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ABSTRACT 

When multiple arms are used to manipulate a large object, it is beneficial and 
sometimes necessary to  maintain and control contacts between the object and the 
effector (the coiltactiilg surface of an arm) through force closure. Rolling and/or 
sliding can occur at these contacts, and the system is characterized by holonomic as 
well as nonholonomic (including unilateral) constraints. In this paper, the control of 
planar rolling contacts is investigated. Multi-arm nlanipulation systems are typically 
redundant. In our approach, a minimal set of inputs is employed to  control the 
trajectory of the systeln while the surplus inputs control the contact condition. The 
trajectory includes the gross motion of the object as well as the rolling motion at the 
contacts. A nonlinear feedback scheme for simultaneous control of motion as well as 
contact conditions is presented. A new algorithm which adapts a two-effector grasp 
with rolling contacts to external loads and the trajectory is developed. Simulations 
and esperimeiltal results are used to  illustrate the salient features in control and 
pla.nning. 



1 Introduction 

There are numerous examples of manipulation tasks involving large (possibly, but not necessarily 
heavy), awkwardly sized payloads such as cartons, crates and barrels that  cannot be grasped by 
one end-effector or hand. Instead of designing large end-effectors, which then require large robots 
(which becomes impractical beyond a point), the logical solution is t o  employ multiple, relatively 
small robots, in order to  enha~tce the grasping capability. Further, it is attractive to  allow palms, 
forearms and other surfaces of robot limbs to contact the object as opposed to  fingertip grasping 
or dual arm manipulation with two end-effectors, in which contacts are restricted t o  the distal end 
of the serial chain. Since we do not restrict the interaction between a robot and the object to be 
limited t o  the end-effector, we use the term eflector to  refer to any link or surface on the robot 
that  coiltacts the object. Multi-effector grasps are potentially superior t o  finger-tip or end-effector 
grasps because they allow the robot arms t o  envelop the object. Such enveloping grasps result in 
superior stability and better robustness. Secondly, the grasped object can be quite large: it can be 
comparable t o  tlte size of the manipulator. 

In order for robots to cooperatively manipulate an object, coordinated dynamic control is very 
important. IVhen two or more robot arms contact tlte same object, one or more closed kinematic 
chaills are formed. This systein is kine~natically and dynamically constrained and, in general, 
extremely nonlinear and coupled. The contact between the arm and the object may include surface 
rolling and sliding, which introduces nonholonomic and unilateral constraints. Quite often these 
systeins have redundancy in actuation which must be addressed. 

Dual arm manipulation [ l l ,  22, 17,27,44,54,50], multi-fingered grasping [4, 10, 14,24,51], and 
legged locomot io~~ [18, 301 have been studied estensively. A comprehensive account of research on 
coordinated motion control of multiple robot arms or fingers has been presented in [17]. However, 
the focus in most of these papers is on the control of mechanical systems with closed kinematic 
chains. There has been very little emphasis on the modeling of the contact interactions and control 
of the contact conditions. It is commonly assumed in many papers [12, 48, 35, 41, 43, 46, 47, 501 
that  each robot grasps the object with an end-effector in such a way that  conditions for forrn closure 
are satisfied a t  each end-effector. In other words, the contact constraints are maintained regardless 
of the forces and moments acting a t  the contact. Further, there is no relative motion between the 
robot arm and the object. This is only a very special case of dual arm manipulation. 

CVlien tlte object is awkwardly shaped and its size is large compared t o  that of tlte effectors, 
the effectors must exert appropriate contact forces to sustain the condition of force closure. In this 
regard, the robots act as distributed effectors [37, 451. Although the dynamic control problem for 
holonomic systems has been studied, there has been much less emphasis on control of systems in 
which the constraints are unilateral and i~onl~olonomic. The kinematics of the constraints and the 
implications on the control of such systems have been studied in literature on multi-fingered grasping 
[14, 381 and multi-legged walking [21, 301, but dynamic control has not been discussed. Kinematic 
models of sliding and rolliilg have been developed [2, 24, 283. The control of noitholonomic systems 
is investigated in [ G ,  7, 391. Control of sliding has been studied in [3] with the assumption that  pure 
rolling never occurs. The problem of static indeterminacy (redundancy), and optimal solutions of 
the problem of distribution of forces have been studied for multi-fingered gripers [14, 24, 8, 10, 24, 
20, 511 and for legged locontotion systems [30, 16, 18, 211. In most previous studies, the redundancy 
in actuation is resolved througlt an cld hoc scheme such as a pseudo-inverse decoinposition [38]. The 
problem of controlling the interaction between manipulators at  the contact has been largely ignored 
in this body of theory. 

In this paper, the planning and dynamic control of systems with unilateral constraints (including 
frictional constraints) is addressed. The focus is on controlling rolling contacts in mailipulation and 



on planlling optimal rolling motion in order to adapt a multi-effector grasp to external forces and 
to  the trajectory. Two planar 3-R manipulators and a two-effector grasp are used t o  study the 
underlying problems and to demonstrate the basic ideas. The geometry is deliberately chosen to be 
simple so that  complexity of the nolllinear rigid body dynamics does not obscure the key research 
issues: control of rolling conta.ct collditions a.nd pla,nning of adaptive rolling motion. The example 
does not over simplify the problem: the system is governed by kinematic and dynamic constraiilts 
due to the closed cha.in structure, t,he unila.tera1 c~nst ra~ints  a,t the conta.cts a,re preserved, a,nd 
actuator forces (torques) are underdetermined due to  redundancy in actuation. 

The mathema.tica1 modeling of three-dimensional, multi-effector, enveloping grasps is presented 
in Section 2. This includes the kinematics and the dynamic equations of motion. The esa.ct form 
of the equations are presented for the two-effector planar grasp. The control of unilateral systems 
is discussed in Section 3. The simultaneous force and motion control problem is formulated and 
the nonlinear feedback for the system is derived. The planning of the rolling motioiz and the choice 
of force set-points is discussed in Section 4. Results from a computer simulation of two planar 3-R 
manipula.tors and esperirnent,a.l results on two cooperating PUMA 250 manipulators are presented 
in Section .5. Finally, a summary of the work and plans for future work are discussed in Section 6. 

2 Modeling and Problem Formulation 

2.1 Notation 

We consider I contacts with the object at  the points PI through PI. Ok (position vector ro,k) is 
the point fixed t o  the object such that  it is itlstantaneously a t  Pk while Ek (position vector is 
the point on the effector, instantaneously coincident with Pk as shown in Figure 1. The positions 
of these three points a.re the sa.me, but in general, their velocities (and accelerations) are different. 
r o  is the position of the origin of the object-fixed reference frame which is located a t  the center of 
mass, C'. In this paper the components of a vector, uilless otherwise specified, will be expressed in 
a global. fixed reference frame. 

A robot has 11. links with a. coordillate system attached to each of its links. The origin of the 
coordinate syst,ern for link j on robot 1 is a.t - A i j .  The correspondiilg position vector is r;j (which 
is an abbreviation for I . . ~ , ; ~ ) .  Unless otherwise specified and whenever the context is appropriate, a 
subscript i j  refers to the point .Aij a,nd the subscript i j ,  k refers to the point Pk on the jth link on 
the ith robot. The subscript 0 (E)  refers to the object (effector). 

We use po to denote a 6 x 1 vector which describes the position and orienta,tion of the object. 
Clearly po is a function of six coordina,tes: 

where (xo, yo, 3 0 )  are the coordinates of the reference point C in the fixed frame (or the components 
of the vector T O ) ,  and (80 ,  $0, tpo ) are the Euler angles that describe the orientation of the object. 
We prefer the vector representation: 

r 7 

where /LO is a 3 x 1 vector of qtrnsi-coordinatesl that  describe the orientation of the object. The 
qua.si-coordiaa.tes are defined so that  the angular velocity of the object, oo, is given by: 

UIO = i h O  

'See 1341 for the definition of quasi-coordinates. 
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Figure I: Illustration of notations. 

In the planar case, po is a single element, t,he angular orientation of the object in the plane. 
Similarly, is a 6-dimensional vect,or which describes the position and orientation of link j of 

robot i :  

where the angular velocity of link j of robot i,  w,j, is equal to k i j ,  and p;j is the vector of three 
quasi-coordina.tes. 

vo and v;; are the linear velocities of point C on the object and the point Aij on link j of robot 
% respectively. Thus the 6-dimensional velocity vectors call be defined as: 

The joint variables for robot i are denoted by 0; = [8;1...0i,]T. The Jacobian matrix that  relates 
the velocit,ies of the jth link on the ith robot to its joint velocities is given by Jij. Thus, 

Note that  if the jth link is not the most distal link, the colulnns in the matrix J,, with indices 
greater than j will be zero. 

The 6 x 1 velocity vector for link j of robot i can be referred to  the contact point (Pk) instead 
of the point A,,.  The vector referred to Pk consists of the ailgular velocity of the link and the linear 
velocity of the point Pk on the link. and is given by 



I3 and O3 are the 3 x 3 identity and zero matrices, and R E , k  is the skew-symmetric matrix corre- 
sponding t o  the vector P E , ~  = T E , ~  - r i j  

Si~n i l~ r ly ,  rotx. tra,nsforms the 6 x 1 vector of object velocities so that  it can be referred t o  the 
coritact point. Pk: 

r 0 , k $ 0  

where - 

RO,. is the sliew-symmetric inatris corresponding to  the vector po , k  = I ' o , ~  - T O .  We also define 
the nlatris r k :  

I?. = I ? i > I ' o , k  

Then. the velocities of the effector and that  of the object are related by 

where wij ,rel  = wo - .~;j is the relative a.ngular velocity between the contacting bodies and vij,,,r 

is the rela,tsive velocity a.t the point of contact on link j (robot i ) .  A systematic approach to the 
derivation of these equations can be found in [28, 21. Since we are considering rolling contacts only, 
v;,,,.,i is equal t o  zero. 

The acceleration equa.tions can be obtained from differentiating Equation (2). They call be 
written in the form: 

i j i J  = r ~ > r ~ , k ? ~  + gi = rkjo + gi (3) 

where g; is a nonlinear function2 of the relative velocities between the two conta.cting bodies and 
the local geometry ( u p  to third order) of each contacting body. 

The coilta,ct force, f k ,  and moment, nzk  about the contact point ( P k )  exerted by the effector on 
the object are denoted by the 6-dimensiona,l vector FP,k 

If the kth  conta.ct occurs on the jth link of the ith robot, it is convenient to  refer the contact force 
a.nd ~no~l le i l t  vector to the point A;, , denoted by F i j , k .  The vector Fij,k consists of the contact forces 
a t  the k th  conta.ct and the moments a.bout the origin Aij, and is related to  FP,L by a transformation: 

Similarly. T:.. transforills FP.L into a vector of contact forces and mon~ents about the reference 
point C.  

T Fc,k = r o , k F ~ , k  

2Tlre exact form of these equations is given i n  Reference [T']. 
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2.2 Dyilaimic equations of inotioil 

The equations of nlotioll for each ~z degree of freedom manipulator can be written in the joint space 
in the form 

DiIi + 6 ,  + C J : ~ $ , ~ F ~ , ~  = 7, ( 5 )  

where D; is the 12 x 12 inertia nlatris in the joint space, b; is a vector of nonlinear functions of the 
velocity and position, and q is the vector of joint torques. Note that  the summation of J : I ? ~ , ~ F ~ , ~  
includes all values of k which corresponds to contacts on the i th  a.rm and only those j (link j of 
robot i )  for which there exists a conta.ct. 

The equations of motion for the object with 1 contacts can be written as: 

Do is the G x 6 inertia ma.trix of the object given by 

where mo is the mass and AIo is the inertia tensor (dong  principal axes about the center of mass 
C') of the object. 11- is the vector of external forces and moments acting on the object and bo is a 
6-dimensional vector of nonlinear velocity dependent terms: 

The mobility for a holoi~omic system is the minimum number of independent generalized coor- 
dinates required to  describe the configuration of the system. If the mobility is m ,  the task space 
(or the operatiollal space Ll.51) is described by an m-dimensional vector of generalized coordinabes, 
i. Equations ( 5 - 6 )  can be rewritten as na equatiolls of motion in the task space of the form: 

Further. if X is the vector of contact forces in the system, it ca.n be written in the form: 

This is illustra.ted with the help of a planar esa.mple nest. 

2.3 Exanlple with two planar 3-R illa~lipulators 

Consider two 3-R (three revolute joints) manipulators each making one contact with the manip- 
ula.ted object ( I  = 2)  on the 31.d  link a.s sho\vn in Figure 2. The most distal link on each arm is 
shaped so that  it has a. palmar surface at the end. Since there is only one contact on each arm 
( i  = k )  a.nd since conta.ct occurs only on the most distal link ( j  is fixed a t  3), we simplify the 
nota.tion. Denot,e pi3 by 1';. Ji3 by .Ii, and the contact force Fp,i by Fi. Note t11a.t 
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Figure 2: Two robot arms manipulating an object. 

If rolling contact is maintained the mobility of the system is 5. Therefore i may be chosen to 
consist of 3-dimensional po and two other independent position variables. Since the objective is to 
control the rolling contact, we choose two contact configuration variables [52]. The point of contact 
on the zth palm is described by the contact coordinate d, which is the arc-length along the palm as 
shown in Figure 2. Thus the task space can be defined by po ,  dl and d2. However, in general, it is 
difficult to  derive closed form espressions for d, in terms of the joint angles. Therefore we choose 
the orieiltatioil of the two palmar surfaces, and q t ~ ~  respectively, as the two other generalized 
coordinates: 

($1 = $11 t $12 + 613 q2 = 821 + 622 + 023 

Thus, the task space va.riable i is: 

The dynamic equations of motion for the manipulators in the joint space are given in Equation 
( 5 ) .  The motion equations of the ith manipulator (i = 1,2) in the task space can be derived [42] 
by elimina.ting ji from Equation (1) and Equa.tion (5) and simplifying: 

where 

and 

Now since we wa.nt to  espress all equations in the task space (0, we substitute Equatioll (3 )  illto 
Equation ( 9 )  to  get. 

Hiri j io  t (Higi  + h, ; )  + I';,;F~ = qTT, (10) 

Fro111 Equations (6 )  and ( 10). we obtain 



where 

U = DO + S T H ~ I ' ~  + I ' ; H ~ I ~ ~ ,  T=[T, '  .,'lT, r = [r'f rTIT, 

and 
A=[I':'J;' I':JF~]. 

Note that  lT is the task space inertia of the complete system. 
The contact forces and monlents can easily be calculated. For example, the expression for Fl 

is obtained by substituting Equa.tion (11) into Equation (10): 

where 

Since a; is a function of 6,.  expressions for 41 and 45Z can be derived quite easily. First, the 
joint accelerations are given by Equation (5): 

Since 
6; = oil + k2 + e i 3 :  

from Equa.tion ( 13) we get: 

To get J1, we can substitute Equation (12) into Equation (14). Similarly, by deriving an expression 
for F2 we ca.n get G2 from Equation (14). Thus we see that  the expressions of the second derivatives 
of the task space varia.bles are of the forin shown in Equation (7). Fl in Equation (12) is an example 
of a cont~a.ct force. The expression is of the form show~i in Equation (8). 

We note that  if the object, for esa.mple, is cylindrical with radius R ,  the  conta,ct coordinates $1 

and d2 can be related to  the generalized coordinates on the task space variables (: 

This ca.11 be integrated t,o get, 
cli = R($o - 4;) + ci 

where ci is a consta.nt that  depends on the initial values of d;, 40, and 4;. 



Figure 3: Two-point conta.ct. 

If we adopt the point,-conta.ct illode1 [38], the conta.ct intera,ctioll can be illodeled by a pure force 
througl~ the contact point. Therefore, the llloments (mk) in the 6-dimensional vector, FP,k, are 
equal to zero, a.nd the conta.ct interaction can be inodeled by a pure force vector, fk. In the pla.nar 
esample considered in Figure 2, f k  lies in the plane. 

Tllere are two types of constraint conditions that must be satisfied for rolling. Firstly, the 
compollent of force along the inward pointiilg nornlal lllust be nonnegative to  maintain contact. If 
n; is the inward pointing normal for the object at the contact point Pi as shown in Figure 3, we 
have the condition: 

f* . 12; > 0 (15) 

Secondly, the tangential a.nd norrna.1 components must be such that  the required rolling contact 
collditioil is satisfied. If we assume the validity of Coulomb's model of friction, the following 
equa.tion nlust be true: 

Ifi - ( f i  .'%)nil 5 Pfi .ni (16) 

where / L  is the coefficient of friction a t  the contact. 
For two point-contacts, Equation (16) can be sa.tisfied for arbitrary loads and tra.jectories only 

if the contact normals, n l  and 1x2, and the unit vector along the line joining PI to P2, e12, satisfy 
the inequalities: 

cos-'(r12 n l )  < tan-lP ; cos-l(-el2. n2)  < tan-'P (17) 

These are ilecessary and sufficient conditioils for being able to  maintain force closure in two-point 
contact grasps [14, 291 regardless of esternal disturbances. A discussion for more complicated 
geometries can be found in [IS, 29,381. If the strict inequality holds in Equation (16), the tangential 
velocities at  the two contact points are identical. If the equality condition holds, the contact is 
rolling if the relative velocity is zero ( v , , , , ~  = 0 ) ,  otherwise the contact slips. 

3 Controller Design 

The objective of the controller is t o  control the tra,jectory of the object, and the contact conditions. 
Since we consider rolling contact, the goal is t o  maintain rolling, that  is, to avoid sliding and 
separation a t  each coilta,ct point. This implies that the forces must be actively controlled so that. 
they satisfy the inequalities (1.5) and (16). First we discuss how this ca.n be accon~plished, and then 
develop an algorithill for simulta.neously controllillg illation and and conta.ct conditions. 



3.1 Critical coiltact force 

Each link making contact with the object can only push and cannot pull the object. Additionally, 
the pushing force iilust be within the friction cone. It must be built into the controller to  avoid 
separation and slipping a t  the contact points. In another words, inequalities (15) and (16) must 
be enforced. This necessitates the control of contact forces f,. However, we may not have enough 
actuator inputs to  control every contact force as well as the motion trajectory variables. For a 
system of mobility 711 wit11 T actuators, it is possible to control r - m components of contact forces 
and inoments and 171 position variables. For the two planar 3-R manipulators discussed in the 
preceding section. the system has six actuators and the mobility is five. In addition to controlling 
five position variables (zo. ~ 0 . ~ 0 ,  qq, q52), we can control one force variable. This force variable 
and its desired value must be chosen to  ensure that  the inequality constraints are satisfied, and 
thus the rolling conditions are maintained. 

In the previous work, this was accomplislled by specifying the internal forces [38, 241 or the 
interaction force [19]. For planar, two-point contacts as in Figure 2, the finger forces can be 
decomposed into manipulation forces, f,,,, and internal forces, f,,,. 

The internal forces a.re equal and opposite forces aloilg el2. Thus, 

f~ is called the intera.ction force [19]. The manipulation forces are computed from the description of 
the trajectory and esterilal forces/moments. They resist the external forces and produce the desired 
a,ccelerations. Further, they are required to be such that the norm of tlle vector [ f:m fZn,lT is 
minimum. -4s sliown in R.eference [19], ( f l y ,  - f2,,) .el;! = 0. From the task description, a suitable 
value for fI  is computed. The desired trajectory, external forces and the desired intera.ction force, 
f I ,  specify the force set-points. 

In the present approach, t,he desired interaction f ~ r c e  is calculated from the limits on the contact 
forces - for example, tlie nl i i l i~nu~n ilorlnal component so that  Equation (15) is satisfied with some 
factor of safety. We a.dopt a different strategy. We directly control the force component that is 
closest to  its limit. 1nstea.d of coiltrolliilg the interaction force, we control the criticcll coiztuct force, 
f,,, which is defined as: 

f c s  = min(e12 . f l ,  -el2 - f 2 )  (19) 

By specifying tlie cribical conta.ct force, we specify the minimum contact force along el2. The 
larger this component, the greater the int.eraction force (and the internal forces). The advantage in 
controlling the critical contact force is that we explicitly control ea,ch individual force component, 
fl el2 and f2  . e12, instead of coiltrolling the difference. 

Equa.tion (19)  can also be written in the following form 

el2 . fl - el2 ' f2- I el2 - fl + el2 . f2 I 
fcc = 

2 (20) 

Since this equation is not differentiable due to  the presence of absolute value, including fcc in the 
output equa,tion will ma.ke the controller design difficult. In order to  circumvent this problem, we 
include el;! - fl in the output equation. In Appendix A,  we show that  by controlling el2 . f l ,  the 
error in f,, is bounded. 



3.2 Sii~lultaileous coiltrol of trajectory and coiltact coilditioils 

In order to  perform the ta.sk of inanipulating the object by multiple arms, the controller must 
regula.te the position and orientatioi~ of the object, and the contact conditions. The control of the 
contact collditiolls necessities the coiltrol of certain forces, e.g., the critical contact force for the two 
3-R. lnallipulators discussed in the previous subsection. In this subsection, we present a method for 
simultaneous control of 111otion trajectory and forces. 

In earlier pa.pers [53, 33, 311, we 11a.ve de~nollstra,ted the a.dvantage of dynumic state feedback. 
We have rigorously shown t11a.t a,n integral feedback is needed to  stabilize force control systems. 
Applying differential geometrical control theory [13], we have also been able to find a nonlinear 
dynamic state feedback which exclctly linearizes and completely decouples the position control loop 
and force control loop. This allows us to design each subsystenl by using linear system theory. 

The dynamic sta.te feedba.ck is realized by including the joint torques r as part of the state 
variable. or equivalently. by introducing an integrator on each input channel: 

Now, Equation ( 7 )  ca,ii be rewritten in the sta,t,e space 

while the output equations have the form 

where y1 is an  m x 1 function of position and 312 ail (nz - T )  x 1 function of constraint forces. E(xl) 
is a projection matrix t11a.t depends on the choice of y2. For esample, in the planar system in 
Figure 2, the outputs a.re given by 

In [53] we propose a, llolllinear feedba.ck which linearizes and decouples the llollliilear systenl 
represented by Equa.tions (21) and (22) .  The feedback has the form: 

where a(%) and $(x) are to be collstructed based on the system model. Using differential geometric 
design techniques 1131 for nonli11ea.r systems, a(%) and P ( x )  can be found by solving the following 

where @ ( n : )  is the decoupling inatris of the system which is given by 



- Output 
+ 

Y 
Equation r - - - - - - - - - - - - - - - - - - - -  

Planning Nonlinear u T Dynamic I- -* State Space 
l z 

Algorithm Feedback Equation Transformation L, 
_ I  

i 4 A I 

I I 

Figure 4: Schematic of the Nonlinear feedback control algorithm. 

Here Lcyi  is the Lie derivative of y; along the vector field (: 

I11 the case of two 3-R manipula.tors, ti. a and v are 6-dimensional vectors, and /3 and are 6 x 6 
ma.trices. 

Applica.tion of the a,bove feedba.ck linea,rizes the system in a transformed state space z .  The 
new sta.te va.ria.ble 2.  a,nd n: a,re rela.ted by [13]: 

The linearized system is chara.cterized by 

and the output equation is given by 

:I [ i]  24 

We note that  position coiltrol subsystem is third order while the force control subsysten~ is first 
order. A scllerrla,tic of the control algoritllm is shown in Figure 3 .  The sys te~n shown within the 
dotted line is linear and decoupled. 

A linear feedback can be further designed to place the poles of the system a,t appropriate 
1oca.tions to achieve the desired performallce requirements. 

4 Planning Rolling Contact Motion 

In this section, we consider the planning of the rolling motion at each contact. The discussioll 
is restricted to pla.nar geometl-ies with two point-conta.cts. We assume that  the trajectory of the 



manipulated object is specified. However, the trajectory of the system is not completely specified. 
For example, if Ive consider the geometry shown in Figure 2, we assume that  the trajectory of the 
object, po(t) is specified. However, the rolling motion dl ( t )  and d2(t) (and therefore, #l(t) and 
&(t)) is not specified. Note that  this is different from traditional path planning or motion planning 
(see for example References [2G, 2.5, 9, '231) in which the goal is to  find a feasible or optimal path 
between two given positiol~s. Here tlie trajectory is provided to us. Since this does not uniquely 
specify the motioil of the system. there is an opportunity to plan an appropriate rolling motion 
that  will adapt tlie grasp to the external forces and the trajectory. 

Since the contacts may change (due to the rolling motion) during the task, it is nleailingful to 
plan the trajectory of tlle contact points in order to  maximize, or keep a preferred stability index 
within reasonable limits. On the other hand, it is also beneficial to locate the contacts so that the 
actuator forces for a given load and object trajectory are minimal. 

The simple two-dimensional esample with a circular object in Figure 5 illustrates this. Let f, 
( i n 1  ) be the resultant force (inonlent about the center of mass) on the object that  is required to 
oppose tlie external forces (including the gravitational force) and the inertial forces. The inertial 
force\ call be obtainetl from tlie trajectory and the inertial properties of the object. Thus we have 
the equationr: 

where fi and fi are forces applied to  the object by the two pa,lms respectively. 
Suppose the dominant force is the tveight (pointing down) so that ,  in Equations (29) and (30), 

f,. = -147 a,nd 172,. = 0. In Figure 5(a,), the two palms fa,ce ea.ch other a,nd ? z l  and n2 a,re colinear 
but in opposite directions. Clearly, the inequalities in Equation 17 are satisfied. If the contact 
forces are not limited, by pushing sufficiently hard, the exerted forces fl and f 2  can always be kept 
within the f r i~t~ion cone while opposing the weight IT. This configura.tion is robust to  small clla,nges 
in 14': the critica,l conta.ct force ca.n be increased to satisfy the friction cone constraints. However, 
the object may not be a.ble to  wit,llstand a. la.rge contact force a.nd/or tlie large forces fi aad f2  

required ma.y be beyond the torque limits of the manipul.ators. 
The other estrenle case occurs when the two contact points coincide (see Figure 5 (b ) ) .  la1 

and 122 are a.ga.in co1inea.r but now, they have the same direction. The inequalities in Equation 17 
are violated. Althougll the esternal force 14' call be resisted most efficiently (with the smallest 
a'ctuator forces) in t,his configuration, changes in the direction of 14' (perhaps caused by esternal 
disturba.nces) ca.nnot be compensated by fi a,nd f i .  

The grasp in Figure .5(a) results in large contact forces but a more robust grasp because the 
vector el2 is "centered in ea.ch frict,ion cone". On the other hand, the grasp in Figure 5(b)  requires 
relatively smaller contact forces but the grasp is quite sensitive to  esternal disturbances because 
el2 is outside bot,li friction cones3. 

Thus. if  tlie weight is t.he only external force, it is meaningful to roll from the configuration in 
Figure .5(a.) to the one t11a.t is close to Figure 5(b). 011 the other hand, if disturbing forces (my 
in the horizonta.1 direct,ion) a.re expected, the configuration in Figure 5(a.) is better. In general, 
there is a trade-off between these two conflicting requirements of lower actuator forces (superior 
mechanical advanta.ge) and robtrsttless (greater resista,nce to  slippa.ge). 

We now develop a,n algorithm which plans the motion on the contact surface so that  the force 
applied to  tlle object by each palm is centered within the contact friction cone, thereby decrea,sing 

3 ~ c t u a l l y ,  € 1 2  cannot be defined in the limiting case shown in Figure 5(b) but  if we examine the case in which 
t.he 6wo colltact points are close to  one another but, not coincident, then it is obvious that  el2 is outside the friction 
colles. 



Figure 5: Palm contact locations. 

tlie possibility of violat,ing tllr constraint in Equa.tion (16). This planner will then function as a1 
input to the cont,rol system when a. specified task is to be performed. For the sa.ke of simplicity, 
we consider flak effectors (palms) and a. convex, smooth object. The basic idea is to specify the 
relative importance of better robustness versus low actuator forces (higher mechanical advantage) 
by specifying the critical cont,act force. -4s shown below, this also determines the optimal 1oca.tion 
of the contact points. 

Consider the genera.1 case where ~ z l  and 122 are not colinear as sliown in Figure 3 and f T  and mT 
are quite general. Let the conta.ct point on the object, Pi. hasre the arc-length coordinate (or the 
contact coordina.te) s;. It is c1ea.r that the normals and the vector e12 are functions of the contact 
points: 

la; = 12;(s;); e12 = e12(~1, s2) 

In order to  minimize the tendency to slip it is necessary to  minimize the masimum frictional angle. 
This is accomplished when the two friction angles are equal, and further, made equal to zero. In 
other words, f, should be along the normal ni. The equilibrium equa.tions for the object (Equations 
(29) a.nd (30)) a,re: 

IIf1117~1(~1) + lIf211n2(s2) = fi. 
po . l ( s l )  x I lf~ll l l~l(si)  + po,s(sa) x Ilfzlln2(sz) = mi. 

As before, f,. and m,. incltlde not oiily external forces and moments acting on the object but also 
the inertial forces and moments. Let the desired (specified) critical contact force be f,d,. Without 
loss of generality, designa.t.e the critica.1 conta.ct point to be PI. Now we have the requirements 

Thus. for a given load ( f T  a.nc1 nz,), the ideal set of contact points and contact forces should be 
such tl1a.t Equa.t,ions (31). (32). (33), and (34) should be satisfied. This reduces to solving the 
four equa.tions for sl..s2, f l .  and f2 .  Although these are nonlinear equations, a solution should, in 
general, be possible. 

However. snch a, solut,ion ca.nnot be found for the special case of cylindrical objects, unless 
171,. = 0. If 172, = 0, 1)eca.use Equa.tion (32) is automatically satisfied for ally s l  and s 2 ,  tliere a.re 
infinite solutions t,o this problem. If we further assign the two arms to share the load equally we 



Figure 6: Manipulation with rolling contacts. 

obta,in a unique solution. In  order for the friction angle to be equal, the two contact force vectors 
must form the sa.me angle with f ,  a.s shown in Figure 6. The components of fl and f 2  along f ,  
will be one half the magnitude of f ,  (equal load-sharing) while the projections along el;! are equal 
to the desired critical contact force, f$.  

Figure 6 sllows a sequence of two arms illoving along a trajectory from x, to  x j .  At xi (Fig- 
ure G(a)) the arms merely hold the object and support its weight. As the object is moved from 
x, (Figure G(b)), the inertial forces change the direction of f,. The contact points are moved via 
a rolling motion to the optimal locations shown in the figure. In the final segment of the trajec- 
tory (close to x j ) ,  the two palms decelerate the object (Figure 6(c)). Once again the conta.cts are 
adapted to the tra.jectory and the cha.nging forces. 

This section described the ba.sic philosophy behind the planning motion to  adapt the grasp 
configurat~ion to  the chaaging tra,jectory and external load. Although the basic ideas are applicable 
to more complicated geometries as well, the nonlinear equations in Equations (31,32,33) are difficult 
to  solve ana.lytica.lly. Computer simulation and experimental results on such a strategy are described 
in the nest section. 

5 Simulations and Experiments 

Both computer simulations and physical experiments have been performed to verify the control 
and planning algorithms developed in the preceding sections. The manipulation task chosen in the 
sinlulation and experiment is to move a. circu1a.r object ( a  soccer ball in the experiment) horizontally 
in an oscillation over a. distance of 0.4 meters with a specified period T,. The desired trajectory 
in the horizontal x-direct,ion is a. sinusoid given by 

d x O ( i )  = uO,injt + 0.2 [sin (Et - :) + 1.01 

where : c~ , j , i i  is the desired initia.1 va.lue of zo. Tlle desired trajectories y $ ( t )  and & ( t )  are constant 
over time. The planned values for and 42 are calculated by the planning algorithm as described 
in Section 4. The desired value for the critical contact force f,d, is also chosen to be a constant. 
The 1inea.r feedback in Figure 4 is chosen so tl1a.t the third order position control subsysten~ has all 
the three poles a.t a.t P = -10 ant1 the first order force control subsyst.em has its pole a.t s = -10. 



5.1 Simulation results 

The simulation is conducted by using kinematic and dynamic models of PUMA 250s. This is the 
same model on which the feedback control algorithm used in the experiment is based. A global 
coordinate systenl is chosen a.t the base of robot 1. All the position and orientation parameters 
described below a.re relative to  the global coordinates. The bases of the two robots are separated 
by a distance equal to 0.4 meters. The key kinematic and dynamic parameters are included in 
Appendix B. 

The simula.tion results are shown in Figures 7 through 9. The position trajectories of the object 
are sl~owil in Figure 7. The desired trajectory of xo is given by (35) with xo,;,it = 0.0 and T, = 4.0 
seconds while the desired value of yo is 0.3. Figures 7(a) and 7(b) illustrate the actual trajectories 
of zo and yo while Figure 7(c) displays the errors in z0 and yo. It is seen that  the errors vanishes 
within one second. The maximulll error in xo is about 1.8 lllm and that  in yo is about 4.3 111111. 

The trajectories for the orientation, 41 and 412, of the two palms are illustrated in Figure 8. The 
planned values for Qjl and Qj2, sh01vt1 by dashed line, are computed using the planning algorithm 
discussed in Sect,ion 4 (and a.re therefore called "pla.nnedV values rather than "desired" values). 
The goal of orienting the palms is to adapt the contact configuration as t o  keep the contact forces 
within the friction cone. The actual trajectories of and 42 are showil in solid line. It is clea,r 
that. while both arms collsistently follow the ~ l a n n e d  trajectories, there is a constant lag in tlle 
response. Siilce the posit,ioil control suhsystetns are of third order (Equa.tions (27) aad (28)), the 
coiltroller requires the desired values of the position output variables a,s well as their desired first 
and second order derivatives. The derivatives of the desired trajectory (i$, ~ 6 ,  $6, 2$,  &, $6) 
are easily calculated. Thus, z0 a.nd yo perfectly track the desired trajectories after the initial 
transient. However, the derivatives of and 42 are not calculated by the planning algorithm. 
This is because the planned rolling motioll depends on the inertial and external forces. The inertial 
forces are funct.ions io. ijo. Go,  6, and J2, and the velocities. If the plaaned motion qil(t) and &(t)  
is to depend on the i11ertia.l forces and moments, we have a paradoxical situation in which cf~l(t) and 
@2(t) depend on $1 aad $2. To a.void this, the pla.nned rolling motion, &(t) a.nd 4 i ( t ) ,  depends on 
the external forces and 011 tlle inertial forces estimated from ~ $ ( t ) ,  ij;(t) and #$(t). The planning 
a.lgorithm is "subopt,imal" in this sense. However, cha.nges in inertial forces and moments due to  
va.ria.tions in the orientations of the pa1111 or changes in contact locations ca.11 be espected to  be 
relatively small. The implication of this approach is that  the feedforward compensation, that is, 
the first and secolid order deriva.tives of $<(t)  and 4i ( t ) ,  is not provided in the controller. This 
causes the lag in the response of & and 4z. 

Figure 9 depicts the trajectories of the critical coiltact force fcc and the friction angle of the two 
colitact forces fl and f2.  The desired value of f,, is 10.0 Newtons. The a.ctua1 trajectory of f c c  in 
the silnulation exhibits the response that  is typical of a first order system, as showil in Figure 9(a). 
The friction angle of t,he conta.ct force f i  is tlle aagle between the outwa.rd 11ormal of palm i and 
the direction of .fi. The goal of controllillg the rolling motion is to  keep the friction angles close to  
zero, tlmt is, keep the conta.ct force fi close to  the center of the friction cone. It is shown in Figure 
9(b)  t11a.t the friction angles a.re effectively brought to zero within one second. The initial peak 
value displayed in Figure 9(h) results from the ullcompensated object gravity force a t  the instant 
when the simulation is sta.rted. 

5.2 Exper i~ l le~~ta l  results 

The control aad planning algorithn~s developed in the previous sections have also been imple- 
mented 011 an experimental system called TRACS (Two Robotic Arm Coordiilatioil System) in tlle 
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Figure 7: The position trajectories of the object from the simulation: (a) actual z,, (b) actual yo, 
( c )  el-r01.s in .T, a.nd y,. 
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Figure 8: The planned a.nd actual orientation trajectories of the two arms from the simulation: (a) 
dl of arm 1, (b) 49 of arm 2. 
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Figure 10: The TR.ACS 1ia.rdwa.re architecture. 

GRASP Laboratory, University of Pennsylvania. The TR.ACS is exclusively developed for verifying 
and testing dynamic control algorithms for one arm or two cooperative arms [32]. The hardware 
a.rchitecture of the system is depicted in Figure 10. I t  consists of two PUh/IA 250 manipulators. 
Ea.ch manipulator has a. flat-surface palin which is instrumented with an Interlink linear tactile 
sensor. One of the manipulators is equipped with a Zebra six-dimensional force/torque sensor4. 
Tlie system uses a. 80286-based IBh4 PC/.4T as the host computer which is aided by an AMD29000 
high speed floa.ting point coprocessor. It is configured in such a way that the 80286 processor 
performs all the I/O interfa.ce operations (user interface and sensor/manipulator interfa.ce) while 
the Ah4D29000 carries out the real-time computations of the control algorithm. The PC/AT has 
a pa.ralle1 interfa.ce to each PUMA Unimation controller, tlirougli which the desired joint torque 
values are directly written to the DACs (Digital-Analog Converters) and the encoder counts are 
read ba.ck to the PC/AT. 

The esperimenta.1 task is intentionally designed to be the sa.me as the one performed in the 
simulation. In the experiment, a soccer ball is used as the object to be manipulated. Since the 
planar motion is considered in the esperiment, only three links of the two PUMA 2.50s (links 2, 3, 
and 5) , r e  employed. See Appendix B for a detailed sketch of the experimental test-bed. While 
the 1nanipula.tors are performing the task of moving the ball ba.ck and forth, the readings from the 
joint encoders. the palm ta.ctile sensors, and the wrist force/torque sensor a.re recorded in real time. 

4Since there is one force component. e T 2 ~ l ,  in tile output equation, only one forceftorque sensor is needed to 
impleme~~t  t.11e c o ~ ~ t r o l  algoritl~m developed in Sect.ion 3. I11 practice, it is preferable to  equip both arms with force 
sensors. 



From these readings, the positioil and orientation of the object, the orientation of the palms, and 
the critical contact force are computed. 

The experiment results are plotted in Figures 11 through 13. Figure 11 shows the desired and 
actual position of the ball, plus the error trajectories. The system tracks the position trajectory 
reasonably well. The error in n., varies within *1.0 cm, and that  in yo within f 1.6 cm. 

Figure 12 sho~vs the orientatioll angles of the two palms. The dashed line is computed from 
the planning algorithm described in Section 4. It  is noted that  there is an initial error in the 
orientation angles. This is because the experiment starts from an initial configuration manually set 
by the operator, which is in generai different from the one calculated by the planning algorithm. 
Altl~ough the overall trend of the orientation is followed, large errors are exhibited in the trajectories 
of both c$l and q2. In spite of these large errors, the contact forces are kept with the friction cone. 
In fact, the experiment would fail if one of the contact forces fell outside the friction cone. 

Figure 13 shows the trajectories of the critical contact force, and the force angle and the friction 
angle for f l .  The force angle is defined as the angle made by fi with the horizontal. The desired 
value of the critical contact force is 12.0 Newtons. Unlike the smooth response obtained in the 
simulation, the actual trajectou of the critical contact force shown in Figure 13(a) exhibits sub- 
stantial variations alound the desired value. Since there is only one force/torque sensor available 
in the experiineilt (which is installed on robot I ) ,  the information about the contact force fi is not 
available. Figure 13(b) displays tlle force angle and the friction angle of fl. Note that  although the 
direction of the contact force (01 the force angle) varies from .5 to  20 degrees, the planned rolling 
motion keeps the friction angle within f 5 degrees. 

Theoretical analysis, con~puter simula.tion, and experimental implementation are the three principal 
methodologies colnillonly utilized in robotics. In this paper, control of rolling contacts in multi- 
a.rm manipula.tion is investigaked by employing all the three methodologies. In particular, the 
simulatioil and experiment results for the same manipulation task are reported. This provides a 
basis for comparison. In a.ddition to verifying the control and planning algorithms developed from 
theoretical analysis, we are able evaluate the usefulness of computer simulations. 

Comparing the figures depicting the simulation and experiment results, we have the following 
observa.tions. There is a, close match in the position trajectories between the simula.tion results 
(Figure 7)  and the experiment results (Figure 11). Compa,ring Figures 8 and 12, on one hand, the 
siillula,tion poorly predicts the behaviors of the pllysical system. On the other hand, the continuous 
lag displayed in Figure 8 is a c1ea.r indica.tion that ,  when implementing the same control and 
planning algorithms on the physical system, the errors and 42 are expected to be even larger, 
because of modeling pa,rameter errors and unmodeled dynamics. 

There are several reasons for the discrepancies between the simulation results and the exper- 
imental results. First the nonlinearity in the dynamics of the hardware (PUMA 250s) were not 
modeled. There is significa,nt f r i~ t~ ioa  and backlash in the transmission and the noise in the contact 
force mea.surernents is quite clear in Figure 13. While the backlash results in poor repeatability 
and a.ccura.cy this does not esplain all the errors in the position trajectories in Figure 11. The 
errors due to ba.ckla.sh were estima.ted to much less than 1 min and therefore are clearly mucli 
sma.ller t11a.n t,lle 10 lnm errors seen in the figure. It sl~ould be noted that  the object position 
and orientation shown in the figure are not directly measured. They are estimated from the joint 
encoder rea.dings n7zd the mea.surements of tlle contact location from the ta.ctile sensor. The sensor 
is very noisy and this lea,ds to  significant errors in the object position. Finally we speculate that  
the unmodeled structural dynamics ha.ve a. significant effect on the system response. The structural 
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Figure 11: The position trajectories of the object from the experiment: (a) a.ctual x,, (b) actual 
yo. ( c )  errors in  5 ,  a.nd yo. 
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Figure 12: The planned and actual orientatioll trajectories of the two arms from the experiment: 
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Figure 13: The trajectories of the critical coiltact force f,,, and the friction angles and force angle 
of fi fro111 the experiment. 



vibration modes coupled wit11 the friction and backla,sh nonlinearities make the PUMA 250 a poor 
experimental test-bed. In spite of this the experimental results are according to  predictions. The 
model-based control systeln is effective in controlling the contact forces and the trajectory and the 
frict,ion angle is successfully decrea.sed by the planner. 

6 Concluding Remarks 

We have presented the planning and co~ltrol for the coordination of multiple arms in manipulation 
tasks involving rolling contacts. The planner determines optimal contact point locations on the 
effector and the object for a given task. The control algorithm, which is based on nonlinear feedback 
that  decouples and linearizes the system, simultaneously controls the system trajectory (which 
includes the object trajectory as well as the trajectory of the contact points) and the constraint 
forces in order to  illaintain rolling contacts. )Ire note that  the force is controlled dynamically wit hill 
the systelll as opposed to  being statically compensated. A general matllematical formulati011 for 
the system dynamics is formulated. Our approach to  control and planning are illustrated using 
tlvo planar 3-R robot arills with a cylindrical object. Both simulation and experimental results are 
presented. 

\Vhile mucli of the paper was limited to  planar grasps with two point-contacts. we note that 
this is the first study of dual arm manipulation wit11 grasps with rolling contacts that require the 
condition of force closure to be dynamically maintained by the controller. Further the adaptation 
of the grasp via rolling to external loads and the changing trajectory is presented here for the first 
time. Finally, the general framework presented in this paper is well-suited to  pursuing multi-effector 
enveloping grasps. 

An obvious extension to this work is the control and planning of three-dimensional grasps with 
rolling contacts. The theoretical basis for. no~tholo~lomic systems can be found in [ I ,  39, 36, 51 
and seine of our work in this direction is reported in [40]. The extension to more coinplicated 
objects is not very difficult. The key is to  obtain analytical descriptions of the object surface in 
the neighborhood of each contact point. Extending this work to  multiple contacts poses challenges, 
especially when more than one contacts occur on tlre same effector. A preliminary investigation of 
the dynamics of such systems is reported in [49]. 
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A Derivation of the Error Bound in the Critical Contact Force 

Taking the projection of the tralislatiollal object motion equation (top two rows of Equation (6 ) )  
upon el2 yields 

(712,i:t - wf) .el2 = ( f l  + 1 2 )  el2 (36) 

where rt = [so yo] and wf is the first two elements of TV. This expression can be combined with 
Equation (20) such that  the f2 . el2 tern1 is eliminated. The resulting espressioli solved for fl . el2 
is given as: 

1 1 
fi - ~ 1 2  = frs 4- lj(~i?oj:l - ulf) - e121 + -(m,ij - u9f) elz (37) 

2 

This expression also serves as a plalilier for tlie desired f l  . €12 which is written as: 

d 1 1 d .-d d f: . e12 = jci + --l(ll(i;d - wf) . el21 + 2(morr - "i). (38) 

The error terms a,re defined as: 

d 
ecc = frc - f C C  

el = ( f f -  f d - e l z  
- ..d .. 

e,. - r t - r t  
d e ,  = (wf -20f ) . e l z  

and tlie modeled Inass a.s n,: = ~ i ? ,  + Ana, where A712, represe~lts any model discrepaalcies. The 
espression for the error in the critical contact force is then written a.s: 

By espanding 112: and gathering col~i~lloll terms, tlie above equation call be written as: 

1 1 ..d + r1712,?t . el:! - '?of . e121 - -Amor, . el2 
2 2 

By tamking the ilorill of bot,ll sides, a, bound is fouitd for the error in the critical contact force: 

Tllus, the error in the critical contact force is bounded by the sum of the object trajectory 
error, the error ill fi along clz, the disturbailce error, and the object modeling error. Note that  
Equation (38)  ~vhicll includes a non-differentiable fuilctioil is used in the planner. However, this 
fullctioll does not appear in the output equation or state equation of the system. 



B Robot Parameters 

This appendix presents the kiile~natic and dyllanlic parameters for two PUMA 250s which are used 
to implement the nonlinear feedback control law. Joint 2, 3, and 5 are made parallel as shown in 
Figure 14 while joint 1, 4, and G are locked. Thus, the PUMA 250 (with the three joints locked) 
forrn the three planar links of the 3-R manipulator in Figure 2, with the correspondi~~g axis marked 
3R AXIS 1, 2, or 3 in Figure 14. For convenience, the tliree links will be  nuinbered 1, 2, and 3. In 
the figure, 11, 12, and l3 denotes the corresponding link lengths. 

All the parameters are listed in Table 1. Although the two manipulators are identical, robot 1 
has a force/torque sensor installed at  the wrist while robot 2 does not. Thus two sets of parameter 
values are listed if they are different. Before the joint torques computed from the nonlinear feedback 
are sent to the Digital-to-Analog Converter (DAC), they are multiplied by the torque constants. 
The friction constants are the DAC values corresponding to  the Coulomb friction a t  the joints. All 
the paranleters listed in Table 1 are experimentally measured. 

Ta.ble 1: Para.met,ers for the three links of the PUMA 250s used in the experiment. 

Para.meters 

Linli 
Leilgt 11 

( 1 ;  
Link 
Mass 

Center 
of Ma.ss 

Link 
Inertia. 

Torque 
Collstallt 

Friction 
Const ant, 

Tact,ile 

Values 
Robot 1 / Robot 2 

203 
203 

93 / 63 
2.4 
1.1 

0.54 / 0.2 
30 
6 0 

54 / 12 
0.145 
0.052 

0.00727 / 0.00527 
103 / 138 
140 / 210 

-1G33 / -980 
-116 / -116 
-95 / -100 
-160 / -105 

5.093.10-5 / 5.145.10-~ 
-0.15317 / -0.15558 

Link Number 
1: 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

Sensor Gain 

Units 

mm 
ln nl 
inm 

I<g 
I< g 
I ig 
~ n m  
m ln 
1nm 

Kg-m2 
Kg-m2 
Kg-m2 

DAC/N-m 
DAC/N-m 
DAC/N-m 

DAC 
DAC 
D AC 

mm/DAC 
mill Ta.ctile Sensor Offset. 
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Figure 14: Sketch of experirne~~tal set-up. 


