is derived for a dual-chirp and for a linear

up-down-chirp. Theoretical limits in terms of the Cramer

Rao lower bounds (CRLBs) are derived for each reference

sequence, which serve as benchmarks for results evaluation.

Comprehensive simulations have been conducted to verify the

validity of the presented technique. For the purpose of com-

parisons, the DFT-based approach described in [3] has been

implemented with different upsampling factors and evaluated

with both reference sequences. It is shown that the proposed

approach achieves a performance close to the CRLB with low

computational complexity, and significantly outperforms the

state-of-the-art algorithm for moderate to high SNR regimes.

The remainder of this paper is structured as follows. In

Section II, the system model and the reference sequences

are introduced. The proposed synchronization algorithm is

presented in Section III. In Section IV, the CRLBs are derived.

Simulation results are provided and discussed in Section V.

Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Under perfect time synchronization, the received baseband

signal in discrete time domain can be described as
r[n] = hx[n]ej2πǫn + w[n], (1)



where h represents the complex channel gain, unknown but

constant over the transmission duration of the reference signal

x[n], ǫ indicates the FO, normalized by the sampling frequency

fs, and w[n] denotes complex AWGN with zero mean and

variance σ2.

A. Linear Up- and Down-Chirp Signals

The linear up- and down-chirp sequences can be expressed

as

xu[n] = e
jπ

(

n2

Nl
−n

)

, and xd[n] = e
−jπ

(

n2

Nl
−n

)

, (2)

where n = 0, 1, ..., Nl − 1. The length of the sequence, Nl,

known as compression factor in radar systems, is given by the

time-bandwidth product Nl = BTl, where B is the frequency

band swept during the time span Tl. The reference sequence

built with a linear up-chirp followed by its complex conjugate,

or down-chirp, is thus given by

xl[n] =

{

xu[n], n = 0, 1, ..., Nl − 1,

x∗

u[n−Nl], n = Nl, Nl + 1, ..., 2Nl − 1.
(3)

B. Dual-Chirp Signal

The dual-chirp, also referred to as composite chirp, consists

of one linear up-chirp and its corresponding down-chirp, which

are transmitted simultaneously. Since the down-chirp is the

complex conjugate of the up-chirp, the resulting signal is

purely real-valued, and can be formulated as

xc[n] = α cos

(

π

(

n2

Nc

− n

))

, (4)

where n = 0, 1, ..., Nc − 1, being Nc the length in samples

of the dual-chirp, and α represents a normalization factor to

ensure unitary power.

In terms of the underlying linear chirps, xc[n] can be

expressed as

xc[n] =
α

2
(xu[n] + xd[n]) , (5)

being xu[n] and xd[n] the sequences given in (2), of length

Nc.

III. FREQUENCY OFFSET ESTIMATION

The estimation of the FO is accomplished in different stages.

The FFO is initially calculated and subsequently compensated

in the received reference sequence. Afterwards, using the

sequence with compensated FFO, the IFO is found. Without

loss of generality, the detailed analysis presented in the next

subsections is based on the up-down-chirp, and thereafter the

modifications to be done when applying the dual-chirp are

explained.

A. Fractional Frequency Offset Estimation

The method employed for the estimation of the FFO takes

advantage of the periodicity generated after downsampling a

chirp sequence. In particular, downsampling a linear chirp with

compression factor Ni by 2 results in another linear chirp

sequence with compression factor Ni/4. Thus, Ni should be

an integer multiple of 4. The downsampled sequence exhibits

a periodicity of Ni/4 samples that can be exploited for

synchronization with an AC-based approach. Specifically, the

phase of the AC of a periodic signal at its maximum provides

an estimation of the FFO [4].

At the entrance of the synchronization block, a demulti-

plexer extracts samples from the received signal r[n] alter-

natively, generating two downsampled signals, r1[n] = r[2n],
and r2[n] = r[2n+ 1].

Considering the linear up-down-chirp as reference, the first

Nl/2 samples of each demultiplexed sequence correspond to

a downsampled version of the received up-chirp, whilst the

second Nl/2 samples refer to the down-chirp as:

ru,1[n] = r1[n], rd,1[n] = r1[n+Nl/2],

ru,2[n] = r2[n], rd,2[n] = r2[n+Nl/2], (6)

for n = 0, 1, ..., Nl/2− 1. Consequently, four different signals

of length Nl/2 are available to perform four independent ACs.

The AC with sliding and averaging windows of Wl = Nl/4
samples can be calculated according to

pj,q[n] =
1

Wl

Wl−1
∑

k=0

rj,q[n+ k +Wl]r
∗

j,q[n+ k], (7)

where j ∈ {u, d} and q ∈ {1, 2}. Neglecting the noise terms

for simplicity, the outputs of the autocorrelators at the maxi-

mum of their absolute values can be expressed as

pj,1[nj,1,max] = |h|2 (−1)
b
ejπǫNl , (8)

pj,2[nj,2,max] = |h|2 (−1)
b+1

ejπǫNl , (9)

where b = mod(Wl, 2), with mod(.) being the modulo opera-

tor. The corresponding phases

φj,1 =∠pj,1[nj,1,max] = πǫNl + bπ, (10)

φj,2 =∠pj,2[nj,2,max] = πǫNl + (1− b)π, (11)

can be used to estimate the individual FFOs as

ǫ̂j,1 =
1

Nl

[

1

π
φj,1 − b

]

, ǫ̂j,1 ∈ 1

Nl

[−(1 + b), (1− b)] ,

(12)

ǫ̂j,2 =
1

Nl

[

1

π
φj,2 − (1− b)

]

, ǫ̂j,2 ∈ 1

Nl

[(b− 2), b] . (13)

In order to achieve an estimation with high accuracy, the

information provided by all individual phases should be used.

However, since ǫ̂j,1 and ǫ̂j,2 lie in different definition domains,

a simple average of the phases would reduce the effective

estimation range of the FFO to [−1/Nl, 0]. This effect can

be avoided with the modification of the phases obtained from

the second demultiplexed signal as φ′

j,2 = φj,2 − π. The FFO

can thus be obtained as

ǫ̂F,l =
φu,1 + φd,1 + φ′

u,2 + φ′

d,2

4πNl

. (14)

Demultiplexing the dual-chirp enables the computation of

two ACs, where the sliding and averaging windows consist of

Wc = Nc/4 samples. The maxima of the ACs are given by

pc,1[n1,max] = |h|2 α2 (−1)
b
ejπǫNc , (15)

pc,2[n2,max] = |h|2 α2 (−1)
b+1

ejπǫNc . (16)



The same reasoning as in the previous case leads to an

estimation of the FFO as

ǫ̂F,c =
φ1 + φ′

2

2πNc

, (17)

where φ1 corresponds to the phase of pc,1[n1,max] and φ′

2 refers

to the phase of pc,2[n2,max] after phase compensation.

B. Integer Frequency Offset Estimation

After FFO compensation, the IFO can be found using the

information provided by the outputs of the MFs.

The impulse response gi,j [n] of the MF matched to the

signal xj [n] can be formulated as

gi,j [n] = βix
∗

j [Ni − 1− n], (18)

where i ∈ {l, c}, j ∈ {u, d}, and

βi =

{

1, i = l,

1/α, i = c.
(19)

The convolution between the signal r
[s]
ǫf [n] and the matched

filter gi,j [n] is defined as

mi,j [n] =
1

Ni

∞
∑

k=−∞

r[s]ǫf
[k]gi,j [n− k], (20)

where r
[s]
ǫf [n] is the reference signal after proper compensation

of the FFO ǫ̂F , and it can be described as

r[s]ǫf
[n] = r[n+ si,jNi]e

−j2πǫ̂F,i(n+si,jNi), (21)

where

si,j =

{

0, (i = l ∧ j = u) ∨ i = c,

1, (i = l ∧ j = d),
(22)

with ∧ and ∨ as the logical operators ”and” and ”or”, respec-

tively.

After some algebraic manipulations, the magnitudes of the

outputs of the MFs can be written as

|mi,u[n
′

i]| = |h|(1− |n′

i|)
∣

∣

∣

∣

sinc (Ni(n
′

i + ǫI,i)(1− |n′

i|))
sinc(n′

i + ǫI,i)

∣

∣

∣

∣

,

(23)

|mi,d[n
′′

i ]| = |h|(1− |n′′

i |)
∣

∣

∣

∣

sinc (Ni(n
′′

i − ǫI,i)(1− |n′′

i |))
sinc(n′′

i − ǫI,i)

∣

∣

∣

∣

,

(24)

where the new discrete time indexes, n′

i and n′′

i , are given by

n′

i =
n−Ni + 1

Ni

, and n′′

i =
n− γiNi + 1

Ni

, (25)

with
γi =

{

2, i = l,

1, i = c,
(26)

and the frequency offset ǫI,i represents the IFO (plus some

residual FFO, which will be neglected for this analysis),

normalized by the sampling frequency.

The arguments of the outputs of the MFs at their maximum

correspond to

n̂i,u = argmax
n

|mi,u[n
′

i]| = −NiǫI,i +Ni − 1, (27)

n̂i,d = argmax
n

|mi,d[n
′′

i ]| = NiǫI,i + γiNi − 1, (28)

which can, ideally, be combined to estimate the IFO. However,

the presence of uncompensated FFOs of magnitude close to

half of the IFO spacing (fs/Ni), distorts the ideal behavior

of the MF. Its output is not characterized by a clearly defined

maximum, but by two values of similar amplitude. In this case,

choosing the index of the highest value can lead to ambiguities

in the estimation of the IFO. An accurate estimation should

consider the position of the first value exceeding a certain

threshold at the output of each MF. The IFO can thus be

estimated with an accuracy of fs/(2Ni), avoiding potential

ambiguities due to uncompensated FFOs. The new indexes,

after ambiguity resolution, provide an estimation of the IFO

as

ǫ̂I,i =
n̂i,d − n̂i,u − (γi − 1)Ni

2Ni

. (29)

Hence, the overall FO estimated with each sequence consists

of two terms, as ǫ̂i = ǫ̂I,i + ǫ̂F,i.

C. DFT-Based Frequency Offset Estimation

The approach presented in [3] exploits the properties of the

DFT for the estimation of the FO. After multiplying the time-

synchronized received signal with the complex conjugate of

each reference chirp, βix
∗

j [n], two DFTs with an upsampling

factor are performed. The maxima obtained at the outputs of

the DFTs are used for the estimation of the FO, similarly to

the approach described in time domain, making use of the

time-frequency duality of the DFT.

IV. CRLBS FOR FREQUENCY OFFSET ESTIMATION

The likelihood function (LF) of the received vector r,

with Ni independent observations in complex AWGN, can be

expressed as [5]

p(r; ξ) =
1

πN det(Cr(ξ))
e[−(r−s(ξ))HCr(ξ))

−1(r−s(ξ))], (30)

where Cr(ξ) = σ2
I is the covariance matrix of the received

signal r[n], and the components of s(ξ) are given by

s[n] = h0x[n]e
j2πǫnejφh , n = 0, 1, ..., Ni − 1, (31)

where h0 and φh are, respectively, the magnitude and the

argument of the complex channel gain h, and x[n] corresponds

to the transmitted reference sequence of length Ni samples,

which will be properly specified in the next subsections.

The second derivative of the log-likelihood function (LLF)

of r with respect to the parameters p and q, provides the

{p, q}-element of the Fisher information matrix, which can

be calculated as [5]

[I]p,q =
2

σ2
Re

[

Nl−1
∑

n=0

∂s∗[n]

∂ξp

∂s[n]

∂ξq

]

, (32)

where p, q ∈ {1, 2, 3}, refer to the components of the vector

of unknown real parameters ξ = [h0 ǫ φh]
T

.



A. CRLB for Linear Up-Down-Chirp

For the derivation of the CRLB of the FO attainable

with a linear up-chirp, the signal x[n] equals xu[n], for

n = 0, 1, ..., Nl − 1. The Fisher information matrix is given

by

I =
2Nl

σ2







1 0 0

0
2π2h2

0(Nl−1)(2Nl−1)
3 πh2

0(Nl − 1)

0 πh2
0(Nl − 1) h2

0






. (33)

With SNR = h2
0/σ

2, and after some algebraic manipula-

tions, the minimum variance associated to the up-chirp can

be expressed as

V ar(ǫ̂l,u) ≥ [I−1]22 =
3

2π2Nl(N2
l − 1)SNR

, (34)

which is the same as the variance attainable with the down-

chirp. Therefore, due to the additivity property of the infor-

mation for independent observations [6], the variance obtained

with the training sequence consisting of one up-chirp followed

by one down-chirp results in

V ar(ǫ̂l) =
1

2
V ar(ǫ̂l,u). (35)

B. CRLB for Dual-Chirp

In this case, x[n] = xc[n], for n = 0, 1, ..., Nc − 1. The same

procedure as in the preceding case yields the new Fisher

information matrix

I =
2

σ2





α2U 0 0

0 4π2h2
0α

2W 2πh2
0α

2V

0 2πh2
0α

2V α2h2
0U



 . (36)

After applying the following approximations,

U=

Nc−1
∑

n=0

cos2
(

π

(

n2

Nc

− n

))

≈Nc

2
, (37)

V =

Nc−1
∑

n=0

n cos2
(

π

(

n2

Nc

− n

))

≈Nc(Nc − 1)

4
, (38)

W =

Nc−1
∑

n=0

n2 cos2
(

π

(

n2

Nc

− n

))

≈Nc(Nc − 1)(2Nc − 1)

12
,

(39)

the lower bound for the variance of the FO obtainable with a

dual-chirp of length Nc samples can be written as

V ar(ǫ̂c) ≥ [I−1]22 ≈ 3

4π2α2Nc(N2
c − 1)SNR

. (40)

With Nc = ρNl, the ratio between the CRLBs achievable with

both training sequences can be expressed as

R =
V ar(ǫ̂l)

V ar(ǫ̂c)
=

α2ρ(ρ2N2
l − 1)

(N2
l − 1)

. (41)

V. SIMULATION RESULTS

This section presents the performance evaluation of the pro-

posed synchronization approach described in Section III. For

this purpose, simulations have been conducted and compared

to the theoretical references provided by the derived CRLBs.

The sweeping frequency B of the reference signal is set to

180 kHz. The system is assumed to work at the Nyquist rate.

For a fair comparison, both reference signals are transmitted

with the same power and have the same length, with Nl = 64
and Nc = 128 samples. Nl and Nc are chosen to ensure

integer compression factors after downsampling the sequences.

During the simulations, a uniformly distributed FO in the

range [−18, 18] kHz has been generated, corresponding to a

transmission in the 900MHz band and an accuracy of the local

oscillators of 20 ppm.

In order to compare the performance of the proposed ap-

proach with the state-of-the-art algorithm [3], the latter has

been implemented and simulated with upsampling factors 4

and 8. Additionally, least-squares (LS) based second-order-

polynomial interpolation with an upsampling factor 4 has

been incorporated to increase the accuracy of the estimation.

The coefficients of the second-order-polynomial are calculated

according to the least-squares principle, based on three samples

selected at the output of the DFT, namely the highest one, the

preceding, and the following.

The metric selected for the performance evaluation is the

mean squared error (MSE) of the estimation, defined as

MSE = E
[

(ǫ− ǫ̂)2
]

, where ǫ and ǫ̂ are normalized by the

sampling frequency.

The simulation results obtained with the up-down-chirp

and with the dual-chirp are depicted in Fig. 1(a) and 1(b),

respectively. Even though they show similar behavior, there

is a clear difference in the magnitude of the MSE. This effect

is in accordance with the theoretical ratio between variances

given in (41), which in this case has a value of 5.65 dB. It can

be shown that, for ρ = 2 and long sequences, α ≈ 1/
√
2, and

the ratio R tends to 6 dB. The main reason for the superiority of

the dual-chirp is the higher compression factor of its underlying

linear reference sequences.

The estimation obtained with the proposed approach

achieves an MSE close to the CRLB for SNR values above

5 dB. In the low SNR regime, the MSE is significantly im-

proved through the phase compensation described in III-A

(Proposed mod). The performance achievable with the DFT-

approach highly depends on the upsampling factor and the LS

interpolation. Especially the latter operation can substantially

improve the accuracy of the estimation, and provide, in a

limited SNR range, an MSE lower than the proposed approach.

Nevertheless, the MSE obtained with the DFT-approach shows

an error floor, which can only be reduced through the use of

higher upsampling factors and interpolation. Consequently, a

performance improvement leads to an increase in latency and

computational complexity.

Table I lists the computational complexity of each approach

in terms of number of complex multiplications (CMs). The

proposed approach considers the CMs associated to the ACs

and MFs. In case of the up-down-chirp, four ACs of length

Nl/4 are calculated, whilst with the dual-chirp, two ACs

of length Nc/4 are computed. For the sake of efficiency,

matched filtering has been implemented in frequency domain.
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(a) Linear up-down-chirp

-5 0 5 10 15 20 25 30
10

-10

10
-8

10
-6

10
-4

5 6 7

3 10
-8

(b) Dual-chirp

Fig. 1: MSE of the frequency offset estimation obtained with (a) a linear up-down-chirp and (b) a dual-chirp.

Appropriate zero padding has been considered to achieve

equivalence between linear and circular convolution, and en-

able a DFT operation based on Radix-2 fast Fourier transform

(FFT). These assumptions lead to the new extended lengths,

Nl,ext = 128, and Nc,ext = 256 samples.

The DFT-based approach includes the initial multiplication

with the complex conjugate of each linear reference signal,

the complexity due to the DFT operation (assuming Radix-2

FFT implementation), and the complexity required for the LS

interpolation (CLS). The latter includes the operations needed to

find the coefficients of the second-order polynomial, evaluate

the polynomial at the newly defined positions, and find the

maximum.

Considering the simulation parameters, the DFT-based ap-

proach with upsampling factor 8 requires approximately 40%
more CMs than the proposed approach. A further improvement

of the accuracy achieved with the state-of-the-art algorithm,

through the use of higher upsampling factors, would increase

significantly the number of CMs, making the difference in

terms of complexity between both approaches more evident.

The compression factor of the reference signal, is respon-

sible, not only for the accuracy of the estimation, but also

for the complexity. Therefore, a higher compression factor

selected for the dual-chirp, compared to the up-down-chirp,

implies a higher number of CMs, independently of the adopted

algorithm.

TABLE I: Complexity of the presented approaches.

Approach Complexity (CMs)

Proposed 1 0.5γiNi + 2 (1.5 log2(Ni,ext) + 1)
DFT 2Ni + fupNi log2(fupNi) + 2CLS

1 γi as defined in (26)

VI. CONCLUSIONS

In this work, a chirp-based frequency synchronization ap-

proach, suitable for flat fading channels under high FOs,

has been proposed and examined in detail. Its performance

has been evaluated by means of simulations, compared to

the state-of-the-art approach, and validated with theoretical

limits provided by CRLBs. Aiming at low complexity, the

synchronization process can be undertaken at a low sampling

rate, avoiding upsampling and interpolation. Nevertheless, a

high accuracy is achieved, and the approach exhibits near-

optimum performance for SNR values above 5 dB.

Two training sequences have been considered for the evalua-

tion. Under the assumption of identical length and transmit

power, it is shown that the dual-chirp achieves a lower MSE

than the linear up-down-chirp, at the cost of higher computa-

tional complexity.

The ratio between the derived CRLBs and the complexity

analysis can be used as tools for the design and selection of the

most suitable reference sequence that allows to meet specific

system requirements.
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