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Abstract—Cloud/software-based wireless resource controllers
have been recently proposed to exploit radio frequency (RF) data
analytics for a network control, configuration and management.
For efficient resource controller design, tracking the right metrics
in real-time (analytics) and making realistic predictions (deep
learning) will play an important role to increase its efficiency.
This factor becomes particularly critical as radio environments
are generally dynamic, and the data sets collected may exhibit
shift in distribution over time and/or space. When a trained
model is deployed at the controller without taking into account
dataset shift, a large amount of prediction errors may take place.
This paper quantifies dataset shift in real wireless physical layer
data by using a statistical distance method called earth mover’s
distance (EMD). It utilizes an FPGA to process in real-time the in-
phase and quadrature (IQ) samples to obtain useful information,
such as histograms of wireless channel utilization (CU). We have
prototyped the data processing modules on a Xilinx System on
Chip (SoC) board using Vivado, Vivado HLS, SDK and MATLAB
tools. The histograms are sent as low-overhead analytics to the
resource controller server where they are processed to evaluate
dataset shift. The presented results provide insight into dataset
shift in real wireless CU data collected over multiple weeks in
the University of Oulu using the implemented modules on SoC
devices. The results can be used to design approaches that can
prevent failures due to datashift in deep learning models for
wireless networks.

Index Terms—System-on-Chip, Zynq-7000, dataset shift, deep
learning models, spectrum analytics, FPGA, dataset shift, Xilinx,
channel utilization, resource controller.

I. INTRODUCTION

The evolution of wireless systems to the 5th generation
(5G) and beyond is driven by low-latency demands, improved
throughput requirements and additional use cases for wireless
access, such as support for vehicular communications, and
internet of things [1]. The next-generation (NG) of wireless
networks is envisioned as a network of networks integrating
multiple radio access technologies and providing spectrum
access harmonization across licensed, and unlicensed shared
spectrum bands. Due to the usage of more spectrum bands
in future and diverse services, a natural research question to
ask is: How to design an intelligent proactive resource provi-
sioning solution for the NG of networks that can efficiently
allocate various network resources for different services?

Proactive resource provision requires the use of deep learn-
ing based prediction techniques. However, most prediction
techniques assume that training and target datasets have same
distribution, and hence they produce erroneous predictions
when target datasets have different distribution than the train-
ing dataset [2]. Wireless networks are dynamic and it is natural
that real-wireless dataset distributions may change from time
to time and also from one location to another location. This is

called shift in a dataset and if a trained learning model is de-
ployed at the cloud controller without adapting to the occurred
dataset shift, a large amount of prediction errors may take
place. Therefore, studying dataset shift is a crucial problem
for deep learning models in wireless networks. In this paper,
we study dataset shift in real wireless physical layer channel
utilization (CU) in unlicensed 2.4GHz spectrum. CU is an
important metric as use of deep learning based CU predictions
can help facilitate proactive resource allocation in wireless
networks. We use a statistical distance based technique called
earth mover’s distance (EMD) on histograms of real CU data
to identify dataset shift. Simply put, we calculate histograms
of CU data using our implemented modules on Xilinx’s Zynq-
7000 SoC devices.

Datasets in the form of histograms of real CU data can
be obtained via IQ data processing. Radio frequency (RF)
IQ data acquisition in a wireless system with MHz channel
bandwidths can produce hundreds of millions of samples per
second. Signal detection, channel utilization and histogram
computation modules implemented on a device close to the
network edge reduces overhead as transfer of several million
raw IQ samples is no longer required and it also increases
measurement speed, accuracy, and performance. For example,
as gaps in IQ data acquisition can be lethal to valid infer-
ence in dataset shift analysis of CU data, the edge device
allows gapless acquisition of streaming raw samples and their
simultaneous processing. Gapless streaming also increases the
number of samples used to compute histograms. To realize
a complete solution, in this paper, we also present a low
cost real-time CU histogram computation architecture. In our
proposed solution, the histogram values are computed in real-
time on a Zedboard which is Zynq-7000 based low cost SoC
device and are sent to the cloud controller that utilizes the
EMD to analyze dataset shift.

In Fig. 1, we illustrate the analytics system utilized for
this paper. It shows the following components of the CU
histogram computation modules on a Zynq SoC device: 1)
An AD9361 RF frontend [3] attached to the SoC device for
streaming reception of IQ samples from multiple active APs in
an unlicensed 2.4GHz channel; 2) Various FPGA accelerated
modules, such as noise floor estimation, signal detection, and
CU state calculations; 3) Embedded processor modules, such
as sample transfer via direct memory access (DMA) from
FPGA, mean CU value computations, and CU histogram
computations; and 4) a communication module between the
SoC device and the server for streaming transfer of processed
CU and histogram samples. The figure also shows a server
where an EMD based datashift computations are performed



on collected CU histograms.

II. STATE OF THE ART FOR SPECTRUM DATA ANALYTICS

3rd Generation Partnership Project (3GPP) has introduced
an analytics function called NWDAF to incorporate data ana-
lytics functionality in the 5G and beyond network architecture,
[1]. Virtualized cloud-based resource controllers that utilize
dedicated measurement/data collection modules have been
deployed to exploit useful information from such analytics
functionality for a wireless network control, configuration
and management [4]–[6]. For example, use of measurement
capable devices (MCDs) and data analytics for 5G networks
have been proposed in [7]. Moreover, regulatory bodies in
[10] have decided to include new tools in which environment
sensing capability (ESC) is an essential component for fu-
ture shared spectrum operations in radar bands. Advances in
software/hardware technologies and internet of things (IoTs)
allow wireless operators to collect in real time network related
data sets not only from their user equipments but also from
their network elements, such as access points (APs) [8]. For
example, Cisco System’s Meraki Cloud Controller (MCC)
utilizes dedicated WIPS (Air Marshal) radio modules in each
of its Meraki APs to constantly monitor the behavior of the
network [9]. However, MCC uses average channel utilization
values to ensure channel arrangements for APs are made in a
way that utilization is less than 50% on average.

Wireless networks operate in diverse environments and ob-
taining appropriate knowledge in real-time can be challenging
[5]. In much of the research literature, there has been focus
on non-real time spectrum analytics where IQ samples are
collected using spectrum analyzers or SDR boards, such as
WARP or USRP boards. The collected samples are then
processed on laptops or PC servers to obtain CU values. These
approaches can lead to performance limitations due to: 1)
storing the samples in memory buffers and then processing
them results in non-real time knowledge of the wireless
environment. Storing samples is in general required due to
slow transfer speed between IQ data collection module and
the host processing them; and 2) due to huge sample quantity
(hundreds of million samples per second) storing and then
processing also leads to gaps in the collected IQ samples
over time. The gaps in samples can degrade the accuracy
of statistical analyses performed on raw data. To avoid these
limitations, we implement CU histogram computations on an
FPGA which can process values in real-time without any gaps.

CU values and CU histograms can be used to develop deep
learning based CU predictions which in turn can be used
in design of efficient resource allocation algorithms in both
currently allocated licensed and new shared spectrum bands.
Although deep learning has been currently intensively used in
the context of wireless networks [8], however, to the best of
knowledge no work has studied the problem of dataset shift
in deep learning for real wireless CU data.

III. SPECTRUM ANALYTICS AND DEVICE DESIGN

A. Channel Utilization: Background

Wireless CU is a metric to represent the usage of a particular
frequency or a channel within some measuring time interval
t. Typically, CU indicates how much any transmissions the

implemented CU computation device can “hear” on a chan-
nel, from all wireless sources. The CU is often given in a
percentage between 0% to 100% and indicates the amount
of time a device finds a channel to be busy. It includes all
type of transmissions from all wireless sources operating in
the channel. To measure CU, our implemented device directly
processes IQ samples in real-time (with processing speed of
several million samples per second). Signal is declared to
be present when received I2 +Q2 value exceeds a threshold,
otherwise, it is declared to be absent. To accurately detect
signals in real time, we have a noise floor estimation module
which is used to set the detection threshold value appropriately.
The closed-form expression for CU computation in a block i
can be given as:

ψi =
np

N
(1)

where np represents number of samples in block i in which
signal is declared to be present, and N is the total number of
samples in each block i. Note that depending on the channel
bandwidth, the number of samples in each block i may vary
from several hundred thousands to a few million.

B. CU Histogram Computation
Every received block of CU statistics samples over n

time units contains a sequence of CU observations Ai =
{ψ1,ψ2, .....,ψn} from an unknown distribution function F .
Given n samples of CU in a block, an ith histogram Hi of CU
is given by

Hi = {(I1,π1),(I2,π2), · · · ,(Ib,πB)} (2)

where I1, I2, · · · , Ib are partitioning of CU into B contiguous
intervals which are also known as bins. The count values for
B bins are given by π1,π2, · · · ,πB. Each bin has an interval I j =
[I j; I j) with I j as the minimum value and I j as the maximum
value. The implemented module computes histogram values as
follows: When a sample of CU is within some bin I j then the
counter for that bin is incremented by one or else it remains
the same.

C. Main hardware/software components for CU computations
The FPGA accelerated modules act directly on IQ samples

and perform streaming real-time wireless CU measurements
to compute the CU values and also perform histogram com-
putations on obtained CU values. In particular, the FPGA
accelerated modules perform three main tasks in parallel: a)
it performs noise floor estimation and signal detection; b) it
performs statistical computations on blocks of measured data
and outputs their descriptive statistics, such as mean values,
and histograms-based probability density functions; c) and
it sends the low-overhead histogram outputs to the resource
controller server.

The use of an FPGA and an embedded processing unit
to obtain CU values and also CU histogram values allows
partitioning of time critical signal processing tasks to be done
on FPGA, letting the processor do less critical processing.
In Fig. 2, we illustrate this partitioning of tasks between the
FPGA and the processor by providing a simplified high level
circuit diagram and also embedded processor functions that
are implemented on the Zedboard. Fig. 2 shows FPGA imple-
mented modules: 1) adaptive noise floor estimator, 2) detection
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Fig. 1. Various components of our prototyped analytics device and analytics system.
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Fig. 2. High level circuit diagram and embedded processor modules.

threshold calculator, 3) channel busy/free state calculator, and
4) channel state dwell time (how long channel remains in
busy/free state). Fig. 2 also presents various software modules
implemented on the embedded processing system of the Zed-
board: 1) configuring the DMA for streaming data transfers
using interrupts; 2) Ping pong buffers based processing 3)
block mean CU values and histogram computation of CU
values. In our work in [5], we provide detailed explanation
regarding the implementation of various modules in Fig. 2.

D. EMD

To convert the obtained CU histograms to probability distri-
butions data one can simply divide the count values in each bin
by the total number of count values in the histogram. We can
then define EMD as the minimum amount of effort needed
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(a) CU values obtained via prototyped device over five days.
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(b) CU values obtained via second prototyped device placed 20
metres away from the first device.

Fig. 3. Comparing sample CU values obtained via two prototyped devices.
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(a) Normalized CU histogram obtained over 20
seconds interval.
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(b) Normalized CU histogram obtained over 10
minutes interval.
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(c) Normalized CU histogram obtained over 30
minutes interval.

Fig. 4. Normalized CU histograms over various time interval lengths.

to transform a probability distribution α (which represents
the CU probability distribution at time t) towards probability
distribution β (which represents the CU probability distribution
at time t́). The effort can be defined in simple words as:
effort = (number of normalized CU count values moved) ×
(number of bins over which they are moved). Simply put, the
idea of EMD is to imagine two probability distributions as
piles of dirt and calculate the minimum amount of effort
needed to reshape the first pile so that it has the same shape as
the second pile. The important feature of EMD is that it takes
into account distance. With increasing dissimilarity of two
CU distributions the EMD increases because the probabilities
need to be moved over larger number of bins (distances). Two
exactly matching CU probability distributions will have zero
EMD, while the maximum value for the EMD is B−1 bins as
for the histogram case B−1 represents the thresholded value
for EMD. For the maximum EMD value B− 1 case, both
CU distributions are completely separated and further apart.
Moreover, one can obtain normalized EMD values between 0
and 1 if one divides the EMD with B−1 .

IV. RESULTS FROM REAL OVER-THE-AIR DATA

In this section, we present detailed results relating to CU
values and CU histograms which are collected using our im-
plemented device. To obtain real wireless data, three Zedboard
devices with implemented modules running on them were
placed for over a period of two weeks in one of the busiest
part (Tellus conference area) of the University of Oulu. The
device collected mean CU, and CU histograms values in a
2.4GHz WLAN channel where multiple APs were active. The
device was configured to output every 20 seconds a mean CU,
and an entire CU histogram. The width of each histogram bin
during measurements was set to 5 which means the collected
histograms had a total of B= 20 bins. Further details regarding
the utilized measurement devices can be found in [5].

In Figs. 3a and 3b we present measured mean CU values
using two Zedboards which were placed around 20 metres
apart. The two figures show the measured CU values for a
period of 5 days including a weekend day. It can be seen
that for day time the mean CU goes high and then for night
time it goes low. Moreover, overall low mean CU can be
also seen during the weekend as compared to the week day.
In Figs. 4a, 4b, and 4c, we present obtained CU histograms

over time interval lengths of 20 seconds, 10 minutes and 30
minutes, respectively. It can be seen from the figures that CU
distribution is right skewed with a long right tail.

In a real wireless network, such as deployed in the Uni-
versity of Oulu, CU distribution can change according to the
change in time. Moreover, within a given area, CU distribution
can also change across locations which are not too much apart
from each other. This is due to the reason that one location
may receive different amount/strength of wireless signals than
the other. To observe CU distribution changes across time in
the collected real CU dataset, we have splitted the obtained
CU histogram dataset into five parts. Each part represents a
full day of a working week. For example, Part 1 represents
Day 1 (Monday) and and Part 5 represents Day 5 (Friday). To
see datashift across time we compute EMD for the same time
between Day 1 and each of four other days of the week. In
Figs. 5a, 5b, and 5c, we present box plots of EMD values for
normalized histograms obtained over 20 seconds, 10 minutes,
and 30 minutes, respectively. It can be seen from Fig. 5a that
for the 20 second histogram interval case for the same time of
the day the median (red line in the box) EMD values between
Day 1 and each of four other days are no more than 1. For
the same figure, the 75th percentiles (top edges of the boxes)
are no more than 3. The whiskers show the most extreme
point not considered as outliers can go as high as 7. Finally, it
can be also seen that the outlier data points (+ symbols) can
be as high as 13. Figs. 5b and 5c show that increasing the
time interval of obtained CU histograms can slightly increase
the median and the 75th percentile EMD values, however, the
increase is not very high and the outlier EMD values have
significantly decreased. The EMD results across time show
that while the CU distribution across same time of different
days are similar but they are exactly not the same. Hence,
a deep learning model that uses certain week days CU data
as training data to predict CU for other week days can only
predict with limited accuracy.

To observe CU distribution changes across space in the
collected real CU dataset, we have compared the obtained
CU histogram dataset from two different Zedboards that were
computing histograms almost 20 metres apart. In Figs. 6a, 6b,
and 6c, we present box plots of EMD values for normalized
histograms obtained over 20 seconds, 10 minutes, and 30
minutes, respectively. It can be seen from the three figures
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(a) EMD comparison for normalized histograms
obtained over 20 seconds interval.
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(b) EMD comparison for normalized histograms
obtained over 10 minutes interval.

1,2 Day 1,3 Day 1,4 Day 1,5 Day

0

1

2

3

4

5

6

7

E
M

D

(c) EMD comparison for normalized histograms
obtained over 30 minutes interval.

Fig. 5. EMD comparison across time, i.e., between a day and four other week days.
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(a) EMD comparison for normalized histograms
obtained over 20 seconds interval.
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(b) EMD comparison for normalized his-
tograms obtained over 10 minutes interval.
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(c) EMD comparison for normalized histograms
obtained over 30 minutes interval.

Fig. 6. EMD comparison across space, i.e., between histograms measured by one device and with histograms measured by another device which was placed
20 metres away from the first device.

that median values are no more than 0.5. Moreover, the 75th
percentile is no more than 1 for all the three figures. The three
figures also show that increasing the time interval of obtained
CU histograms can slightly decrease the 75th percentile and
also the EMD values for extreme points. The EMD results
across space show that the CU distribution across different
locations within a given area show small differences.

V. CONCLUDING REMARKS

It is challenging to get a publicly available real wireless
CU dataset that can be used to study dataset shift in wireless
CU. The main contributions of this paper is two-fold. First, we
present our SoC based implemented devices that are used to
obtain real CU values and CU histogram values. Second, we
utilize the collected CU data to study dataset shift across time
and space in wireless CU distributions. We use a statistical
distance based technique called EMD to quantify the shift in
dataset. Our results show that CU distributions across time are
similar but not the same which means there is some dataset
shift across time and it can affect the prediction performance
of any deep learning models developed for CU predictions.
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