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Terrain Mapping for a Walking Planetary Rover

Eric Krotkov, Member, IEEE, and Regis Hoffman

Abstract— We present a terrain mapping system for walking
robots that constructs quantitative models of surface geometry.
The accuracy of the constructed maps enables safe, power-
efficient locomotion over the natural, rugged terrain found on
planetary surfaces. The mapping system acquires range images
with a laser rangefinder, preprocesses and stores the images, and
constructs elevation maps from them at arbitrary resolutions, in
arbitrary reference frames. To quantify performance in terms of
accuracy, timing, and memory utilization, we conducted extensive
tests in natural, rugged terrain, producing hundreds of millions
of map points. The results indicate that the mapping system
1) is one of the few that can handle extremely rugged terrain,
and 2) exhibits a high degree of real-world robustness due
to its aggressive detection of image-based errors and in its
compensation for time-varying errors.

I. INTRODUCTION

N THIS PAPER we present a terrain mapping system

for the Ambler, an autonomous walking robot configured
to traverse boulder-strewn surfaces like those on Mars. The
objective of our work in perception for planetary rovers is
to develop and demonstrate approaches to terrain mapping
that enable locomotion that is: (1) safe, and (2) power-
efficient over rugged, natural terrain. To quantify the term
“rugged,” we designed the Ambler mechanism to meet Mars
mission requirements to climb 30 degree slopes with frequent
surface features (e.g., ditches, boulders, and steps, existing
simultaneously) of up to one meter in size [19].

Safe locomotion is essential to the success of any explo-
ration mission. The rover must be able to detect and avoid
hazards in its environment, such as cliffs or craters. In addition,
to minimize mechanical wear and to preserve its health, the
rover must avoid colliding with and stumbling over obstacles.

Power-efficient locomotion is a less obvious requirement,
but it too is essential. Power is at a premium for any extrater-
restrial mission, and planetary rovers face severely limited
power budgets. Since power is such a precious commodity,
and because every contact with the terrain transfers energy
from the robot to the environment, the rover can ill afford to
waste energy by colliding with obstacles.

The terrain found on planetary surfaces is rugged and irregu-
lar (Fig. 1), characteristics that pose significant challenges for
autonomous mapping. First, rugged terrain violates the con-
straints on shape (e.g., symmetry) and surface properties (e.g.,
smoothness) that established machine perception techniques
exploit. Second, irregular terrain resists the geometric model-
ing required by model-based vision approaches. Finally, the
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Fig. 1. Mars terrain viewed by the Viking lander.

natural environment does not provide the controlled lighting,
fixtured objects, or other simplifications of the laboratory.

To meet the needs of safe and power-efficient locomotion
over rugged, natural terrain, we have developed a mapping
system that efficiently builds quantitative models of terrain ge-
ometry, making explicit the spatial layout of the environment.
The rover successtully uses these models to select footholds
that avoid hazards, and to plan motions that conserve power by
minimizing terrain contact. The mapping system is one of the
few that can handle extremely rugged terrain, and appears to
be more robust than any comparable system in its aggressive
detection of image-based errors and in its compensation for
time-varying errors.

The plan of the paper is as follows. In the next section we
review related research. In Section III we describe the Ambler
walking robot, and in the next sections we discuss sensing
and calibration, the terrain mapping system, and experimental
results. In Section VII we present a method of compensating
for time-varying elevation errors. We conclude the paper with
a summary and critical discussion of the approach.

II. RELATED RESEARCH

Researchers have advanced a spectrum of terrain mapping
and obstacle detection concepts for outdoor robotics opera-
tions. In this section we review perception-based systems that
have been implemented and tested in realistic outdoor settings.
We restrict our remarks to land systems, excluding perception
systems developed for underwater or air vehicles, and we
concentrate on perception of surface geometry for the sake of
locomotion rather than for the sake of position estimation. We
begin with outdoor perception techniques for planetary rovers,
then address unmanned ground vehicles, and then consider
other outdoor mobile robots.

Sustained effort in the planetary rover domain at NASA’s
Jet Propulsion Laboratory [27], [28] has developed a family
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of outdoor perception techniques based on stereo mapping
and, currently under development, structured light sensing.
Matthies et al. [20] describe a stereo system enabling Robby,
a six-wheeled vehicle, to achieve up to 100 m of autonomous
travel in a cross-country test area in a desert arroyo. The
vehicle acquires images from two cameras with a 25 cm
baseline and processes them while stationary (start/stop mode).
The system computes the height of scene points from the
disparity images, and detects obstacles by thresholding the
heights. These results establish a new level of practicality of
stereo vision for outdoor navigation.

Researchers at MIT [1], [5], [6] have developed a number
of small mobile robots with multiple sensors, including a
rangefinder (up to 3 m) and a CCD camera for route following,
a whisker (up to 25 cm) for local obstacle detection, and
proximity sensors (up to 5 cm) for foot placement. When
properly “wired up” by the subsumption architecture, these
sensors enable capable walking behaviors with minimal or
no computation. Although performance on rugged, natural
terrain remains to be demonstrated, to achieve locomotion with
little computation is a remarkable accomplishment. However,
observation of implemented behaviors reveals frequent contact
with the terrain, not only at the feet, but at the legs and body
as well. The robots appear to stumble and bump into obstacles.
This leads us to believe that the behaviors are power ineffi-
cient, because each terrain contact transfers energy. Further,
the contact accelerates wear and tear on the vehicle, thus
shortening its life.

Fua et al. [11] have developed a trinocular stereo system for
the French Mars Rover project {4]. Their approach begins by
rectifying the images to obtain parallel epipolar lines. Then the
approach correlates the rectified images, comparing for each
point of image 1 the grey levels in square windows along its
corresponding epipolar line in image 2. To check the validity
of the correlation, the algorithm applies the same process
from image 2 to image 1, validating the result only if the
two disparity values are similar. The approach has produced
encouraging initial results using three cameras in an L-shaped
configuration with 40 cm baselines, with simulated terrain
under different outdoor lighting conditions.

In the unmanned ground vehicle domain, the eight-wheeled
Autonomous Land Vehicle (ALV) project [26] represents a
fpioneering effort. Daily et al. [7] present an operational per-
ception system for cross-country ALV traversal that transforms
range data from a laser rangefinder into a Cartesian elevation
map. A reflexive planning system uses this map to detect and
avoid obstacles on a hillside containing steep slopes, rock
outcrops, vegetation, and ravines.

The Navlab [25] projects have produced a series of inte-
grated systems with vision, planning, and control of four-
wheeled vehicles. Researchers have developed and demon-
strated stereo vision, range data processing, object recognition,
and neural network methods in the systems, enabling au-
tonomous driving for as long as 21 mi at speeds up to 55
mph, cross-country navigation for over an hour continuously,
parallel parking, and suburban navigation missions.

A number of noteworthy outdoor mobile robot systems
fall outside the planetary rover and unmanned ground vehicle

domains. Some of these systems achieve a significant level
of autonomy. For example, the VaMoRs driving system [8]
operates on roadways with lane markings, which is an envi-
ronment relatively rich in structure compared to the surface of
the Moon or Mars.

Other systems have the potential for significant autonomy,
but have not yet realized it. For example, Iagolnitzer et al. [16]
describe a system based on a laser rangefinder that constructs a
local terrain map as a “horizontal bitmap” in a fixed reference
frame. They demonstrate results in modeling a log pile, and
discuss plans for testing the system on a tracked robot.

Still other systems have the ingredients for autonomous
operation, but no requirement for autonomy. One example
is the Adaptive Suspension Vechile project [24], which uti-
lized a laser rangefinder, but more as an operator aid, not
for autonomous robot control. Another example is the U.S.
Department of Energy operating a wide variety of outdoor ve-
hicles in hostile nuclear environments. Many of these vehicles
capture rich video and other data, but for teleoperation, not
for autonomous robot control [10].

In summary, the literature reports a spectrum of mapping ap-
proaches using a variety of different sensors, control regimes,
and algorithms for different environments. We find no mapping
system suitably dense and accurate for autonomous and power-
efficient locomotion through terrain as rough and rugged as
that found on Mars (cf. Section I).

III. AMBLER

The Ambler is a walking robot (Fig. 2) designed to satisfy
constraints characteristic of exploration missions to planetary
surfaces. The key constraints are to traverse extreme terrain, to
minimize power consumption, and to provide a stable platform
for imaging, scientific, and sampling equipment. Readers inter-
ested in the Ambler configuration will find detailed discussions
elsewhere [2], [23].

The Ambler has six legs, arranged in two stacks on central
shafts. Each leg consists of a rotational link and an extensional
link that move in the horizontal plane, and an orthogonal
vertical link. A six-axis force/torque sensor mounted on the
base of each vertical link measures the forces acting on the
feet. An arched body connects the shafts two central shafts and
supports four enclosures housing electronics and computing.
The height ranges from 4.1 to 6.0 m, and the width varies
between 4.5 and 7.1 m. The mass of the mechanism and all
equipment (including power generation and storage) is about
2500 kg.

The Ambler integrated walking system (Fig. 3) consists
of a number of distributed modules, each with a specific
functionality: the Task Controller [22], which coordinates the
distributed robot system; the Real-Time Controller, which
implements motion control; the perception modules, which
acquire and store images, and construct terrain elevation maps;
the planning modules, which plan footfalls, leg trajectories,
and gaits; and the graphical user interface. The distributed
processes communicate by passing messages through the Task
Controller.
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Fig. 2. The Ambler.
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Fig. 3. Modules in the Ambler integrated walking system.

IV. SENSING AND CALIBRATION

The primary sensor is a scanning laser rangefinder, which
measures both reflectance and range (Fig. 4). We use a laser
scanner because it directly recovers the environment’s three-
dimensional structure, supplying 3-D data more rapidly and
reliably than passive vision techniques such as binocular stereo
and structure-from-motion. Recent advances (cf. Section II)
make stereo far more feasible for real time rover applications
than it was in 1987, when this effort began.

The particular sensor, manufactured by Perceptron, Inc.,
acquires data in 256 x 256 pixel images at a rate of 2 Hz. The
sensor is an amplitude-modulated continuous-wave device that
measures range from the phase difference between transmitted
and reflected signals. It digitizes to 12 bits over approximately
40 m, providing a range resolution of approximately 1 cm, and
a range precision of 10-15 cm. The measurements cover 60
degrees in azimuth and 60 degrees in elevation. The scanner,
mounted on top of the Ambler, looks down directly in front
of the robot. Readers interested in further information on the
sensor will find it elsewhere [13].

Fig. 4. Range (left) and reflectance (right) images. The scene consists of a
sand base with meter-tall boulders (foreground) and a wooden ramp.

We have developed an automatic calibration procedure that
identifies the transformation between the Ambler-centered
reference frame and the sensor-centered frame [17]. The
procedure moves the leg to various positions within the
scanner field of view, and processes the reflectance image to
locate the leg. The procedure uses the leg positions in the
images and the leg positions in the body frame to compute the
transformation that minimizes the distance between pairs of
corresponding points referred to the Ambler-centered frame.

The overall problem is to identify the rigid transforma-
tion relating a vehicle-centered reference frame to a sensor-
centered reference frame. The origin of the scanner frame S is
attached to the scanner and lies somewhere near it. The origin
of the body frame B is attached to the walking robot.

We attach a number T of targets to the legs. Then, we
move the legs to a number L of different stations. At each, we
identify the position rp of each target in the body frame (by
reading joint positions and using known kinematics), and we
identify the position rg of each target in the scanner frame (by
image analysis). After acquiring a sufficient number of pairs
of measurements, we seek the rotation R and translation ¢ that
refer a vector in S to B:

rpi = Rrg; +t, for 1 <: < LT

where ¢ is the translation vector relating the two origins, and R
as a 3 x 3 rotation matrix. In practice, it is unlikely that R and
t exist that satisfy the above equation, because measurements
are not exact and may be contaminated by noise. Instead, we
seek R and ¢ that best satisfy the equation in the least-squares
sense: Find R and ¢ minimizing the sum of squares of errors

LT
E=3 |l
i=1

where the error of the ith pair of measurements is e; =
rg; — Rrs; — t.

This problem is closely related to a number of other
problems that arise in photogrammetry and computer vision.
Given the pairs of measurements, the problem is equi%;alent
to the absolute orientation problem in photogrammetry, and to
the exterior orientation part of the camera calibration problem
in computer vision.

For solution, we implement the technique in [9] (related
to [15]), which is an exact closed-form solution that uses
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Fig. 5. Mapping system modules.

unit quaternions to represent the rotation. The solution for
the desired quaternion is the eigenvector associated with the
smallest eigenvalue of a symmetric matrix whose elements
are combinations of sums of products of corresponding coor-
dinates from rg and rg.

From experiments with thousands of points, we conclude
that the accuracy of the computed transformation is 2-7 c¢m
with a precision no lower than 2-5 cm. These results have
proven to be satisfactory for constructing terrain maps and
using them to select footholds during our rough terrain walking
experiments.

V. MAPPING SYSTEM

The purpose of the mapping system is to construct models
of the local terrain from range images. The system consists
of three major modules that acquire images, preprocess and
store images, and construct terrain elevation maps (Fig. 5).
Approximately ten other modules perform data analysis and
display tasks, each executing concurrently. Many different
system configurations, including this one, suffice to meet the
perception needs identified in Section I. This configuration
is modular, extends easily to more and different sensors,
decouples imaging and mapping, and manages large quantities
of data.

A. Image Acquisition

Typically, new information appears in the field of view
only after the body moves. We have designed the walking
system so that when a body move completes, the Perception
Imaging Manager (PIM) receives a command to initiate image
acquisition. This is consistent with stop/start walking, but
could function equally well for continuous walking.

The PIM acquires frames of range and reflectance data,
selecting either (1) real images from the rangefinder, (2) virtual
images stored previously, or (3) synthetic images computed
by a 3-D graphics simulator. Options 2 and 3 have been
valuable for debugging and development. The PIM tags each
image pair with robot state information (the body pose and six
leg positions), the transformation relating the scanner frame
and world coordinate frame (composed from transformations
derived from the calibration procedure and the Ambler’s dead-
reckoned pose), and the parameters that convert a raw range
measurement into units of meters. Then, the PIM transmits the
tagged images to the Image Queue Manager.

B. Image Preprocessing and Storage

The Image Queue Manager (IQM) preprocesses the images,
and then stores them. Preprocessing is required to compensate
for both known and unexpected problems.

Send Images

Certain defects in the range measurements occur within
known image regions. These defects include variations in
range values caused by differences in the optical coating on the
exit window, and artificially low range values in the bottom
comners of the images caused by the exit aperture. Other
defects in the range measurements occur at unknown image
locations. These defects include artificially small range values
for materials that poorly reflect the laser energy, and for depth
discontinuities at the right-hand side (from the sensor’s point
of view) of objects. Still other effects (not defects, properly
speaking) can disqualify range measurements. Such effects
include viewing objects lying at distances beyond the sensor
ambiguity interval, and viewing nonnatural objects, such as
the robot’s legs.

An aggressive preprocessing stage identifies pixels cor-
rupted by the known defects and the known but unpredictable
effects, and marks them as invalid (Fig. 6). Readers interested
in the detailed processing steps will find them elsewhere [13],
[14]. In addition, the preprocessing stage applies the Canny
operator to detect range discontinuities, which the mapping
algorithms will use to identify range shadows and occluded
regions.

The image queue facilitates access to ordered sequences
of images. Sequences are needed because a single forward-
looking sensor cannot possibly image obstacles either below or
behind the vehicle. A single image does not, in general, contain
enough information to accomplish tasks such as planning the
trajectory of a recovering leg.

When queried for an image sequence, the IQM could return
all images. However, this requires substantial data transfer:
the size of the images is large (256 K per pair, plus variable-
size auxiliary structures such as edge images), and many
images may be required (with typical queries for 1 m? areas,
we observe experimentally that no more than five images
are required for a straight-line trajectory on flat terrain, and
no more than 25 images are required for a point turn over
obstacles). Instead of returning all images, the IQM returns
some subimages, viz., those that intersect a given region of
interest polygon. In typical operation, this reduces data transfer
by 75-90 percent. Further, this has no effect on map accuracy,
because the IQM continues to supply all imagery relevant to
the given region of interest.

C. Terrain Mapping

The Local Terrain Mapper (LTM) constructs elevation maps,
which serve as the primary terrain representation. They are
well-suited for representing natural, rugged terrain, and can
be accessed simply by specifying the boundary of a region of
interest.
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Fig. 6. Preprocessed range image. Range image truncated to 8 bits (upper left). Reflectance image truncated to 8 bits (upper right). Edges detected by
Canny operator (lower left). Binary image with white pixels indicating valid range data (lower right).

External modules request elevation maps, specifying (1)
a polygonal region, (2) a resolution, and (3) an arbitrary
reference frame to be used. Typical reference frames are the
current body frame, a future body frame (to allow advance
planning), and the world frame. To construct the requested
maps, the LTM first queries the IQM for a sequence of relevant
subimages. Then the LTM uses the subimages, starting with
the most recent, to assign one of three labels to each elevation
point:

1) Unknown: for those cells outside the polygon or outside
the rangefinder field of view or with no valid image
pixels.

2) Occluded: for those cells occluded by other objects.
In this case, the LTM uses knowledge of the viewing
geometry to compute and store an upper bound on the
elevation.

3) Known: for all other cells. In this case, the LTM com-
putes and stores the terrain elevation with the Locus
Method [18], an efficient algorithm for transforming
and interpolating range data from the sensor frame into
Cartesian coordinates.

Finally, the LTM sends the map to the requesting module.
Fig. 7 illustrates an elevation map of the scene shown in Fig. 4.
This map contains many points labelled Known, and few points
labelled Occluded or Unknown.

1) Elevation Map Construction: The rangefinder measures
the coordinates of scene points in a spherical polar reference
frame, in which p is the measured range, and ¢ and @ are the
vertical and horizontal scanning angles of the beam direction

corresponding to row and column position in the image. The
Cartesian coordinates of a point measured in spherical polar
coordinates are

x = psinf,y = pcos¢dcosf,z = psin¢cosf

Applying these relations to the measurements in a range image
yields an elevation map. However, this map is non-uniform
in Cartesian space, because the coordinate transformation is
nonlinear. Further, the map grows less dense and less accurate
with increasing distance from the sensor.

One could circumvent the former difficulty by using a map
structure that is not a regularly spaced grid, such as a Delaunay
triangulation. However, this is not practical because of the
complex algorithms required to access data points and their
neighborhoods. Another approach is to interpolate between
data points to build a dense elevation map on a grid, either
by approximating the surface between data points (e.g., as a
bicubic surface), or by globally fitting a surface under some
smoothness assumptions (e.g., regularization). However, both
of these approaches have significant limitations: they make
assumptions on the local shape of the terrain that may not
be valid in the case of rough terrain; and they depend on the
resolution and position of the grid (i.e., they cannot compute
an estimate of the elevation at an (z,y) position that is not a
grid point without resampling the grid).

We have developed an alternative, the locus algorithm,
that uses a model of the sensor to interpolate at arbitrary
resolution without making any assumptions on the terrain
shape other than the continuity of the surface. Historically, the
locus algorithm was conceived by Kweon and Kanade [18].
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Occluded

Fig. 7. Elevation map computed from range images of the scene in Fig. 4.

Our contribution is one of correct implementation, analysis,
and optimization. For completeness, in the remainder of this
section we describe the locus algorithm, and an extension for
detecting range shadows.

2) Locus Algorithm: The problem of finding the elevation
z of a point (z,y) is equivalent to computing the intersection
of the surface observed by the sensor with the vertical line
passing through (z,y). The basic idea of the locus algorithm
is to convert the latter formulation into a problem in image
space, specifically, spherical-polar space rather than row-
column space. A vertical line (we present the case of the
vertical line to simplify exposition) is a locus (curve) in
image space, whose equation as a function of ¢ is derived
by inverting the spherical/Cartesian coordinate transformation,
assuming x and y constant:

2 zcos ¢

Y atan .
Y

cos ¢

p=p($)= +a22, 8="0(¢)
Similarly, the range image can be viewed as a surface p =
I($,8) in ¢-6 space. The problem then is to find the iniersec-
tion, if it exists, between a curve parameterized by ¢ and a
discrete surface. Since the surface is known only from a sample
of data, the intersection cannot be computed analytically.
Instead, we must search along the curve for the intersection
point. Let ©;(¢) be the image column closest to f;(¢), and
let A(¢;) = p1(¢;) — I(¢;, ©1(#;)). The search proceeds in

two stages.
1) Locate the two scanlines of the range image, ¢; and
¢2, between which the intersection must be located, i.e.,

such that sgn A(¢;) differs from sgn A(¢z).

733

3.0

The units are in meters.

2) Apply a binary search between ¢1 and ¢». The search
stops when |¢,, — ¢n41| < € (i.e., the resolution of the
elevation is controlled by the parameter ).

Since there are no pixels between ¢; and ¢z, we perform
Lagrangian interpolation for ¢; < ¢ < ¢2, using as control
points the four pixels that surround the intersection point. The
result is a value ¢ that is mapped to p and f, and then mapped
to an elevation value. Repeating this for vertical lines at every
desired (z, y) point yields a dense elevation map of the desired
resolution, as required.

3) Range Shadows: Objects in the environment may cast
range shadows (cause occlusions). It is important to identify
the occluded regions, because if the mapping system applies
the locus algorithm there directly, then the surface would be
smoothly interpolated, possibly incorrectly. In turn, this could
lead the rover to plan a path through that region, expecting it
to be traversable when in fact it is unknown.

We incorporate the detection of shadow regions into the
locus algorithm, again working in image space. We observe
that a range shadow corresponds to an occluding edge in the
image. An (x,) location in the map is in a shadow area if its
locus intersects the image at a pixel that lies on such an edge.
We implement this idea by first detecting edges in the range
image by using a variation of the GNC algorithm [3]. Then,
when we apply the locus algorithm and observe that the locus
of a given location intersects the image at an edge pixel, we
mark that location as lying in a range shadow.

4) Combining Elevation Maps: We have so far addressed
the problem of building a representation of the environment
from sensor data collected at one fixed location. However,
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over the course of a mission, the rover must deal with a
stream of images. Processing multiple views yields at least
two benefits. First, by identifying the transformation between
viewing positions the perception system can independently
estimate the vehicle displacement. Second, merging maps into
a composite can (1) increase the resolution of the parts of
individual elevation maps originally measured at a distance
from the vehicle, and (2) add information about previously
occluded areas.

Kweon and Kanade [18] developed a two-stage approach,
using feature matching and ionic matching together. The result
is an estimate T of the transformation between the two views.
Once their matching algorithms identify the transformation
corresponding to the displacement between two viewing po-
sitions, they apply it pairwise to the sequence of images,
producing a single, composite elevation map as follows. They
simply add non-overlapping points to the composite map. For
overlapping points, we take the maximum likelihood estimate

_ o321 + 032y
of + 03

where ¢ and o3 are the standard deviations of the uncertainty
distributions on the two elevation estimates.

This method is effective, but too slow for practical, real time
application while walking. To achieve real time performance,
we developed another map merging approach that uses the
dead reckoned! positions of viewpoints, rather than matching,
to estimate the transformation between them. This method uses
the most recent image information first to compute elevation,
searching back through the queue of images until all elevation
values have been computed.

One benefit of combining maps with the most recent images
first is the capability of handling moving obstacles (which are
expected to be rare in planetary environments). The mapping
system will effectively forget an object appearing in older
images and not appearing in new images.

Another virtue of the “most recent first” policy is that,
when building maps in the current body reference frame
(the most common selection for the Ambler walking system),
the map merging method does not suffer from the well-
known accumulation of error in dead-reckoned estimates.
More exactly, it does not suffer from error accumulation over
the length of the mission, it suffers only to the (significantly
smaller) extent that error accumulates in the few backward
chaining steps. A deluxe system for combining elevation maps
would periodically perform map matching and use the result
to update dead reckoned location estimates. This was not
implemented here.

D. System Operation

Fig. 8 illustrates the concurrent execution of the three main
modules. It shows that when the Ambler completes a body
move, the PIM acquires an image, then sends it to the IQM,
which preprocesses the stores it. When the LTM receives

' Dead reckoning integrates elemental motions of the vehicle (here, changes
in leg joint angles) over time to estimate the current position and orientation
of the vehicle in a fixed, external reference frame. Our approach appears in
[21).

l Body Move ¢ Body Move

PIM (Take Image)

IQM (Store Image)

LTM (Build Map)

time
Map requests

Fig. 8. Concurrent operation of mapping system.

Fig. 9. Indoor obstacle course. Ambler traversing indoor obstacle course
over sandy terrain with meter-tall boulders (under legs and body), ditches
(the center leg on the far stack is standing in one), and ramp (lower right).

a map request, it queries the IQM for a list of relevant
subimages, and uses the list to compute the map. If the body
moves while the LTM is active, as shown in Fig. 8, the PIM
is free to initiate the image acquisition and storage process.

VI. RESULTS

We have tested the mapping system extensively in real-
world experiments over a three-year period. In this section,
we present the results of the trials, beginning with qualita-
tive examples, and then presenting quantitative performance
statistics.

A. Maps Constructed in Field Trials

We conducted field trials in three different environments:
an indoor obstacle course, an outdoor field, and a parking
lot obstacle course. In this section, we describe the different
environments and their physical challenges, and present maps
constructed from range images acquired during the trials.
However, we note that these maps are for human inspection;
the Ambler planning modules use smaller scale versions of
the maps shown.

For indoor trials, the Ambler operated on obstacle courses
fashioned from 40 tons of sand, 20 tons of boulders, a 30-
degree wooden ramp, and various other objects (Fig. 9). The
courses typically include rolling, sandy terrain with several
boulders 1 m tall, ten or so boulders 0.5 m tall, a ditch, and
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drawn grey. The black triangle indicates a particular body pose (randomly selected). The units are in meters. Other trials typically result in different courses.

boulder s
4m x 1.5m high />

¥

-9.0
-10.0
1.0 - -11.0

Coverage: 177m x 11m
Resolution: 10cm

Fig. 11. Map constructed of indoor obstacle course. The mapping system created this 11 X 17 m map from 168 range images. The resolution is 20

cm, and the elevation range is 3 m.

a ramp. The largest of the boulders is 1.5 m tall, 4 m long,
and 2 m wide.

In one indoor trial, the Ambler took 397 steps and traveled
about 107 m following a figure-eight pattern, each circuit of
which covers about 35 m and 550 degrees of turn (Fig. 10).
From the images acquired during this trial, the mapping system
constructed a composite map of the environment (Fig. 11).

Comparing Fig. 10 to Fig. 11, the constructed composite map
clearly captures the key environmental features.

A ridge appears in the map of Fig. 11, running vertically
down the center. This is an artificial feature caused directly
by misregistration of maps and indirectly by inaccuracies
in dead reckoned positions. The existence of such spurious,
hallucinated ridges surved to artificially restrict the apparent
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Resolution: 1m
Elevation Range: 9m
Images: 833

125 meters

Fig. 12. Map constructed of outdoor field. The mapping system created this
220 x 125 m map from 833 images. The resolution is 1 m, and the elevation
range is 9 m. During the trial the system could not store some images because
a disk was full, causing the gap in the middle of the map.

space of reachable foot placements [14]. After fixing the dead
reckoning system problem that caused the discontinuity in
estimated positions, we never observed another ridge.

For one set of outdoor trials, the Ambler operated on rolling,
grassy terrain (Fig. 2). The site is a field in a hilly, wooded area
at an industrial park. Although it does not contain obstacles
like those encountered in the indoor trials, the site poses its
own challenges: steeper slopes and side-slopes, soft ground,
30 °F temperature variations, lighting conditions varying from
bright sunshine to partly cloudy to dark. In the longest of
these trials, the Ambler took 1219 steps, travelling 527 m
horizontally and 25 m vertically. It followed a meandering
course that included first climbing a hill and descending from
it, then roughly following an isoelevation contour for 250 m,
executing a point turn of roughly 7 radians, and following an
isoelevation contour back to the starting region.

From the images acquired during this trial, the mapping
system produced a comprehensive site map (Fig. 12). The
resolution of the computed map is 10 cm; the lower resolution
of the map shown is an unfortunate consequence of limited
printer capability. Comparing the computed map to the site
topography, we find excellent agreement.

For another set of outdoor trials, the Ambler operated in
a parking lost strewn with wooden obstacles such as boxes,
pyramids, and ramps (Fig. 13). In one of these trials, the Am-
bler took 100 steps along a gently curving arc, travelling about
25 m over a variety of obstacles. In another of these trials, the
Ambler walked in the parking lot at night, without lights. The
laser rangefinder does not require ambient illumination, unlike
ordinary cameras. In fact, we observed the range images to
be noisier during the day, because the signal-to-noise ratio is
higher without ambient illumination.

B. Performance Statistics

Table I records mapping system statistics gathered from sev-
eral representative walking trials. The distance term represents

Fig. 13. Ambler walking 100 m on an outdoor obstacle course.

TABLE 1
MAPPING SYSTEM STATISTICS IN FOUR SEPARATE TRIALS
Images  Subimages

Trial  Distance (m) acquired transferred Maps built Map point
Outdoor 46 151 8974 626 375003
Indoor 68 185 10015 640 267 104
Indoor 107 397 20286 1306 597078
Outdoor 527 1219 101129 4716 2578102

the distance travelled by the robot during the trial. The results
vary because the terrain and software modules vary between
trials. For example, in the 46-m run, a module planned body
recovery motions, computing more map points than in the
68-m run, during which that module did not execute.

The distances traversed indicate the effectiveness of the
system in accurately capturing the terrain geometry. The large
volume of data processed, both images and maps, indicates
the robustness of the system. The volume of data processed
is widely used as an indicator of reliability for systems
such as automated teller machines and airline reservation
systems. In this case, the system is robust in the sense
of continuing to operate effectively despite nonsensical map
requests, sensor malfunctions, operating system errors related
to memory management, and other exceptional conditions.

Over these trials, we find that taking a single step requires
between 20 and 30 s of mapping system processing, which
involves examining between 5 and 28 range subimages to
compute elevation values for some 1700 points, on average.
Further analyzing the timing, we find that for Sparc2 work-
stations, image acquisition takes about 1 s, image processing
and storage requires about 10 s, and construction of elevation
maps takes about 5 ms per point.

One measure of map accuracy is the difference between the
computed elevation and the elevation determined by encoders
on the Ambler’s legs. According to this measure, we find that
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Fig. 14. Elevation error.

Mapping

Vertical
Leg Position
Elevation

Fig. 15. Closed loop control of elevation values.

the map accuracy varies from step to step and from trial to
trial, but is almost always within the scanner precision of
10-15 cm. This accuracy is sufficient for the Ambler, whose
feet are 30 cm in diameter. Another measure of map accuracy
is the sensor calibration residual, which ranges from 2-7 cm
over different trials (cf. Section IV). The most straightforward
measure of map accuracy would be the mean distance between
the computed map and the ground truth. However, we were
unable to devise a reliable and economical method to measure
dense ground truth over even a small patch of terrain, and so
we cannot report this statistic.

As the Ambler walks, images and maps consume more and
more memory. The mapping system handles this with memory
management routines that detect memory saturation, and then
reclaim storage for new use and delete less recent data. In
one typical trial, after acquiring 100 images, memory usage
levels peaked at 1.6 Mb for PIM, 2.8 Mb for LTM, and
30.5 Mb for IQM. After this, the mapping system maintained
nearly constant memory utilization, thus demonstrating the
effectiveness of memory management.

VII. ELEVATION ERROR COMPENSATION

During the walking trials, we find that the elevation map
errors can vary substantially. We have identified three principal
causes of these variations:

1) Change of temperature. Range values returned by the

rangefinder change 1 cm per degree F (we reported a
10 cm per degree drift [13], but sensor enhancements
have reduced this). As the temperature changes, so do
the range values, which in turn change the computed
elevations.

2) Change of terrain type. Range values returned by the
rangefinder vary with the reflectance properties of sensed
objects. For an oversimplified example, darker objects
appear to the sensor to be farther away than lighter
objects. As the terrain type changes, say by walking from
grass into soil, the reflectance properties change, caus-
ing the range values to change, causing the computed
elevations to change.

3) Change of terrain slope. Terrain perpendicular to the
incident sensor laser beam will return a stronger (and
hence less noisy) signal than terrain at a smaller angle

Leg

Map Elevation error < 0
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o
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Fig. 16. Elevation error during open-loop and closed-loop control.

Fig. 17. Slope traversal. The leg shown on the left is near the lower limit of
vertical travel. The leg shown on the right is near the upper limit of vertical
travel.

of incidence. As the slope changes, so does the sensed
range, in turn causing the computed elevations to change.
During the 500-m walking experiment, the Ambler encoun-
tered all three types of changes: temperature changes of 30
degrees F, transitions from wet to dry grass, and slopes from
0 to 15 degrees. It is therefore not surprising to observe
significant elevation error variations in the computed maps.
To characterize this elevation error variation, we use the
position of the robot legs when in ground contact as a measure
of ground truth. Each time the robot takes a step, we compute
the elevation error as the difference between the vertical leg
position and the elevation value stored in the map. If the
elevation error is positive, the foot is above the sensed terrain,
and if the error is negative, the foot is below the sensed terrain
(Fig. 14).
To adjust the elevation values, we implement a control loop
(Fig. 15) that uses the elevation error as an error signal to
increase the accuracy of the elevation maps. The control law

b, = Z k(zi,]eg - zi,map)

where i indicates the step number, includes a proportional
term, with gain k typically set to 0.1, and an integral term, to
reduce the steady-state error. To adjust the elevation values,
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Fig. 18. Corrupt image (left) and valid data (right).

the system adds the vertical displacement &, determined by
the control law to the vertical component ¢, of the translation
term in the transformation matrix determined by the calibration
procedure (cf. Section IV).

Fig. 16 plots the elevation error for 371 steps taken over
an 8-h period, during which the robot travelled 172 m.
During the open loop portion of the experiment, the elevation
values drift up and then down. For open loop operation, we
intentionally aim for a negative elevation error so that when the
planning modules add safety margin offsets, the commanded
leg moves will terminate slightly above the terrain, thus
preventing unexpected ground contact. When closed loop
operation begins, the controller drives the mean elevation error
to near zero. Note that the 10-15 cm variations due to sensor
imprecision do not disappear. In other words, the controller has
eliminated the measurements bias, but not the measurement
noise.

There are two consequences of the closed loop operation,
both demonstrated during the 500 m trial. First, mobility is
greater on slopes. In Fig. 17, the leg on the left stack is near
a lower vertical limit (above which the leg cannot travel),
and the leg on the right stack is near an upper vertical limit
(below which the leg cannot travel). If the elevation error is too
negative, the robot incorrectly “thinks” that it cannot raise the
leg on the left stack to clear the terrain. If the elevation error is
too positive, the robot incorrectly “thinks” that it cannot lower
the leg on the right stack to contact the terrain. In either case,
the robot finds it impossible to advance. Decreasing the map
error to near zero increases mobility, by permitting a greater
range of terrain slopes to be successfully traversed.

Second, leg recovery (lifting a leg, moving it between the
two stacks, and planting it on the ground) is more power
efficient, because the rover need not lift the leg artificially
high above the ground. Under closed loop control, the leg
stays closer to the ground than in the open loop case, thus
saving both time and power.

VIII. DISCUSSION

In this paper, we have presented a terrain mapping system
for the Ambler suitable for robotic exploration of the natural,
rugged terrain found on planetary surfaces. The mapping
system acquires range images with a laser rangefinder, pre-
processes and stores images, and constructs elevation maps
from them at arbitrary resolutions, in user-specified reference
frames. Extensive tests in natural, rugged terrain indicate
that the mapping system exceeds established performance
standards in accuracy, timing, and memory utilization, and
exhibits a high degree of real-world robustness. In summary,
the results show that the implemented mapping system con-
structs quantitative models of terrain geometry that enable safe,
power-efficient locomotion in rugged terrain.

We consider the robustness of the system to be one its
key contributions. To illustrate, consider an incident from the
outdoor walking trial. Fig. 18 illustrates an image acquired
outdoors that is corrupted by a horizontal band of high-contrast
salt-and-pepper noise. In three prior years of working with
the rangefinder, we never observed such an effect. We never
anticipated that kind of problem, and never explicitly modeled
or solved a related problem. Indeed, the researchers conducting
the walking tests did not observe the problem occur (they
were playing Frisbee as the robot walked autonomously and
discovered it only afterwards) and did nothing to intervene.
The aggressive image preprocessing routines were not crip-
pled by this sensor malfunction. They detected disconnected
pixels and invalidated the offending data, thus preventing the
introduction of spurious data into the maps. This is the kind
of robust behavior required by planetary rovers.

Another key issue addressed by the mapping system is
calibration. Recently, researchers have questioned the need for
calibration, and techniques to avoid it have gained favor. In the
case of the Ambler, it is likely that we too could survive with-
out calibration; because the machine is big, rugged, and heavy,
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many objects that are obstacles before the Ambler steps on
them are planar afterwards. But for missions to distant, rugged
regions like planetary surfaces, Antarctica, and the ocean floor,
survival is not enough. Power-efficient locomotion is essential.
With a calibrated sensor, the Ambler selects where to step,
and thus prevents spending significant fractions of the total
power budget on stumbling rather than productive advance.
This ability to select footholds is central to the fundamental
advantages of high mobility and power efficiency that walkers
enjoy over rolling and crawling machines. Achieving those
footholds requires calibration.

Our future work will continue to address the theme of robust
three-dimensional sensing. We will develop stereo techniques,
including multi-baseline stereo with up to five cameras, for
walking in rugged terrain. We aim for robustness and relia-
bility in the presence of false solutions to the correspondence
problem, imperfect registration of the cameras, and inaccurate
knowledge of the calibration parameters. In addition, we
will investigate techniques for detecting and recovering from
hardware faults such as memory parity errors and operating
system errors.
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