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ABSTRACT

When multiple arms are used to manipulate a large object, it is beneficial and
sometimes necessary to maintain and control contacts between the object and the
effector (the contacting surface of an arm) through force closure. Rolling and/or
sliding can occur at these contacts, and the system is characterized by holonomic as
well as nonholonomic (including unilateral) constraints. In this paper, the control of
planar rolling contacts is investigated. Multi-arm manipulation systems are typically
redundant. In our approach, a minimal set of inputs is employed to control the
trajectory of the system while the surplus inputs control the contact condition. The
trajectory includes the gross motion of the object as well as the rolling motion at the
contacts. A nonlinear feedback scheme for simultaneous control of motion as well as
contact conditions is presented. A new algorithm which adapts a two-effector grasp
with rolling contacts to external loads and the trajectory is developed. Simulations
and experimental results are used to illustrate the salient features in control and
planning.



1 Introduction

There are numerous examples of manipulation tasks involving large (possibly, but not necessarily
heavy), awkwardly sized payloads such as cartons, crates and barrels that cannot be grasped by
one end-effector or hand. Instead of designing large end-effectors, which then require large robots
(which becomes impractical beyond a point), the logical solution is to employ multiple, relatively
small robots, in order to enhance the grasping capability. Further, it is attractive to allow palms,
forearms and other surfaces of robot limbs to contact the object as opposed to fingertip grasping
or dual arm manipulation with two end-effectors, in which contacts are restricted to the distal end
of the serial chain. Since we do not restrict the interaction between a robot and the object to be
limited to the end-effector, we use the term effector to refer to any link or surface on the robot
that contacts the object. Multi-effector grasps are potentially superior to finger-tip or end-effector
grasps because they allow the robot arms to envelop the object. Such enveloping grasps result in
superior stability and better robustness. Secondly, the grasped object can be quite large: it can be
comparable to the size of the manipulator.

In order for robots to cooperatively manipulate an object, coordinated dynamic control is very
important. When two or more robot arms contact the same object, one or more closed kinematic
chains are formed. This system is kinematically and dynamically constrained and, in general,
extremely nonlinear and coupled. The contact between the arm and the object may include surface
rolling and sliding, which introduces nonholonomic and unilateral constraints. Quite often these
systems have redundancy in actuation which must be addressed.

Dual arm manipulation [11, 22, 17, 27, 44, 54, 50}, multi-fingered grasping [4, 10, 14, 24, 51], and
legged locomotion [18, 30] have been studied extensively. A comprehensive account of research on
coordinated motion control of multiple robot arms or fingers has been presented in [17]. However,
the focus in most of these papers is on the control of mechanical systems with closed kinematic
chains. There has been very little emphasis on the modeling of the contact interactions and control
of the contact conditions. It is commonly assumed in many papers [12, 48, 35, 41, 43, 46, 47, 50]
that each robot grasps the object with an end-effector in such a way that conditions for form closure
are satisfied at each end-effector. In other words, the contact constraints are maintained regardless
of the forces and moments acting at the contact. Further, there is no relative motion between the
robot arm and the object. This is only a very special case of dual arm manipulation.

When the object is awkwardly shaped and its size is large compared to that of the effectors,
the effectors must exert appropriate contact forces to sustain the condition of force closure. In this
regard, the robots act as distributed effectors [37, 45]. Although the dynamic control problem for
holonomic systems has been studied, there has been much less emphasis on control of systems in
which the constraints are unilateral and nonholonomic. The kinematics of the constraints and the
implications on the control of such systems have been studied in literature on multi-fingered grasping
(14, 38] and multi-legged walking [21, 30], but dynamic control has not been discussed. Kinematic
models of sliding and rolling have been developed [2, 24, 28]. The control of nonholonomic systems
is investigated in [6, 7, 39]. Control of sliding has been studied in [3] with the assumption that pure
rolling never occurs. The problem of static indeterminacy (redundancy), and optimal solutions of
the problem of distribution of forces have been studied for multi-fingered gripers [14, 24, 8, 10, 24,

20, 51] and for legged locomotion systems [30, 16, 18, 21]. In most previous studies, the redundancy
in actuation is resolved through an ad hoc scheme such as a pseudo-inverse decomposition [38]. The
problem of controlling the interaction between manipulators at the contact has been largely ignored
in this body of theory.
In this paper, the planning and dynamic control of systems with unilateral constraints (including
frictional constraints) is addressed. The focus is on controlling rolling contacts in manipulation and



on planning optimal rolling motion in order to adapt a multi-effector grasp to external forces and
to the trajectory. Two planar 3-R manipulators and a two-effector grasp are used to study the
underlying problems and to demonstrate the basic ideas. The geometry is deliberately chosen to be
simple so that complexity of the nonlinear rigid body dynamics does not obscure the key research
issues: control of rolling contact conditions and planning of adaptive rolling motion. The example
does not over simplify the problem: the system is governed by kinematic and dynamic constraints
due to the closed chain structure, the unilateral constraints at the contacts are preserved, and
actuator forces (torques) are underdetermined due to redundancy in actuation.

The mathematical modeling of three-dimensional, multi-effector, enveloping grasps is presented
in Section 2. This includes the kinematics and the dynamic equations of motion. The exact form
of the equations are presented for the two-effector planar grasp. The control of unilateral systems
is discussed in Section 3. The simultaneous force and motion control problem is formulated and
the nonlinear feedback for the system is derived. The planning of the rolling motion and the choice
of force set-points is discussed in Section 4. Results from a computer simulation of two planar 3-R
manipulators and experimental results on two cooperating PUMA 250 manipulators are presented
in Section 5. Finally, a summary of the work and plans for future work are discussed in Section 6.

2 Modeling and Problem Formulation

2.1 Notation

We consider ! contacts with the object at the points Py through P;. Oy (position vector ro ) is
the point fixed to the object such that it is instantaneously at P, while E} (position vector 7g x) is
the point on the effector, instantaneously coincident with P; as shown in Figure 1. The positions
of these three points are the same, but in general, their velocities (and accelerations) are different.
ro is the position of the origin of the object-fixed reference frame which is located at the center of
mass, C'. In this paper the components of a vector, unless otherwise specified, will be expressed in

a global. fixed reference frame.
A robot has n links with a coordinate system attached to each of its links. The origin of the

coordinate system for link j on robot 7 is at A;;. The corresponding position vector is 7;; (which
is an abbreviation for r4 ;;). Unless otherwise specified and whenever the context is appropriate, a
subscript ¢j refers to the point A;; and the subscript ij, £ refers to the point Py on the jth link on

the ¢th robot. The subscript O (E) refers to the object (effector).
We use po to denote a 6 X 1 vector which describes the position and orientation of the object.

Clearly po is a function of six coordinates:
po = po(z0,Y0,20,00,%0,%0)

where (20,90, 20 ) are the coordinates of the reference point C in the fixed frame (or the components
of the vector rp), and (6o, ¢0,10) are the Euler angles that describe the orientation of the object.

We prefer the vector representation:
To
po =

where pp is a 3 x 1 vector of quasi-coordinates' that describe the orientation of the object. The
quasi-coordinates are defined so that the angular velocity of the object, wp, is given by:

wo = flo

!See [34)] for the definition of quasi-coordinates.
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Figure 1: Illustration of notations.

In the planar case, up is a single element, the angular orientation of the object in the plane.
Similarly, p;, is a 6-dimensional vector which describes the position and orientation of link j of

robot 2:
B
P [ i ]

where the angular velocity of link j of robot 7, w;;, is equal to fi;;, and p;; is the vector of three
quasi-coordinates.

vo and v;; are the linear velocities of point C' on the object and the point A;; on link j of robot
i respectively. Thus the 6-dimensional velocity vectors can be defined as:

. _ | Yo .| Uy
]JO—[wO:l ng—[wij]

The joint variables for robot ¢ are denoted by 6; = [6; ...Gin]T. The Jacobian matrix that relates
the velocities of the jth link on the ith robot to its joint velocities is given by J;;. Thus,

Py = pi(80); Py = Jijbs Bi; = Jibi + Jijbs. (1)

Note that if the jth link is not the most distal link, the columns in the matrix J;; with indices
greater than j will be zero.

The 6 x 1 velocity vector for link 5 of robot ¢ can be referred to the contact point ( P;) instead
of the point A;,. The vector referred to P, consists of the angular velocity of the link and the linear
velocity of the point Py on the link. and is given by

I xpij



where
r\ — I3 _RE,k

E,k 03 13 k]
I3 and 03 are the 3 x 3 identity and zero matrices, and Rg  is the skew-symmetric matrix corre-

sponding to the vector pgr = rgr — 735

0 ~PEk: PEky
Rer=| pPEk: 0 —PE kz
—PEky PE k.x 0

Similarly, I'ox transforms the 6 x 1 vector of object velocities so that it can be referred to the

contact point, Py:

Toxpo
where
- I —Rox
O,k 03 I3 y

Ro . is the skew-symmetric matrix corresponding to the vector pox = rox — ro. We also define

the matrix I'y:
Ty = Fg}kfo,k

Then, the velocities of the effector and that of the object are related by

Vijrel } (2)

&Wijrel

Teipi; = Toxpo — [

where w;; s = wo — w;j is the relative angular velocity between the contacting bodies and v;; ¢/
is the relative velocity at the point of contact on link j (robot i). A systematic approach to the
derivation of these equations can be found in [28, 2]. Since we are considering rolling contacts only,

vi;rel 1S equal to zero.
The acceleration equations can be obtained from differentiating Equation (2). They can be

written in the form:
piy = TgiToxbo + gi = Tkpo + gi (3)

where ¢; is a nonlinear function? of the relative velocities between the two contacting bodies and

the local geometry (up to third order) of each contacting body.
The contact force, fi, and moment, m; about the contact point (Py) exerted by the effector on

the object are denoted by the 6-dimensional vector Fpy
Fpo= |
Pk [ M

If the kth contact occurs on the jth link of the ith robot, it is convenient to refer the contact force
and moment vector to the point A;,, denoted by F;; ;. The vector F;; i consists of the contact forces
at the kth contact and the moments about the origin A;;, and is related to Fp by a transformation:

T
Fij,k = FE,kFP‘k (4)
Similarly, Fg . transforms Fpy into a vector of contact forces and moments about the reference

point (.
T
For =101 FpPi

2The exact form of these equations is given in Reference [2].



2.2 Dynamic equations of motion

The equations of motion for each n degree of freedom manipulator can be written in the joint space
in the form

Db+ b+ > JITE Fri =i (5)

where D; is the n x n inertia matrix in the joint space, b; is a vector of nonlinear functions of the
velocity and position, and 7; is the vector of joint torques. Note that the summation of JgFg,ka’k
includes all values of k& which corresponds to contacts on the ith arm and only those j (link j of
robot ¢) for which there exists a contact.

The equations of motion for the object with [ contacts can be written as:

z
Dojo +bo = Y _ThiFpr+W (6)
k=1

Do is the 6 x 6 inertia matrix of the object given by

| molz 03
DO‘[ 03 Mo}

where mg 1s the mass and Mo is the inertia tensor (along principal axes about the center of mass
(') of the object. 1 is the vector of external forces and moments acting on the object and bp is a
6-dimensional vector of nonlinear velocity dependent terms:

b = 0
o= wo X ]MOWO

The mobility for a holonomic system is the minimum number of independent generalized coor-
dinates required to describe the configuration of the system. If the mobility is m, the task space
(or the operational space [15]) is described by an m-dimensional vector of generalized coordinates,
(. Equations (5-6) can be rewritten as m equations of motion in the task space of the form:

¢ = f(¢, Q) +9(O)r (7)
Further. if A is the vector of contact forces in the system, it can be written in the form:
A=[Fpx Fpy - Fpit =a(¢.{)+ ()T (8)

This is illustrated with the help of a planar example next.

2.3 Example with two planar 3-R manipulators

Consider two 3-R (three revolute joints) manipulators each making one contact with the manip-
ulated object (! = 2) on the 37d link as shown in Figure 2. The most distal link on each arm is
shaped so that it has a palmar surface at the end. Since there is only one contact on each arm
(t = k) and since contact occurs only on the most distal link (j is fixed at 3), we simplify the
notation. Denote p;3 by p;, Jiz by J;, and the contact force Fp; by F;. Note that

0; = [6;1 b2 9i3]T = T Tl
—PO,1,y —PE1y

1 0 1 0
Foi=101 poiax Frea=101 pgis
0 0 1 0 0 1

ot



Figure 2: Two robot arms manipulating an object.

If rolling contact is maintained the mobility of the system is 5. Therefore { may be chosen to
consist of 3-dimensional po and two other independent position variables. Since the objective is to
control the rolling contact, we choose two contact configuration variables [52]. The point of contact
on the ith palm is described by the contact coordinate d; which is the arc-length along the palm as
shown in Figure 2. Thus the task space can be defined by po, di and d;. However, in general, it is
difficult to derive closed form expressions for d; in terms of the joint angles. Therefore we choose
the orientation of the two palmar surfaces, ¢; and ¢, respectively, as the two other generalized
coordinates:

¢1 =011+ 012+ 613 Gg = 021 + 022 + 023

Thus, the task space variable ( is:

T
CI[PCT) 1 @'2] =[zo vo ¢0 & @)

The dynamic equations of motion for the manipulators in the joint space are given in Equation
(5). The motion equations of the ith manipulator (i = 1,2) in the task space can be derived [42]
by eliminating 8; from Equation (1) and Equation (5) and simplifying:

Hipi + hi + T Fy = J7 T (9)
where
H,=J7TDJ!
and
hi = =J7TD;J7 Ji8; + I o,

Now since we want to express all equations in the task space ({), we substitute Equation (3) into
Equation (9) to get

HiTipo + (Higi + hi) + T Fi = J7 T, (10)

1

From Equations (6) and (10), we obtain

Higi + s

o =UAr+ UW — T
ho Hag2 + h2

] ~ U o (11)



where
U= Do+ ITH T, +TTH,T,, r=[rl 7 r=[f7 rif,

and
A=rTyT i

Note that U is the task space inertia of the complete system.
The contact forces and moments can easily be calculated. For example, the expression for F;

is obtained by substituting Equation (11) into Equation (10):

Fi = a1(¢,{) + bi(()r (12)

where

a(¢.{) = (1) [HIFIU*FT { F } — HyI3U™YW + HyT3U b0 — Hagy - hl}
2

bi(¢) = (TE )™ [ o T T+ 07T - U5
Since o@; is a function of #,, expressions for @1 and ¢, can be derived quite easily. First, the
joint accelerations are given by Equation (5):

6; = Di_l (T,j —b; — J%ngFi) (13)

Sillce . . .. '
@i = 0 + 62 + 053,

from Equation (13) we get:

b=y (D7t [ri - b - JETEF]) (14)
=1

To get $1, we can substitute Equation (12) into Equation (14). Similarly, by deriving an expression
for F, we can get ¢, from Equation (14). Thus we see that the expressions of the second derivatives
of the task space variables are of the form shown in Equation (7). Fj in Equation (12) is an example

of a contact force. The expression is of the form shown in Equation (8).
We note that if the object, for example, is cylindrical with radius R, the contact coordinates d;

and dy can be related to the generalized coordinates on the task space variables (:
d; = R(do — &i)

This can be integrated to get
di = R(¢o — ¢i) + ¢

where ¢; is a constant that depends on the initial values of d;, ¢o, and ¢;.

-1




Figure 3: Two-point contact.

2.4 Rolling contact constraints

If we adopt the point-contact model [38], the contact interaction can be modeled by a pure force
through the contact point. Therefore, the moments (my) in the 6-dimensional vector, Fpy, are
equal to zero, and the contact interaction can be modeled by a pure force vector, f;. In the planar
example considered in Figure 2, f; lies in the plane.

There are two types of constraint conditions that must be satisfied for rolling. Firstly, the
component of force along the inward pointing normal must be nonnegative to maintain contact. If
n; is the inward pointing normal for the object at the contact point P; as shown in Figure 3, we

have the condition:
fi-ni>0 (15)

Secondly, the tangential and normal components must be such that the required rolling contact

condition is satisfied. If we assume the validity of Coulomb’s model of friction, the following

equation must be true:
\fi = (fi-mi)nil Spfiomi (16)

where g is the coefficient of friction at the contact.

For two point-contacts, Equation (16) can be satisfied for arbitrary loads and trajectories only
if the contact normals, n; and n,, and the unit vector along the line joining P; to Ps, e;2, satisfy

the inequalities:
cos ey - ny)<tan"lu; cosT(—epy- ng) < tan"lp (17)

These are necessary and sufficient conditions for being able to maintain force closure in two-point
contact grasps [14, 29] regardless of external disturbances. A discussion for more complicated
geometries can be found in {18, 29, 38]. If the strict inequality holds in Equation (16), the tangential
velocities at the two contact points are identical. If the equality condition holds, the contact is
rolling if the relative velocity is zero (v;,¢; = 0), otherwise the contact slips.

3 Controller Design

The objective of the controller is to control the trajectory of the object, and the contact conditions.
Since we consider rolling contact, the goal is to maintain rolling, that is, to avoid sliding and
separation at each contact point. This implies that the forces must be actively controlled so that
they satisfv the inequalities (15) and (16). First we discuss how this can be accomplished, and then
develop an algorithm for simultaneously controlling motion and and contact conditions.



3.1 Critical contact force

Fach link making contact with the object can only push and cannot pull the object. Additionally,
the pushing force must be within the {riction cone. It must be built into the controller to avoid
separation and slipping at the contact points. In another words, inequalities (15) and (16) must
be enforced. This necessitates the control of contact forces f;. However, we may not have enough
actuator inputs to control every contact force as well as the motion trajectory variables. For a
system of mobility m with r actuators, it is possible to control r — m components of contact forces
and moments and m position variables. For the two planar 3-R manipulators discussed in the
preceding section, the system has six actuators and the mobility is five. In addition to controlling
five position variables (zp,y0,®0,®1,%2), we can control one force variable. This force variable
and its desired value must be chosen to ensure that the inequality constraints are satisfied, and
thus the rolling conditions are maintained.

In the previous work, this was accomplished by specifying the internal forces [38, 24] or the
interaction force [19]. For planar, two-point contacts as in Figure 2, the finger forces can be
decomposed into manipulation forces, f;,, and internal forces, f; .

f'i = fi,m + fi,n

The internal forces are equal and opposite forces along ej2. Thus,

(fi— f2)-e12 (18)

N3 o

fin=ton =3I =

f1 is called the interaction force [19]. The manipulation forces are computed from the description of
the trajectory and external forces/moments. They resist the external forces and produce the desired
accelerations. Further, they are required to be such that the norm of the vector | flT m f2T m]T is
minimum. As shown in Reference [19], ( fim — f2,m) €12 = 0. From the task description, a suitable
value for f; is computed. The desired trajectory, external forces and the desired interaction force,
f1, specify the force set-points.

In the present approach, the desired interaction force is calculated from the limits on the contact
forces — for example, the minimum normal component so that Equation (15) is satisfied with some
factor of safety. We adopt a different strategy. We directly control the force component that is
closest to its limit. Instead of controlling the interaction force, we control the critical contact force,
fee, which is defined as:

fee = min{eqz - f1,—€12 - fo} (19)

By specifying the critical contact force, we specify the minimum contact force along e;3. The
larger this component, the greater the interaction force (and the internal forces). The advantage in
controlling the critical contact force is that we explicitly control each individual force component,
fi-e12 and f; - ey9, instead of controlling the difference.

Equation (19) can also be written in the following form

e12-fi—ez-fo—|ex- fi+ea- faol

fcc = 2

(20)
Since this equation is not differentiable due to the presence of absolute value, including f.. in the
output equation will make the controller design difficult. In order to circumvent this problem, we
include ey2 - f; in the output equation. In Appendix A, we show that by controlling eq; - fi, the
error in fe.. is bounded.



3.2 Simultaneous control of trajectory and contact conditions

In order to perform the task of manipulating the object by multiple arms, the controller must
regulate the position and orientation of the object, and the contact conditions. The control of the
contact conditions necessities the control of certain forces, e.g., the critical contact force for the two
3-R manipulators discussed in the previous subsection. In this subsection, we present a method for

simultaneous control of motion trajectory and forces.
In earlier papers [53, 33, 31], we have demonstrated the advantage of dynamic state feedback.

We have rigorously shown that an integral feedback is needed to stabilize force control systems.
Applying differential geometrical control theory [13], we have also been able to find a nonlinear
dynamic state feedback which ezactly linearizes and completely decouples the position control loop
and force control loop. This allows us to design each subsystem by using linear system theory.

The dynamic state feedback is realized by including the joint torques 7 as part of the state
variable, or equivalently, by introducing an integrator on each input channel:

r=a; 2 aslT=[¢ ¢ 7T

Now, Equation (7) can be rewritten in the state space

.'L-'l T2 0
T = | i | =] fle,e2)tgle)zs |+ 0 Ju
T3 0 I
= &)+ n(z)u (21)
while the output equations have the form
“ (22)

y = 1| _
Ty | | BT (a(zr,z2) + b(2y)23)

where y; is an m x 1 function of position and y, an (m — r) x 1 function of constraint forces. E(z;)
is a projection matrix that depends on the choice of y;. For example, in the planar system in

Figure 2, the outputs are given by

U ) _ T _ Ty )
- [ Y2 } - [ efy Fy ] - [ el la(z1,22) + b(z1 )23 } (23)

In [53] we propose a nonlinear feedback which linearizes and decouples the nonlinear system
represented by Equations (21) and (22). The feedback has the form:

u=alz)+ p(z) (24)

where a(2) and 3(z) are to be constructed based on the system model. Using differential geometric
design techniques [13] for nonlinear systems, a(z) and B(z) can be found by solving the following

matrix equations [53]

. . L?yl
@(@ja(a) =~ | [ e =1 (25)
where ®(x) is the decoupling matrix of the system which is given by
L,Liy
d(z) = K
(=) [ Loy,

10
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Figure 4: Schematic of the Nonlinear feedback control algorithm.

Here L¢y; is the Lie derivative of y; along the vector field &:

dy;
Lewe= 5,6

In the case of two 3-R manipulators, u. a and v are 6-dimensional vectors, and 3 and ® are 6 X 6
matrices.

Application of the above feedback linearizes the system in a transformed state space z. The
new state variable z, and 2 are related by [13}:

z={n oz oz oz = Lewm Liyi ) (26)
The linearized system is characterized by
3 071 00 2 0 0
I B R @
3y 0 000 24 0 I
and the output equation is given by
21
BEHERIE
24

We note that position control subsystem is third order while the force control subsystem is first
order. A schematic of the control algorithmn is shown in Figure 4. The system shown within the
dotted line is linear and decoupled.

A linear feedback can be further designed to place the poles of the system at appropriate
locations to achieve the desired performance requirements.

4 Planning Rolling Contact Motion

In this section, we consider the planning of the rolling motion at each contact. The discussion
is restricted to planar geometries with two point-contacts. We assume that the trajectory of the

11



manipulated object is specified. However, the trajectory of the system is not completely specified.
For example, if we consider the geometry shown in Figure 2, we assume that the trajectory of the
object, po(t) is specified. However, the rolling motion dy(t) and d(¢) (and therefore, ¢;(t) and
¢2(1)) is not specified. Note that this is different from traditional path planning or motion planning
(see for example References [26, 25, 9, 23]) in which the goal is to find a feasible or optimal path
between two given positions. Here the trajectory is provided to us. Since this does not uniquely
specify the motion of the system. there is an opportunity to plan an appropriate rolling motion
that will adapt the grasp to the external forces and the trajectory.

Since the contacts may change (due to the rolling motion) during the task, it is meaningful to
plan the trajectory of the contact points in order to maximize, or keep a preferred stability index
within reasonable limits. On the other hand, it is also beneficial to locate the contacts so that the
actuator forces for a given load and object trajectory are minimal.

The simple two-dimensional example with a circular object in Figure 5 illustrates this. Let f.
(m,) be the resultant force (moment about the center of mass) on the object that is required to
oppose the external forces (including the gravitational force) and the inertial forces. The inertial
forces can be obtained from the trajectory and the inertial properties of the object. Thus we have
the equations:

f?‘ = f1+f'2 (29)
m, = po1X fitpozXf 30

where f; and f, are forces applied to the object by the two palms respectively.

Suppose the dominant force is the weight (pointing down) so that, in Equations (29) and (30),
fr = =W and m, = 0. In Figure 5(a), the two palms face each other and n; and n, are colinear
but in opposite directions. Clearly, the inequalities in Equation 17 are satisfied. If the contact
forces are not limited. by pushing sufficiently hard, the exerted forces f; and f; can always be kept
within the friction cone while opposing the weight W. This configuration is robust to small changes
in W: the critical contact force can be increased to satisfy the friction cone constraints. However,
the object may not be able to withstand a large contact force and/or the large forces f; and f
required may be beyond the torque limits of the manipulators.

The other extreme case occurs when the two contact points coincide (see Figure 5(b)). ny
and n, are again colinear but now, they have the same direction. The inequalities in Equation 17
are violated. Although the external force W can be resisted most efficiently (with the smallest
actuator forces) in this configuration, changes in the direction of W (perhaps caused by external
disturbances) cannot he compensated by f; and f,.

The grasp in Figure 5(a) results in large contact forces but a more robust grasp because the
vector ey is “centered in each friction cone”. On the other hand, the grasp in Figure 5(b) requires
relatively smaller contact forces but the grasp is quite sensitive to external disturbances because
€12 is outside both friction cones>.

Thus. if the weight is the only external force, it is meaningful to roll from the configuration in
Figure 5(a) to the one that is close to Figure 5(b). On the other hand, if disturbing forces (say
in the horizontal direction) are expected, the configuration in Figure 5(a) is better. In general,
there is a trade-off between these two conflicting requirements of lower actuator forces (superior
mechanical advantage) and robustness (greater resistance to slippage).

We now develop an algorithm which plans the motion on the contact surface so that the force
applied to the object by each palm is centered within the contact friction cone, thereby decreasing

S Actually. €12 cannot be defined in the limiting case shown in Figure 5(b) but if we examine the case in which

the two contact points are close to one another but not coincident, then it is obvious that e;» is outside the friction
cones,

12



(a) (b)

Figure 5: Palm contact locations.

the possibility of violating the constraint in Equation (16). This planner will then function as an
input to the control system when a specified task is to be performed. For the sake of simplicity,
we consider flat effectors (palms) and a convex, smooth object. The basic idea is to specify the
relative importance of better robustness versus low actuator forces (higher mechanical advantage)
by specifving the critical contact force. As shown below, this also determines the optimal location
of the contact points.

Consider the general case where ny and ny are not colinear as shown in Figure 3 and f, and m,
are quite general. Let the contact point on the object, P;, have the arc-length coordinate (or the
contact coordinate) s;. It is clear that the normals and the vector €15 are functions of the contact
points:

ni = ni(s;); €12 = €12(81,52)

In order to minimize the tendency to slip it is necessary to minimize the maximum frictional angle.
This is accomplished when the two friction angles are equal, and further, made equal to zero. In
other words, f; should be along the normal n;. The equilibrium equations for the object (Equations
(29) and (30)) are:

[l f1llna(s1) + [ falln2(s2) = fo (31)
po.1(s1) X || fi]lni(s1) + po,2(s2) X || fal|n2(s2) = m. (32)

As before, f. and m, include not only external forces and moments acting on the object but also
the inertial forces and moments. Let the desired (specified) critical contact force be f%. Without
loss of generality, designate the critical contact point to be P;. Now we have the requirements

fi-eralsi,s2) = fL (33)
J2 - enals1,82) > fL (34)

Thus, for a given load (f, and m,), the ideal set of contact points and contact forces should be
such that Equations (31), (32), (33), and (34) should be satisfied. This reduces to solving the
four equations for s;.s9, fi, and f;. Although these are nonlinear equations, a solution should, in
general, be possible.

However, such a solution cannot be found for the special case of cylindrical objects, unless
m, = 0. If m, = 0, because Equation (32) is automatically satisfied for any s; and s,, there are
infinite solutions to this problem. If we further assign the two arms to share the load equally we
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Figure 6: Manipulation with rolling contacts.

obtain a unique solution. In order for the friction angle to be equal, the two contact force vectors
must form the same angle with f, as shown in Figure 6. The components of f; and f, along f,
will be one half the magnitude of f, (equal load-sharing) while the projections along €;, are equal
to the desired critical contact force, f2.

Figure 6 shows a sequence of two arms moving along a trajectory from z; to zy. At z; (Fig-
ure 6(a)) the arms merely hold the object and support its weight. As the object is moved from
2; (Figure 6(b)), the inertial forces change the direction of f,. The contact points are moved via
a rolling motion to the optimal locations shown in the figure. In the final segment of the trajec-
tory (close to x7), the two palms decelerate the object (Figure 6(c)). Once again the contacts are
adapted to the trajectory and the changing forces.

This section described the basic philosophy behind the planning motion to adapt the grasp
configuration to the changing trajectory and external load. Although the basic ideas are applicable
to more complicated geometries as well, the nonlinear equations in Equations (31,32,33) are difficult
to solve analytically. Computer simulation and experimental results on such a strategy are described
in the next section.

5 Simulations and Experiments

Both computer simulations and physical experiments have been performed to verify the control
and planning algorithms developed in the preceding sections. The manipulation task chosen in the
simulation and experiment is to move a circular object (a soccer ball in the experiment) horizontally
in an oscillation over a distance of 0.4 meters with a specified period T,,. The desired trajectory
in the horizontal a-direction is a sinusoid given by

25(1) = 20.init + 0.2 [sin (;—ﬂz = %) + 1.0] (35)

m
where 2 ;ni; is the desired initial value of . The desired trajectories yg(t) and q‘)do(t) are constant
over time. The planned values for ¢; and ¢, are calculated by the planning algorithm as described
in Section 4. The desired value for the critical contact force f% is also chosen to be a constant.
The linear feedback in Figure 4 is chosen so that the third order position control subsystem has all
the three poles at at s = —10 and the first order force control subsystem has its pole at s = —10.
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5.1 Simulation results

The simulation is conducted by using kinematic and dynamic models of PUMA 250s. This is the
same model on which the feedback control algorithm used in the experiment is based. A global
coordinate system is chosen at the base of robot 1. All the position and orientation parameters
described below are relative to the global coordinates. The bases of the two robots are separated
by a distance equal to 0.4 meters. The key kinematic and dynamic parameters are included in
Appendix B.

The simulation results are shown in Figures 7 through 9. The position trajectories of the object
are shown in Figure 7. The desired trajectory of z¢ is given by (35) with 20 ijnie = 0.0 and T\, = 4.0
seconds while the desired value of yp is 0.3. Figures 7(a) and 7(b) illustrate the actual trajectories
of zp and yp while Figure 7(c) displays the errors in zp and yp. It is seen that the errors vanishes
within one second. The maximum error in 2o is about 1.8 mm and that in yo is about 4.3 mm.

The trajectories for the orientation, ¢; and ¢, of the two palms are illustrated in Figure 8. The
planned values for ¢; and ¢,, shown by dashed line, are computed using the planning algorithm
discussed in Section 4 (and are therefore called “planned” values rather than “desired” values).
The goal of orienting the palms is to adapt the contact configuration as to keep the contact forces
within the friction cone. The actual trajectories of ¢; and ¢, are shown in solid line. It is clear
that, while both arms consistently follow the planned trajectories, there is a constant lag in the
response. Since the position control subsystems are of third order (Equations (27) and (28)), the
controller requires the desired values of the position output variables as well as their desired first
and second order derivatives. The derivatives of the desired trajectory (:i‘do, yé, qZ)d , fédo, j]é, é‘é)
are easily calculated. Thus, z¢p and yo perfectly track the desired trajectories after the initial
transient. However, the derivatives of ¢; and ¢, are not calculated by the planning algorithm.
This is because the planned rolling motion depends on the inertial and external forces. The inertial
forces are functions #o, jo, 00, ¢; and <,.7';2, and the velocities. If the planned motion ¢;(t) and ¢o(?)
is to depend on the inertial forces and moments, we have a paradoxical situation in which ¢;(¢) and
#2(t) depend on ¢, and ¢,. To avoid this, the planned rolling motion, qﬁ‘f(t) and q‘)‘%(t), depends on
the external forces and on the inertial forces estimated from #$(t), §(¢) and q.édo(t). The planning
algorithm is “suboptimal” in this sense. However, changes in inertial forces and moments due to
variations in the orientations of the palm or changes in contact locations can be expected to be
relatively small. The implication of this approach is that the feedforward compensation, that is,
the first and second order derivatives of ¢¢(t) and #%(t), is not provided in the controller. This
causes the lag in the response of ¢, and ¢,.

Figure 9 depicts the trajectories of the critical contact force f.. and the friction angle of the two
contact forces f; and f,. The desired value of f.. is 10.0 Newtons. The actual trajectory of f.. in
the simulation exhibits the response that is typical of a first order system, as shown in Figure 9(a).
The friction angle of the contact force f; is the angle between the outward normal of palm i and
the direction of f;. The goal of controlling the rolling motion is to keep the friction angles close to
zero, that is, keep the contact force f; close to the center of the friction cone. It is shown in Figure
9(b) that the friction angles are effectively brought to zero within one second. The initial peak
value displayed in Figure 9(b) results from the uncompensated object gravity force at the instant
when the simulation is started.

5.2 Experimental results

The control and planning algorithms developed in the previous sections have also been imple-
mented on an experimental system called TRACS (Two Robotic Arm Coordination System) in the
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GRASP Laboratory, University of Pennsylvania. The TRACS is exclusively developed for verifying
and testing dynamic control algorithms for one arm or two cooperative arms [32]. The hardware
architecture of the system is depicted in Figure 10. It consists of two PUMA 250 manipulators.
Each manipulator has a flat-surface palm which is instrumented with an Interlink linear tactile
sensor. Omne of the manipulators is equipped with a Zebra six-dimensional force/torque sensor.
The system uses a 80286-based IBM PC/AT as the host computer which is aided by an AMD29000
high speed floating point coprocessor. It is configured in such a way that the 80286 processor
performs all the I/O interface operations (user interface and sensor/manipulator interface) while
the AMD29000 carries out the real-time computations of the control algorithm. The PC/AT has
a parallel interface to each PUMA Unimation controller, through which the desired joint torque
values are directly written to the DACs (Digital-Analog Converters) and the encoder counts are
read back to the PC/AT.

The experimental task is intentionally designed to be the same as the one performed in the
simulation. In the experiment, a soccer ball is used as the object to be manipulated. Since the
planar motion is considered in the experiment, only three links of the two PUMA 250s (links 2, 3,
and 5) are emploved. See Appendix B for a detailed sketch of the experimental test-bed. While
the manipulators are performing the task of moving the ball back and forth, the readings from the
joint encoders, the palm tactile sensors, and the wrist force/torque sensor are recorded in real time.

“Since there is one force component, el, Fy, in the output equation, only one force/torque sensor is needed to

implement the control algorithm developed in Section 3. In practice, it is preferable to equip both arms with force
sensors.



From these readings, the position and orientation of the object, the orientation of the palms, and
the critical contact force are computed.

The experiment results are plotted in Figures 11 through 13. Figure 11 shows the desired and
actual position of the ball, plus the error trajectories. The system tracks the position trajectory
reasonably well. The error in z, varies within 1.0 cm, and that in y, within £1.6 cm.

Figure 12 shows the orientation angles of the two palms. The dashed line is computed from
the planning algorithm described in Section 4. It is noted that there is an initial error in the
orientation angles. This is because the experiment starts from an initial configuration manually set
by the operator, which is in general different from the one calculated by the planning algorithm.
Although the overall trend of the orientation is followed, large errors are exhibited in the trajectories
of both ¢ and ¢,. In spite of these large errors, the contact forces are kept with the friction cone.
In fact, the experiment would fail if one of the contact forces fell outside the friction cone.

Figure 13 shows the trajectories of the critical contact force, and the force angle and the friction
angle for f;. The force angle is defined as the angle made by f; with the horizontal. The desired
value of the critical contact force is 12.0 Newtons. Unlike the smooth response obtained in the
simulation. the actual trajectory of the critical contact force shown in Figure 13(a) exhibits sub-
stantial variations around the desired value. Since there is only one force/torque sensor available
in the experiment (which is installed on robot 1), the information about the contact force f; is not

available. Figure 13(b) displays the force angle and the friction angle of fi. Note that although the
direction of the contact force (or the force angle) varies from 5 to 20 degrees, the planned rolling

motion keeps the friction angle within £5 degrees.

5.3 Discussions

Theoretical analysis, computer simulation, and experimental implementation are the three principal
methodologies commonly utilized in robotics. In this paper, control of rolling contacts in multi-
arm manipulation is investigated by employing all the three methodologies. In particular, the
simulation and experiment results for the same manipulation task are reported. This provides a
basis for comparison. In addition to verifying the control and planning algorithms developed from
theoretical analysis, we are able evaluate the usefulness of computer simulations.

Comparing the figures depicting the simulation and experiment results, we have the following
observations. There is a close match in the position trajectories between the simulation results
(Figure 7) and the experiment results (Figure 11). Comparing Figures 8 and 12, on one hand, the
simulation poorly predicts the behaviors of the physical system. On the other hand, the continuous
lag displayed in Figure 8 is a clear indication that, when implementing the same control and
planning algorithms on the physical system, the errors ¢; and ¢, are expected to be even larger,
because of modeling parameter errors and unmodeled dynamics.

There are several reasons for the discrepancies between the simulation results and the exper-
imental results. First the nonlinearity in the dynamics of the hardware (PUMA 250s) were not
modeled. There is significant friction and backlash in the transmission and the noise in the contact
force measurements is quite clear in Figure 13. While the backlash results in poor repeatability
and accuracy this does not explain all the errors in the position trajectories in Figure 11. The
errors due to backlash were estimated to much less than 1 mm and therefore are clearly much
smaller than the 10 mm errors seen in the figure. It should be noted that the object position

and orientation shown in the figure are not directly measured. They are estimated from the joint
encoder readings and the measurements of the contact location from the tactile sensor. The sensor
is very noisy and this leads to significant errors in the object position. Finally we speculate that
the unmodeled structural dynamics have a significant effect on the system response. The structural
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vibration modes coupled with the friction and backlash nonlinearities make the PUMA 250 a poor
experimental test-bed. In spite of this the experimental results are according to predictions. The
model-based control system is effective in controlling the contact forces and the trajectory and the
friction angle is successfully decreased by the planner.

6 Concluding Remarks

We have presented the planning and control for the coordination of multiple arms in manipulation
tasks involving rolling contacts. The planner determines optimal contact point locations on the
effector and the object for a given task. The control algorithm, which is based on nonlinear feedback
that decouples and linearizes the system, simultaneously controls the system trajectory (which
includes the object trajectory as well as the trajectory of the contact points) and the constraint
forces in order to maintain rolling contacts. We note that the force is controlled dynamically within
the system as opposed to being statically compensated. A general mathematical formulation for
the system dynamics is formulated. Our approach to control and planning are illustrated using
two planar 3-R robot arms with a cylindrical object. Both simulation and experimental results are
presented.

While much of the paper was limited to planar grasps with two point-contacts, we note that
this is the first study of dual arm manipulation with grasps with rolling contacts that require the
condition of force closure to be dynamically maintained by the controller. Further the adaptation
of the grasp via rolling to external loads and the changing trajectory is presented here for the first
time. Finally, the general framework presented in this paper is well-suited to pursuing multi-effector
enveloping grasps.

An obvious extension to this work is the control and planning of three-dimensional grasps with
rolling contacts. The theoretical basis for nonholonomic systems can be found in [1, 39, 36, 5]
and some of our work in this direction is reported in [40]. The extension to more complicated
objects is not very difficult. The key is to obtain analytical descriptions of the object surface in
the neighborhood of each contact point. Extending this work to multiple contacts poses challenges,
especially when more than one contacts occur on the same effector. A preliminary investigation of
the dynamics of such systems is reported in [49].
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A Derivation of the Error Bound in the Critical Contact Force

Taking the projection of the translational object motion equation (top two rows of Equation (6))
upon €32 yields
(moiy —wy)-erz = (fr+ f2) - ex2 (36)

where 7, = [20 yo] and wy is the first two elements of W. This expression can be combined with
Equation (20) such that the f; - €32 term is eliminated. The resulting expression solved for f; - e1
is given as:

1 . 1 N -
firerz = feo t Ef(mo"‘t —wy)-e] + 5(77107% —wy)- €12 (37)
This expression also serves as a planner for the desired f; - €32 which is written as:
1 . 1 .
flren = fit SHmaiy - w]) - enl + 5(mi - wf) - e (38)
The error terms are defined as:
‘ _ d
Cee = fcc - fcc (39)
a = (- fi)en (40)
& = -7 (41)
€ = (w? —wy) - exg (42)
and the modeled mass as m¢ = m, + Am, where Am, represents any model discrepancies. The
expression for the error in the critical contact force is then written as:
d Vo ded _ d Lo dsd _ d
€ce = f{-e12-— §|(mo1't ~ w§) - ez — -Q—(mo'rt - w§) - ez
1 N 1 . ;
- [fl e — 'él(mort —wy)-e1z] — §(mo7't — wy) - €12 (43)
By expanding m¢ and gathering common terms, the above equation can be written as:
d 1 g | S
€e = flrenn—fien - ZMoit e+ 5moft - enz
- -1-'w‘1-e , ——1—w ce12 — 1|m i o1 — wh - e1p + Amyit e
9 'f 12 2 f 12 2 oty 12 f 12 ol 12
1 1 d :
+ 5177107} c€12 — Wy 612[ - §Am07‘t - €12 (44)
By taking the norm of both sides, a bound is found for the error in the critical contact force:
.d
lleeell < leall + llmoll llexll Nerall + llewll + Aol 1]} llerzll (45)

Thus, the error in the critical contact force is bounded by the sum of the object trajectory
error, the error in f; along ey;, the disturbance error, and the object modeling error. Note that
Equation (38) which includes a non-differentiable function is used in the planner. However, this
function does not appear in the output equation or state equation of the system.
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B Robot Parameters

This appendix presents the kinematic and dynamic parameters for two PUMA 250s which are used
to implement the nonlinear feedback control law. Joint 2, 3, and 5 are made parallel as shown in
Figure 14 while joint 1, 4, and 6 are locked. Thus, the PUMA 250 (with the three joints locked)
form the three planar links of the 3-R manipulator in Figure 2, with the corresponding axis marked
3R AXIS 1, 2, or 3 in Figure 14. For convenience, the three links will be numbered 1, 2, and 3. In
the figure, Iy, Iz, and I3 denotes the corresponding link lengths.

All the parameters are listed in Table 1. Although the two manipulators are identical, robot 1
has a force/torque sensor installed at the wrist while robot 2 does not. Thus two sets of parameter
values are listed if they are different. Before the joint torques computed from the nonlinear feedback
are sent to the Digital-to-Analog Converter (DAC), they are multiplied by the torque constants.
The friction constants are the DAC values corresponding to the Coulomb friction at the joints. All
the parameters listed in Table 1 are experimentally measured.

Parameters | Link Number Values Units
i Robot 1 / Robot 2
Link 1 203 mm
Length 2 203 mm
(L) 3 93 / 63 mm
Link 1 2.4 Kg
Mass 2 1.1 Kg
3 0.54 /0.2 Kg
Center 1 30 mm
of Mass 2 60 mm
3 54 /12 mm
Link 1 0.145 Kg-m?
Inertia 2 0.052 Kg-m?
3 0.00727 / 0.00527 Kg-m?
Torque 1 103 / 138 DAC/N-m
Constant 2 140 / 210 DAC/N-m
3 -1633 / -980 DAC/N-m
Friction 1 -116 / -116 DAC
Constant 2 -95 / -100 DAC
3 -160 / -105 DAC
Tactile Sensor Gain 5.094-10=° / 5.145-107° | mm/DAC
Tactile Sensor Offset -0.15317 / -0.15558 mim

Table 1: Parameters for the three links of the PUMA 250s used in the experiment.
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Figure 14: Sketch of experimental set-up.
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