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Fast Construction of Force-Closure Grasps 

Chao-Ping Tung and Avinash C. Kak 

Abstruct- This article presents a new theorem and an algorithm for 
fast synthesis of two-fingered force-closure grasps for arbitrary polygonal 
objects. The polygonal objects are allowed to be of arbitrary shape, 
in the sense that there is no restriction that the objects he convex. 
Moreover, each edge of the polygon is allowed to have different frictional 
characteristics. Our novel formulation results in a simple and efficient 
algorithm that finds grasps that tolerate the largest positioning errors for 
each of the fingertips at the contact points. The algorithm is both complete 
and correct, meaning that if any force-closure grasp exists for the object, 
the algorithm will find it; furthermore, all the grasps synthesized by the 
algorithm are guaranteed to be valid force-closure grasps. 

I. INTRODUCTION 
Grasp determination, the automatic generation of grasp config- 

urations for a given object and a given gripper, is an important 
branch of robotics; the subject has therefore attracted much attention 
over the last decade. While much of what was published early dealt 
with the parallel-jawed grippers [I]-[7], the more recent work has 
focussed on dextrous grippers with multiple fingers [SI-[17]. The 
parallel-jaw work in the published literature has dealt mostly with 
the determination of grasps that would allow a robot to retrieve 
or place an object in an environment containing obstacles [I], [2]; 
with the determination of a grasp given the need to balance all the 
frictional and gravitational forces [4], [SI; with optimum strategies 
for the selection of placement points for the two jaws [3]; with the 
planning of a grasp motion such that the object in its final grasped 
pose would occupy a designated orientation [6]; and so on. These 
parallel-jaw contributions have not addressed explicitly the issue of 
how to synthesize a force-closure grasp. 

The issue of force closure first arose in the context of dextrous 
grasps. A grasp is considered to be of force-closure type if it permits 
the robot to counteract any disturbance force or torque applied to 
the grasped object. In other words, the finger placements for a force- 
closure grasp have to be such that by altering the directions and/or 
the magnitudes of the applied contact forces, the robot is able to 
keep the object grasped despite any externally applied forces/torques 
that might otherwise cause the object to slide or rotate. In the more 
modern literature on grasping, the concepts of force closure have been 
expounded on by Li and Sastry [16], Nguyen [15], Park and Stan 
[12], Mishra, Schwartz, and Sharir [SI, Faverjon and Ponce [13], 
Markenscoff, Ni, and Papadimitriou [9], Hong, Laffemere, Mishra 
and Tan [lo], Ferrari and Canny [14], Kirkpatrick, Mishra, and Yap 
[17], and others. 

The previous work that is most relevant to our contribution here 
is that of Nguyen [lS] where the author presented a geometrical 
algorithm for computing the force-closure grasps for polyhedral 
objects. The algorithm identifies the regions of the different faces of a 
polyhedral object where the placement of the fingers would guarantee 
force closure. It is not too difficult to illustrate the basic idea used in 
[15] for the case of polygonal objects. Consider the polygonal object 
ABCD represented by the shaded portion in Fig. l(a). Assume that 
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Fig. 1. 
of 

Friction cones at the contact points for three grasps. (a) Friction cones 
and m. (b) Two grasps for an object. 

the friction cones for the edges AB and CD are as illustrated there. 
The principles of mechanics dictate that if the goal is to grasp the 
object by making contacts with the surfaces AB and CD, the forces 
at the two contacts must be such that they point not only into their 
respective friction cones but, also, each force must point into the 
friction cone corresponding to the other surface. For example, for 
the two grasps depicted in Fig. l(b), the grasp with contact points 
{ PI ,  QI  } is not a force-closure grasp, since there do not exist usable 
force directions at Pz and Qz-recall that the applied forces at each 
of these points must point into their respective friction cones and 
that the force at Pz would point into the friction cone at &z and 
vice versa. By contrast, there does exist a grasp with contact points 
{ P I ,  Q1} that is of force-closure type. 

Nguyen formalized this criterion for selecting grasp points by using 
a double-sided cone formed by the two friction cones, one for each 
edge. As shown in Fig. 2(b), this double-sided cone is formed by 
the intersection of the angle C1, which corresponds to the friction 
cone for side AB, and the angle -C2, which corresponds to a mirror 
reflection of the friction cone of angle Cz for side CD. We will refer 
to such a double-sided cone as a grasp generating cone (GGC). 

Nguyen used the fact that in order to locate two contact points for a 
force-closure grasp, all we have to do is to situate the grasp generating 
cone somewhere within the object and use for finger placement any 
of the points within the segments created by the intersection of 
the grasp generating cone with the sides AB and CD. While the 
reasoning for selecting, say, two contact points is as simple as what 
we have presented here, Nguyen went a step further and presented 
an algorithm for locating the grasp generating cone in such a manner 
as to yield the longest possible segments on the surfaces AB and 
CD in our example. This algonthm basically constructs a triangle for 
each object edge; this triangle would be generated if we scanned the 
entire space by the grasp generating cone and if we insisted that the 
bounding edges of this cone always intersect the two object edges. 
Shown in Fig. 2(c) are the two triangles, one for AB and the other for 
CD. Nguyen then cliumed that the optimum placement of the grasp 
generating cone was such that its apex lay within the intersection 
region of the triangles and presented an algorithm for finding this 
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2. Some steps of Nguyen’s algorithm. =Friction cones of E and 
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Fig. 3 .  Certain object shapes, such as the one represented by the shaded 
region here, cannot be handled by the grasp synthesis algorithm of [15]. 
A1 and A2 are the triangles generated by Nguyen’s algorithm. Since 
A1 17 A2 = 0, his algorithm cannot be used. The high-lighted portions of the 
edges labeled AB and CD are the regions of an optimum grasp discovered 
by our algorithm for this object 

optimum placement. Subsequently, he generalized the algorithm to 
the case of 3-D polyhedral objects. 

Although a pioneering contribution for its time, we have found the 
algorithm presented in [15] to be slow and cumbersome, not to speak 
of the fact that it cannot be used when the different surfaces have 
different frictional characteristics. Also, we discovered that Nguyen’s 
algorithm is incapable of handling certain kinds of polygonal shapes. 
Consider, for example, the object represented by the shaded region 
in Fig. 3. The two triangles in this case for the object edges AB and 
CD are such that they have zero intersection region, implying that 
Nguyen’s algorithm cannot be used here. However, our algorithm 
discovered an optimum grasp shown by the highlighted portions of 
the edges AB and CD. 

In the ensuing discussion, we present a simple and fast analytical 
algorithm for generating force-closure grasps for polygonal objects 
of arbitrary shape and arbitrary composition. By arbitrary composi- 
tion, we mean the edges are allowed to possess different frictional 
characteristics. We model the contact between a finger and an edge 
as a point contact with friction. This model is a conservative estimate 
for fingers made from soft materials, since a soft finger contacting 
an edge can be viewed as an edge contact with friction, which is 
equivalent to two point contacts with friction, one at each end of the 
region of contact. We then extend this algorithm to the case of 3-D 
polyhedral objects. 

11. SOME REPRESENTATIONAL ISSUES 
In Section V, we will present a new theorem and subsequently a 

new algorithm for synthesizing optimal grasps for polygonal objects. 

h t 

\ urA friction cone: c u, 

Fig. 4. Characterizing the friction cone associated with an object edge. 

Fig. 5 .  The grasp with contacts at P and Q is a force-closure grasp. 

That theorem and the algorithm utilize a specific representation 
for any pair of edges for which a force-closure grasp is desired. 
Explication of this representation is the major focus of this section. 
Other representational considerations included in this section deal 
with the notation for friction cones, notation for the grasp generating 
cone, and the representation used for the independent regions of 
contact that are obtained by intersecting a given pair of edges with 
a grasp generating cone. 

A. Representation of Friction Cones 
The friction cone associated with an object edge is characterized by 

the smallest angle, denoted $, between the edge and the boundaries 
of the friction cone; these boundaries, in turn, are represented by two 
unit direction vectors, ui and U,, which are parallel to the boundaries 
of the friction cone to one’s left and right, respectively, if one stands 
on the edge facing the material side. A pictorial illustration of these 
terms is given in Fig. 4. 

B. Representation of a Grasp Generating Cone 
A grasp generating cone is characterized by the location of its 

central vertex and by the two lines that correspond to its two defining 
edges. Therefore, a grasp generating cone, denoted C x  (v), will be 
represented by the triple: 

Cx (v) = (v, 1, r) 

where, as shown in Fig. 5, v is the location of the central vertex of 
the cone, l(v), and r(v) are the equations of the edges of Cx (v) 
that are on the left and right, respectively, when one is standing at v 
and looking outward toward the mouth of Cx (v) in either direction. 
In our analysis, the equations l(v) and r(v) will be expressed in 
parametric form. 

Here is a formal definition of a grasp generating cone [15]. 
Dejinition 1: Let CI and C, be the convexes that characterize the 

friction cones of edges el and e2, respectively, of a polygon P. For a 
given point v in the plane containing P, Cx (v) can be constructed 
from C1 and C2 as follows. 

1) Translate the convexes C1 and -C2 so that both of their 
vertices are located at v. 

2) Compute -CZ n CI to obtain the convex C. 
3) If C = 0, then C x  (v) = 0. Otherwise, Cx (v) is the double- 

sided cone obtained by extending the boundaries of the convex 
L. 

C. Representation of Edge Pairs for Grasp Analysis 
The representation that we will present in the present section for 

edge pairs may be thought of as a procedural representation, in the 
sense that each pair of edges is converted into this representation on 
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Fig. 6. The boundary of a polygon. 

the fly as the entire object is analyzed for different possible grasps. 
Prior to analysis for the discovery of force-closure grasps, the object 
is stored in the long-term memory as sequences of directed edges, 
the sequences corresponding to the outermost contour of the object 
and any holes that the object might contain. In each sequence, the 
edge directions are chosen such that the material side of the object is 
always on the left. Each edge e ,  in each sequence is represented by 
the triple (tt, ut ,  dL) needed for the parametric form 

e ;  = t, + n;u;, 0 5 a,  5 d;  

where the tail vector t , ,  the unit vector U, and the parameter 
a t ,  ranging over the interval [0, d, ] ,  have obvious meanings. To 
recapitulate a familiar property of these edges that is important to 
us, note that if we picked any two distinct edges, for some pairs 
of edges the cross-product of their respective unit vectors will be 
positive, for others it will be negative, and for yet others zero. For 
the object of Fig. 6, for example, 

U1 x > 0, U1 x U4 < 0, U1 x U8 = 0 

where the x operator denotes a 2-D cross-product’, i.e., (z2, y t )T  x 

Given an object representation as discussed above, synthesis of 
force-closure grasps consists of picking any two edges and transform- 
ing them into what we will refer to as the standard configuration. As 
the reader shall see, this transformation of representation, although 
seemingly superfluous at first sight, will permit application of the 
same grasp synthesis algorithm to every pair of edges, no matter 
what the orientation of the individual edges in the pair and regardless 
of whether both edges belong to the same sequence in the object 
representation or to two different sequences. When two edges come 
from two different sequences in the object representation, at least 
one edge is on a hole boundary. 

Given any two edges of a polygon, the point of intersection of the 
lines containing the edges is either external to the edges, as shown in 
Fig. 7(a), or internal to one of the edges, as in Fig. 7(b). We denote 
the intersection point with the symbol 0. If the intersection point is 
external to both edges, then we assign special labels, c for “close” 
and f for “far,” to the vertices of the two object edges, both labels 
with respect to the point of intersection. The vertex labels for the two 
edges in Fig. 7(a) are in accord with this convention. 

When the lines containing the two edges intersect as shown in 
Fig. 7(b), the assignment of the “close” and “far” labels to edge 
vertices becomes slightly less obvious, at least for the edge that 

’ Since we are dealing with planar objects, we may assume that the objects 
lie on the xy-plane in the 3-D Euclidean space. Therefore, the direction vectors 
of the edges can be expressed as zi + yj. Furthermore, the cross product of 
any two direction vectors, U; and uJ,  is equal to - ytzJ)k,  which 
is a vector that lies on the z-axis. Thus, for all practical purposes, we may 
consider these cross products as being scalars, which we define here to be the 
results of 2-D cross-products. 

( z j , y j ) T  = Z ~ Y ,  - ~ i z j .  

fa 

(b) 

Fig. 7. 
external to the edges. (b) Intersection internal to eb .  

Labeling the end points for two pairs of edges. (a) Intersection 

contains the intersection point. Now, the edge that does not contain 
the point of intersection is assigned the vertex labels c and f in the 
same manner as described above. Shown in Fig. 7(b) are the vertex 
labels c, and f, for edge e,. The f and c labels to the other edge 
must be such that a traversal from f to c yields a material side that 
is opposite to what it is for the other edge. In other words, if for a 
traversal from fa to c , ,  the material side is on the left, then for the 
traversal from fb to Cb the material side must be on the right. The 
vertex labels fb and c b  in Fig. 7(b) have been assigned on this basis. 

A formal definition of standard configuration is as follows. 
Definition 2-Standard Configuration: In the standard configura- 

tion, a pair of given edges will be assigned the distinguished labels 
ep and e Q .  These labels are assigned in such a manner that the 
following two conditions, one on the cross-product and the other on 
the parameterizations, are satisfied. 

1) (Cross-product condition:) 

where the unit vectors UP and UQ are given by UP = 
I C p  - fp  I and U$ =I  fQ - CQ I. 

2) (Parameterization condition:) 

e r  = fp  + a,up, 0 5 az  5 dp. 

For example, consider the standard configurations for two pairs of 
edges of the object shown in Fig. 6. First, consider the edge pair e6 

and e8. Because their cross-product e6 x e8 is positive, we set e p  t-6 

and eQ e8. The parameterizations for c6 and e8 correspond to the 
arrows shown on the two edges in Fig. 8(a). The  parameterizations 
on e p  and e$ remain the same, as shown by the arrows in Fig. 8(b). 
However, the situation involving the edges e3 and e6 is different. 
Since the cross-product e3 x e6 is negative, we set e p  e6 and 
eQ E e3. The original parameterizations for e3 and e6 are shown in 
Fig. 8(c), and the new parameterizations for the edges renamed as 
e r  and e$ in Fig. 8(d). 
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h8 eR t8 

Fig. 9. Parameters for s p  and S Q .  

fQ 

(dl 

Fig. 8. The standard configurations for two pair of edges. (a) Parame- 
terizations of e6 and e8. (b) Standard configuration of e6 and e g .  (c) 
Parameterizations of e3 and e6 , (d) Standard configuration of e3 and e6, 

D. Representation of Independent Regions of Contact 
Given two edges that have been assigned the distinguished labels 

e p  and e q ,  the independent regions of contact on the edges will be 
denoted s p  and SQ, respectively. As mentioned in the introduction 
to this section, the independent regions of contact are obtained by 
intersecting the edges e p  and eQ with the grasp generating cone 
Cx (v)  = (v ,  1, r) .  In terms of the parameterizations for e p  and 
e Q ,  the points where the GGC intersects the lines containing these 
two edges will be specified by the points {ar ,  al} and {pr, pl } ,  

respectively. Note that the subscripts 1 and r indicate an intersection 
with the lines 1 and r, respectively, that characterize the grasp 
generating cone. In keeping with the parameterizations for two edges 
in standard configuration, both a,  and cy/, ar < 0 1 ,  are measured 
from the end fp. Similarly, both pT. and pl. pT < 02, are measured 
from the end C Q .  

For example, consider the situation shown in Fig. 9. The high- 
lighted portions of e p  and e g  are the independent regions of contact 

generated by the grasp generating cone Cx (v).  The intersection 
points of Cx (v)  and the line containing e p  all lie on e p ,  so the 
independent region of contact for e p  is characterized by {cy,, cyl), 

i.e., the end points of sp are (fp + f p  + alup). However, 
the situation for eQ is different. Although the intersection of the 
line containing e Q  and r ( v )  lies on e Q ,  the intersection of the line 
containing eQ and l (v)  does not, i.e., Pl > dg,  where d g  is the 
length of the edge labeled e $ .  For this case the independent region of 
contact S Q  is parameterized by { pT, dQ } . In general, the independent 
regions of contact SP and SQ are parameterized by {MAX{O, a,}, 
MIN{dp. a / } }  and {MAX{O.P,}, MIN{~Q,P~}},  respectively. 

HI. FORCE CLOSURE IN 2-D 
Our introductory discussion on force-closure in Section I implies 

that a grasp with contact points P and Q on edges el and e2, 

respectively, is a force-closure grasp if and only if there exists a grasp 
generating cone Cx (v)  such that P E SI and Q E S Z ,  where SI and 
s2 are the portions of el and ez ,  respectively, that lie strictly inside 
of Cx (v).  More formally, a grasp has the force-closure property if 
it satisfies the following two necessary conditions, which we refer 
to as the Necessary Criteria for Force Closure. The reader should 
note that these conditions will be stated not using the distinguished 
labels e p  and eQ for the edges. That is because the two edges are 
first checked for whether or not they satisfy these conditions before 
the distinguished labels are assigned to them. 

[Necessary Criterion l:] The intersection of the friction cone 
for one edge with the mirror reflection of the friction cone for 
the other edge cannot be empty for a force-closure grasp to 
exist. This condition translates into the following constraint on 
the orientation of the edges: 

I Q  I >  $1 +$z 
where 8 = COS-’(U~ . uz) and $t is the magnitude of the 
angle between edge i and its friction cone. The unit vectors u1 
and u2 correspond to the parameterizations for the two edges 
in the definition of the object, in accordance with the object 
representation described at the beginning of Section 11-C. 
[Necessary Criterion 2:] Suppose we designate the material 
side of an edge as its “front” side. Then the existence of a 
force-closure grasp for el and e2 implies that the segment p& 
must be either in front of both edges or behind both edges, as 
depicted in Fig. 10. To check that this condition is satisfied, we 
compute the intersection of the lines containing el  and e z :  

tl  + au1 = t z  + puz 

a = (tz - t1 )xu2 

p = ( t Z - t l ) X U l *  

U l X U Z  -I U l X U Z  
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Fig. 10. 
is in front of both edges. (b) PQ is behind both edges. 

Orientations of two edges that satisfy Necessary Criterion 2. (a) p& 

If either { a  5 0 & /3 5 0} or {o! 2 d(e1 )  & 
then Criterion 2 is violated. 

2 d ( e 2 ) } ,  

IV. OPTIMAL FORCE-CLOSURE GRASPS 
As mentioned in Section 11-D, the intersections of a grasp gen- 

erating cone Cx (v) with the two edges for which a force-closure 
grasp is desired are referred to as the independent regions of contact. 
The grasp with the contact points located in the middle of 51 and 
s2 is said to be defined by s1 and s2. For finding the best force- 
closure grasp, one would want these regions to be as wide as possible. 
Wider regions would be more tolerant to errors in the placement 
of the fingers. Therefore, a grasp that maximizes the widths of the 
independent regions of contact would be considered to be optimal 
in the sense discussed here. To express this idea formally, we now 
state the following. 

Definition 3: Say we are given a set of pairs of independent 
regions of contact on edges el and e2 of a polygonal object, the 
ith pair potentially defining a grasp named Q, . Denote this set by 

s = {  91 : ( S l l , S 1 2 ) ,  Q2 : ( 5 2 1 , S 2 2 )  . ’ ” .  
gz : ( 5 , 1 , . & 2 )  ;..}. 

The optimal grasp, denoted {g* :  (s;, 5 ; ) )  must satisfy 

for all members of the set S, where d(s , )  is the length of the segment 
sz. Of all the pairs (SA, s t 2 )  that satisfy the above condition, the 
optimal grasp satisfies the following additional condition 

This definition, although cumbersome, espouses a very simple idea. 
To illustrate the underlying idea, assume that a grasp planner has 
returned a set of six possible two-fingered grasps for two designated 
surfaces of a polygonal object. We will denote each grasp by g: 
 SI), d(s2 ) ) ,  where g is a grasp label and where d ( s l )  and d(s2 )  

are the widths of the independent regions associated with the first and 
the second contacts, respectively. Assume for the sake of explanation 

c, / 

%f Q 

(b) 
Fig. 11. 
through fp. (a) I* passes through fQ. (b) r* passes through fp.  

For an optimal grasp, either 1* passes through fQ or r* passes 

that these six grasps are 

The optimality criterion will first extract from each grasp the smaller 
of the segment widths and discard all those grasps whose values are 
less than the maximum of these widths. On this basis, the criterion 
will retain only the grasps: {gl, 93, g6) .  The optimdity criterion will 
then extract from each of these grasps the larger of the segment 
values and discard all whose such values are less than the maximum. 
As a result, the grasp g,J will be declared to be the optimal for 
this case. At this juncture, we would like to point the readers to 
some other possible criteria for optimum grasp synthesis under force- 
closure. For example, Kirkpatrick et al. [17] and Ferrari and Canny 
[14] considered grasp configurations that are optimal with respect to 
applied finger forces. 

V. GENERATING OPTIMAL FORCE-CLOSURE GRASPS 
This section presents algorithms for generating an optimal force- 

closure grasp for a given pair of edges that satisfy the necessary 
criteria for force-closure (Section 111) and that are in standard con- 
figuration, i.e., they have been assigned the distinguished names, e~ 
and e Q ,  and the associated parameterizations in accordance with the 
discussion in Section 11. First, we state a property that is common 
to all optimal grasps. 

Theorem I: If the two independent regions of contact ( s g ,  5;) 
define an optimal grasp on e p  and e Q ,  then there exists a grasp 
generating cone Cx (v*) = (v*, 1*, r*) for (sg, s b )  such that either 
a ,  = 0 or 01 = dQ. 

In other words, for each optimal grasp there must exist a placement 
for the grasp generating cone Cx (v*) such that either 1* must pass 
through fQ or r* must pass through fp, as shown in Fig. 11. Relative 
to the grasp generating cone Cx (v*), there are three different 
situations for the two edges for which the independent regions of 
contact are nonempty: both edges are inside Cx (v*), one edge in 
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its entirety and a portion of the other edge lie inside Cx (v*). or a 
portion of each edge lies inside Cx (v*). More formally, we have 

Theorem 2-Grasp Construction Theorem: The two independent 
regions of contact, (s; ,  s;), define an optimal grasp2 on e p  and 
eQ if and only if there exists a grasp generating cone Cx (v*) = 
(v* , l* , r*)  for (s;. s;)  such that 

1) if s; eQ and s$ 5 e p ,  then 8, = 0. n, = d Q .  a ,  5 0, 

2) otherwise, if s;, G e p ,  then ar = 0. ai = dp, and d ( s 5 )  2 

3) otherwise, i fs ;  e Q ,  then pT = 0.31 = dQ and d ( s $ )  2 

4) otherwise, d ( s $ )  = d ( s $ )  and either 

and ai 2 d p ;  

d(s ; ) ;  

Cl(s6); 

a) a,  = 0 and pi 5 d~ or 

The proofs of both theorems are presented in the Appendix. 
Theorem 1 is subsumed by the grasp construction theorem, which is 
the basis of our algorithm for generating optimal force-closure grasps. 
The algorithm uses a hypothesize and verify approach. We start by 
supposing that 1* passes through fQ. This situation is characterized 
by /71 = d g ,  which implies that one of conditional statements (l) ,  
(3), and (4b) of Theorem 2 is satisfied. The parameters associated 
with these conditional statements are then computed to verify the 
hypothesis. If none of these three conditions is satisfied, then the 
hypothesis about the location of 1* is false. Instead, r* passes through 
fp, as shown in Fig. ll(b). This implies that a, = 0, so either of 
the conditional statements (2) and (4a) is satisfied. The algorithm for 
generating the independent regions of contact that defines an optimal 
grasp is summarized below. 
Algorithm 1-(Optimal Grasp Construction Algorithm): 

The independent regions of contact that define an optimal grasp on 

1) Apply the two necessary criteria for force closure presented in 
Section 111. If either criterion is violated, then stop. There is no 
force-closure grasp for this pair of edges. 

2) Convert the edges to their standard configuration using the 
algorithm presented in Section 11-C and assign to them the 
distinguished labels e p  and e Q ,  together with the associated 
parameterizations. 

3) By the method to be presented in Section V-A, find the unit 
vectors, ur and ul, that characterize r* and 1*, the two 
bounding lines for the optimal placement of the GGC for the 
given e p  and e g .  

4) Using the procedure of Section V-B, check for the existence 
of a grasp generating cone for the edges e p  and e Q .  

5) Assume that 1* passes through fQ and apply the algorithm 
which we will describe in Section V-C to verify this hypothesis. 
The verification process will generate the desired independent 
regions of contact if the hypothesis is valid. 

6) If the above hypothesis is false, then r* passes through fp. The 
algorithm which we will present in Section V-D can be used 
to generate the independent regions of contact for the optimal 
grasp. 

two given edges can be constructed as follows. 

In the case of  parallel edges, generally there is no unique optimal grasp. 
In fact, there is potentially an infinite number of solutions that are optimal. 
The entire solution space is specified by the intersection of the projection of  
one edge onto the other. 

-U I 
\ 

fQ 
(b) 

Fig. 12. The vectors u1 and ur for the two edges ep and eq. (a) 
Intersecting C p  and -CQ . (b) U, and ul relative to ep and eQ, 

The first two steps of the algorithm have already been described 
in detail; the remaining steps of the algorithm will be described in 
order in the remainder of this section. 

A. Finding u7 and U, Associated with r* and 1* 
The bounding lines r* and 1* of the optimal placement of the GGC 

for the given e p  and e Q ,  must obviously come from the friction 
cones for the two edges. In keeping with the notation shown in 
Section 11-A, the two unit vectors that characterize the boundaries of 
the friction cone CP for e p  will be designated by uip and urp. The 
two corresponding unit vectors for the friction cone CQ associated 
with eQ will be designated U[& and U ~ Q .  

In accordance with our discussion in Section 11-B, the values of ur 
and u1 are obtained by computing the intersection of Cp and -CO. 
Clearly, the value of uT is given by - U ~ Q  if -U,& lies within Cp. 
Otherwise, it is given by U,P. Similarly, the value of UI is given by 
either -UlQ or ulp, depending on whether -U1Q lies within C p  or 
not. A pictorial illustration of this is given in Fig. 12. 

Formally, the following two equations can be used to find ur and 
U / :  

uI = { -WQ if U1Q x ulP < o 
u i p  otherwise 

and 
-UrQ if uTp x U ~ Q  < 0 

= { u,p otherwise. 

For example, consider the edges e p  and eQ shown in Fig. 12. 
The assignments ui - U ~ Q  and U, u,p are made because 
U ~ Q  x u i p  < 0 and u,p x U.Q > 0, respectively. 

B. Checking for the Existence of a Grasp Generating Cone 
Once ui and ur are determined, it is possible to check if there 

exists a grasp generating cone that generates nonempty independent 
regions of contact. For two edges that satisfy the necessary criteria 
for force closure and that are in standard configuration, there are two 
situations in which the edges have no force-closure grasps, as shown 
in Fig. 13. The first case is shown in Fig. 13(a), where the right 
boundary r of the grasp generating cone passes through fQ, but the 
intersection of the grasp generating cone with the edge e p  is empty. 
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(b) 

Fig. 13. Configurations with no force-closure grasps. (a) Case where 
CY, 2 d p .  (b) Case where Ai 5 0. 

For this case, the intersection of the line r with the line containing 
e p  is closer to 0 than cp is, where 0 is the intersection of the lines 
containing e p  and e ~ .  Formally, this is represented by the predicate 

NO-GRASP1: ar 2 d p  

where 

(fQ - fP) x u r  * cy, = 
U P  x U T  

The other case is depicted in Fig. 13(b). In this case, the left 
boundary 1 of the grasp generating cone passes through fp, but the 
intersection of the cone with the edge eQ is empty. For this situation, 
the intersection of the line 1 with the line containing eg  is closer to 
0 than CQ is, where 0 is the intersection of the lines containing e p  
and e y .  Formally, this is captured by the predicate 

NO-GRASP2: $1 5 0 

where 

If either NO-GRASP1 or NO-GRASP2 is true, then there is no force- 
closure grasp for the two edges. Otherwise, we use a hypothesize and 
verify method to generate an optimal grasp for the given edge-pair. 

c. 1* Passes Through fQ 

We start by assuming 1* passes through fg. This implies that one 
of the conditional statements labeled (l), (3), and (4b) in the grasp 
construction theorem (Theorem 2) is satisfied. Then, we verify the 
validity of this supposition. If it is valid, then the verification process 
generates the optimal grasp. Otherwise, the algorithm to be described 
in Section V-D is applied to generate the optimal grasp. 

Applying Conditions ( 1 )  and (3) of the Theorem: We first con- 
sider the case for which either condition (1)  or (3) is satisfied, i.e., 
edge e g  is entirely within Cx(v*)  as shown in Fig. 14. To check 
if either of these two conditions is satisfied, we need to compute 
the parameters a i  and c y v .  

The values of cy! and ar are obtained by computing the intersection 
point for 1* with c p  and the intersection point of r* with e p ,  

r* 

(b) 

Fig. 14. 
(3) is satisfied. 

respectively: 

5 6  is inside C x  (v*). (a) Condition (1) is satisfied. (b) Condition 

If the following predicate is satisfied, then condition (1)  of Theorem 
2 applies: 

COND-1-SATISFIED: ~r 5 O&a i  2 d p .  

In this case, the optimal grasp is defined by A $  e p  and s; e g .  
Otherwise, condition (1)  is not satisfied, so we proceed to check for 
whether condition (3) is met. 

Condition (3) is satisfied if the following predicate is true: 

COND-3-SATISFIED: MIN{dp, ai} - MAX{O, a.} 2 d q .  

The MAX and MIN operators are needed to handle the cases 
in which CP or fp  lie inside of the grasp generating cone. If 
COND-3-SATISFIED is true, the end points of s g  are specified 
by {MIN(dp. ai} ,  MAX(O.a,}}. Otherwise, condition (3) is not 
satisfied. In this case, we check to see if condition (4b) is satisfied. 

Applying Condition (4b) of Theorem 2: Suppose condition (4b) 
applies, then neither edge will be entirely within the optimal 
placement of the grasp generating cone. As shown in Fig. 15, two 
different situations correspond to this case-cp is either outside of 
Cx (v"), as shown in Fig. 15(a), or it is within C x  (v*), as shown 
in Fig. 15(b). 

In both of the situations depicted in Fig. 15(a) and (b), we have 
d( s$)  = d(  3;). For the former situation, we express the intersection 
points of r* with eg  and e p  as fQ + p r i u ~  and f p  + ( 0 1  +p1-~)up,  
respectively. Thus, we have 

fQ + P T I U Q  + p u r  = fP + (a1 + or1)UP 

* b r l ( U P  - UQ) fQ - fP - O l u P  + pur 

. (3)  
(fQ - fr - a1up) x ur 

(UP - UQ) x U 7  

* Pr1 = 

The value of cy1 is given by (1). 
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r* 

Fig. 16. A situation in which condition (2) applies. 

(b) 

Fig. 15. 
is outside of Cx (v*). (b) c y  is within Cx (v*). 

Situations in which condition (4b) of the theorem applies. (a) c p  

At this point, we can verify the hypothesis that condition (4b) in 
Theorem 2 is satisfied. The predicate 

COND4B-SATISFIED: + 2 0 

evaluates to true if condition (4b) of the theorem is satisfied. To 
check which of the two different situations discussed above is true, 
we compute the predicate 

COND-4B-1-SATISFIED: CU, 5 dp. 

If COND-4B-1-SATISFIED is true, then the situation is as depicted in 
Fig. 15(a). In this case, .s$ and s$ are characterized by the parameters 
{w + prl: a i }  and { d ~  + ,/%I, d ~ } ,  respectively. 

Otherwise, the situation is as depicted in Fig. 15(b). For this 
case, we can express the intersection of r* with eQ and e p  as 
{fQ + ,!3,zuy} and { C I ~  + &zup}, respectively. Thus, we have 

fQ + ijv2uQ + PUT zz C P  + pr2uP 

(4) 

In this case, s$ and s;d are characterized by { d p  + $2. d p }  and 
{ d ~  + .Orz, d ~ } ,  respectively. 

This completes our derivation of the optimal grasp for the case 
where 1* passes through fQ. The following procedure summarizes 
our discussion in this section. 

Algorithm 2--(1* Algorithm): The algorithm for handling the case 
in which 1* passes through fQ is as follows: 

1) Compute a( and ar using (1) and (2),  respectively. 
They define the predicates COND-1-SATISFIED and 
COND-3-SATISFIED. 

2) If COND-1-SATISFIED is true, then the conditional statement 
(1) of Theorem 2 applies. The optimal grasp is defined by 
.T; 5 e r  and .s$ 5 e Q .  

3) Otherwise, if COND-3-SATISFIED is true, then the conditional 
statement (3) of Theorem 2 applies. The optimal grasp is 

defined by 

s; : { MAX{O.a,},MIN{ni,dp},} 
s;? : { 0 , d ~  }. 

4) Otherwise, compute the value of the predicate COND-4B- 
SATISFED. If it is false, then the hypothesis that 1* passes 
through fQ is invalid. In this case, the optimal grasp is 
determined using the algorithm described in the next section. 
Otherwise, if the predicate COND4B-1-SATISFIED evaluates 
to true, then the optimal grasp is defined by cy1 and p.~, i.e., 

5;. : { c y 1  + Prl, ai }  { s; : { d Q  + Pri; d Q }  

where dr l  is given by (3). Otherwise, the optimal grasp is 
defined by 

s 2  : { d p  + P r 2 ,  d P }  { 86 : { d Q  + P r 2 ,  d Q )  

where 3 r 2  is given by (4). 

D. Finding Optimal Grasp Given r* 

In this section, we will describe the method for determining an 
optimal grasp for the case in which r* is known, i.e., r* passes 
through fp, or 

r* = fp + pu.. 

The algorithm described in this section is invoked when the predi- 
cates COND-1-SATISFIED, COND-3-SATISFIED, and COND-4B- 
SATISFIED all evaluate to false. In this case, either of the conditional 
statements (2) and (4a) in Theorem 2 applies. Again, a hypothesize 
and verify strategy is used for grasp synthesis. We first assume that 
the conditional statement (2) applies and then verify that this is true. 
If this hypothesis is false, then the conditional statement (4a) of the 
theorem is satisfied. All that remains is to invoke the appropriate 
method to generate the grasp. 

Applying Condition (2) ofthe Theorem: First of all, let us suppose 
that condition (2) is satisified. Fig. 16 shows a situation that satisfies 
this condition. To verify our supposition, we compute the values of 
?r and 01. 

The value of p7. characterizes the intersection of r* and e Q ,  and 
may be computed by the following: 

fP + PUT = C Q  + P r U Q  

(fF - C Q )  x U T  

U& x UT 
( 5 )  =+- pr  = 

The value of 41 can be computed in a similar manner: 

cr  + Xui = C Q  + ,/AuQ 
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(b) 

Fig. 17. 
(a) CQ is outside of Cx (v*). (b) CQ is within Cx (v*). 

The situations in which condition (4a) of the theorem is satisfied. 

The hypothesis is valid if the following predicate is true: 

COND-2-SATISFIED: MIN{ d ~ :  $/} - MAX{ 0; pr} 2 dp, 
In this case, the end points of s; are specified by 
{MAX{P,.; O)).MIN{/3, d g } } .  Otherwise, condition (4a) of 
Theorem 2 is satisfied. 

Applying Condition (4a) of the Theorem: Since condition (4a) of 
the theorem is satisifed, neither edge will be entirely within the 
optimal grasp generating cone Cx (v*). There are two different 
situations for this case, as shown in Fig. 17, with CQ within Cx (v*) 
for Fig. 17(a) and c g  outside of Cx (v*) for Fig. 17(b). The former 
situation is characterized by the predicate 

COND-4A-1-SATISFIED: pT 2 0 

where /3r is given by (5) .  If COND-4A-LSATISFIED evaluates to 
false, then the latter situation is true. 

Suppose COND-4A-1-SATISFIED evaluates to true, i.e., the sit- 
uation is as depicted in Fig. 17(a). Since r* passes through fp and 
d(s> )  = d(sG) ,  we can express the intersection of 1* with e p  and 
e Q ,  respectively, as {ffJ+ailup} and { ~ ~ + ( , O . + a l ~ ) u ~ } . T h u s ,  
we have 

fr + Q I ~ U P  + = C Q  + (& + W I ) U Q  

3 a11 ( U p  - U Q )  = CQ -- fp + PTUQ - XU1 

(7) 
(CQ - fP + P r U Q )  x U1 

( U P  - UQ) x U1 
* Q/1 = ’ 

If COND-4A-1-SATISFIED is false, then the situation is as shown 
by Fig. 17(b). For this case, we express the intersection of 1* with e p  
and eg  as fr + 0 1 2 ~ ~  and CQ + Q ~ ~ U Q ,  respectively. Thus, we have 

fP + Q12UP + XU1 = CQ + a 1 2 u Q  

Algorithm 3-(r* Algorithm): The algorithm for handling the 
cases in which r* passes through f~ is as follows. 

Compute 0, and $1 using Equations (5) and (6), respectively. 
They define the predicate COND-ZSATISFIED. 
If COND-ZSATISFIED is true, then the optimal grasp is 
defined by 

s*P: { O , d p }  { s; : {MAX{P,. O},MIN{~Q, &}>.  

Otherwise, condition (4a) of the theorem is satisfied. If the 
predicate COND4A- 1-SATISFIED is true, then the optimal 
grasp is defined by 

s;. : {O.a11}  { s; : {& .A  + W l }  

c s; : { O , ~ / L }  

where 0111 is given by (7). Otherwise, the optimal grasp is 
defined by 

5;. : ( 0 . 0 1 1 2 )  

where a 1 2  is given by (8). 

VI. GRASP GENERATION ALGORITHM 
An optimal grasp for a polygon is the grasp that tolerates the largest 

positioning errors for each fingertips at the contact points. To find this 
grasp, exhaustively pair all the edges of the polygon and apply the 
Grasp Construction Algorithm described above. The optimal grasp 
for the polygon is then defined by the independent regions of contact 
that has the largest minimal length. A straightforward approach can 
generate the optimal force-closure grasp for the object in O( n2 )  time, 
since finding the set of independent regions of contact for a polygonal 

object with n edges requires the enumeration of 

and so costs O ( n 2 )  time. 

VII. FORCE-CLOSURE GRASPS IN 3-D 
In order to generate force-closure grasps with two contact points 

for three-dimensional polyhedral objects, we will assume the contacts 
to be soft-finger contacts. With this assumption, the properties of a 
force-closure grasp is similar to the case for 2-D polygonal objects. 

Theorem 3: The grasp with two soft-finger contacts at P and Q 
is a force-closure grasp if and only if the segment lies strictly 
within the friction cones at P and Q [lS]. 

The necessary criteria for force closure, with slight modifications, 
also hold for the 3-D case. Instead of grasping two edges, the grasp 
now contacts two faces of the polyhedral. The necessary criteria for 
force closure for the 3-D case are as follows. 

1) The angle between the outward normals of the two faces must 
satisfy 

I 0 I> $1 + 11’2 

where 0 = cosCl(nl .n2) and qt is the magnitude of the angle 
between face z and the boundary of its friction cone. 

2) If the material side of a face is considered its “front,” then there 
must exist two points, one on each face, such that the segment 
connecting these two points is either in front of both faces or 
behind both faces. 

If any pair of faces fails to satisfy any of these two conditions, 
then it would not have any force-closure grasp. 

The problem of finding the optimal force-closure grasp for a pair 
of faces that satisfy the necessary criteria for force closure in 3- 

@) D involves intersecting the grasp generating cone, which now is 
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formed from the intersection of two three-dimensional cones, with 
two polygons in 3-D space such that the resulting areas of intersection 
are optimal. This is extremely difficult to compute for faces which are 
polygons of arbitrary convexity in three-dimensional space. However, 
an approximate solution can be obtained easily. 

For a pair of faces that satisfy the necessary criteria for force 
closure in 3-D, the algorithm for the 2-D case can be used to find 
force-closure grasps for these two faces. To simplify the calculation, 
we represent each nonconvex face with a set of maximal convexes 
that spans the face. The algorithm for finding a force-closure grasp 
for two faces PI and p2 is simple and straightforward. 

Rotate the face p2 to get a new face p 2 ,  which is coplanar 
with the face pl ,  i.e., 

P 2  = rotI(0:pz) 

where 1 is the line obtained by intersecting the planes containing 
PI and PZ. 
Compute the intersections of p 2  and p1. Now, find the two 
points of the resultant polygon that have the longest distance 
between any pair of points of the polygon. Since both p a  and 
pl are convex, their intersection is also convex. Therefore, the 
longest distance is always between two nonadjacent vertices. 
Denote these two points by A1 and B1. 
Find the corresponding points of (Al .  B I )  in face p ~ .  Let 
(A2,Bz) be such points, i.e., A2 = rotl(-8. AI)  and B2 = 
rot]( -8, BI).  These four points will give two segments, AIBl  
and A ~ B z ,  that lie in the interior of the faces p1 and pZ, 
respectively. 
Use the algorithm for the 2-D case on these two segments. The 
grasp defined on these two segments is also a force-closure 
grasp on the two faces. Recall that the equations for computing 
the parameters of the independent regions of contact tumed out 
to be ratios of two cross-products, i.e., they had the form 

a x b  
c x d '  

~ 

~ 

In the 3-D case, the x operator is the usual cross-product in 
3-D Euclidean space. If we were to rederive the formulas for 
the various parameters, the final results would be ratios of two 
dot product terms: 

(a x b ) .  (c x di 

Fig. 18. Translating Cx (.U) to C x ( ( a  + 6)u). 

where U is some convex sum of -up and UQ; s,: and sz are the 
portions of edge s E {P.  Q } ,  that lies inside the grasp generating 
cones Cx ( au )  and Cx ( (a  + 6)u), respectively. The constant 6 is 
known as the translation constant. 

Prooj? Without loss of generality, let's assume that the intersec- 
tion point 0 of Zp and ZQ is at the origin, as illustrated in Fig. 18. 
Thus, E'p and ZQ can be represented by the sets 

respectively. We can also represent the boundaries of the grasp 
generating cone Cx (.U) by the following two equations: 

1 = au  + xu1 
r = a u  + pu. 

where ut and ur are some unit vectors lying on 1 and r, respectively. 
Now, we can express the length of s r  as f(a),  a function of a. 

The intersection between 1 and e'p is expressed by the relationship 

au  + Xpul = aiup 

au  x U1 

U P  x U1 
* a[ = -. 

Similarly, we obtain the intersection between r and e'p: 

a u  x u7. 
a!? = ~ 

U P  x U, 

( C  x d)  . ( C  x d) 

VIII. CONCLUSION 
We have formulated and proved a new theorem that resulted in an 

efficient algorithm for computing two-fingered force-closure grasps 
for arbitrary polygonal objects. Besides being simple, efficient and 
elegant, it is the only algorithm that can generate force-closure grasps 
consisting of independent regions of contact for arbitrary polygons 
of arbitrary material property. 

APPENDIX 
We first present a simple lemma. 
Lemma 1-Translational Lemma: For two semiinfinite edges Zp 

and .'Q that are in standard configuration and that satisfy the necessary 
criteria for force closure, the independent regions of contact generated 
by any two of grasp generating cones CX(au)  = {au.l.r} and 
Cx ( (aS6)u)  = {(a+S)u, l', r'} satisfy the following relationships: 

1) if 5 > 0, then d ( s p )  < d ( s $ )  and ~ ( s Q )  < d ( s & ) ;  
2) if 5 < 0, then d ( s p )  > d ( s $ )  and d ( s ~ )  > d ( s & )  

Therefore, the lengths of the segments s p  and S: are 

and 

respectively. Since f ( 6 )  > 0 if 6 > 0 and f ( 6 )  < 0 if 6 < 0, we have 

d ( s $ )  > d(sp ) i fb  > o 

d ( s $ )  < d(sp ) i fb  < 0 .  

Q.E.D. 
We can use similar arguments to establish the displacement relation- 
ship between s& and S Q .  

Lemma 1 also holds for the case for two edges of finite length. 
The only difference is that for the cases where or < 0 or Dl > dp, a 
positive translation will cause a decrease in length, while a negative 
translation (until either a,  = 0 or /3l = dp) will cause an increase 
in length. 

i 
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0 -  ._-- 

Fig. 19. A situation in which cx  (v*) intersects neither fp nor fQ. 

Proof for Theorem 1: Theorem: If the two independent regions of 
contact (s;. s;) define an optimal grasp on e r  and eQ,  then there 
must exist a grasp generating cone Cx = {v*, 1* , r* } for ( s g ,  s;) 
such that either a,  = 0 or 81 = dQ. 

Proof: Theorem 1 is  really a corollary of the Translation 
Lemma. Suppose that (sg. s;) defines an optimal grasp, but it 
has no grasp generating cone such that either a,  = 0 or pi = dQ. 

Let Cx(v*) = {v*, I* , r* } be a grasp generating cone for 
(s;,.~;). Then there are two possibilities: ar < 0 or cvT > 0. 
Suppose the former case is true. Then the independent regions of 
contact ( 5 ~ .  S Q )  generated by the grasp generating cone 

Cx (v) = {v. I*, r = fp + p p T }  

satisfy 

d ( S P )  = d ( & )  
d ( s Q )  2 d(s; ) .  
=+e 

If the other situation is true, i.e., ar > 0, then there are two cases 
to consider: 01 < d p  or pi > d p .  We can use similar arguments 
to those given above to show that the latter case cannot correspond 
to an optimal grasp. So we only need to consider the case in which 
cy, > 0 and < d p .  For this situation, we can construct another 
grasp generating cone Cx (v) = {v, 1. r} by translating the vertex 
of Cx (v*) by a small increment 6 along the line away from 0 
such that 1 and r intersects e p  and e Q ,  respectively: 

v = v *  + 5  I v* - 0 I,ar >a: > 0 c p i  < p: < d p  

where a$ and @ parameterize the intersections of r and e p  and 
1 and e Q ,  respectively. A pictorial illustration of this is given in 
Fig. 19. By the Translation Lemma: 

d(SP) > d(s;)  
d ( 5 Q )  > d(s ; ) .  
*e 

Prooffor Theorem 2: We will now re-state the Grasp Construction 
Theorem and present its proof. 

Theorem: For any two edges that are in standard configuration 
and that satisfy the necessary criteria for force closure, the two 
independent regions of contact, (s;, sb),  define an optimal grasp 
on ep and eQ if and only if there exists a grasp generating cone 
Cx(v*) = (v*,l*,r*) for (s;, s;) such that 

1) if 5 6  E e q  and S; = d Q , p r  = (),cy, 5 0, 

2) otherwise, if s;. e p ,  then cy, = 0 , a i  = d p ,  and d ( s 6 )  2 

3) otherwise, if 5 5  c e q ,  then Bi = d Q , &  = 0 and d ( s $ )  2 

e r ,  then 
and ai 2 clp; 

d ( s g ) ;  

d ( s 5 ) ;  

0 

Fig. 20. 

(h) 

Some nonoptimal grasps that can be improved. (a) Case where - -  
s g  E e p ,  pi 2 dQ. (h) sg 3 ep, pi < dq. 

4) otherwise, d(s ; )  = cl(s5) and either 

a) cyr = 0 and 01 5 dQ or 

b) 01 = d~ and cyr 2 0. 

Prooj By Theorem 1 ,  either ar = 0 or pi = dQ. The “if’ parts 
of the conditions corresponds to the different situations for which 
one of these criteria is satisfied, so that each case can be considered 
separately. 

Condition (1) corresponds to the case where both of the edges 
lie within Cx (v*). Obviously, if (s;, s;) satisfy this condition, it 
defines an optimal grasp. The converse is also obvious. 

Conditions (2) and (3) both correspond to the situation in which 
one edge is within Cx (vi) but only a portion of the other edge is 
within Cx (v*). The converse of these two conditions are obvious. 
We will prove the forward implication for condition (2); the same 
arguments can be used to prove the case involving condition (3). 
Condition (2) applies to the situation where 5 ;  = ep and S; # e y .  

If (s;, s;) defines can optimal grasp on e r  and eQ and s; = e r ,  
then there must exist a grasp generating cone such that 

cyr = 0,cyl = dp. 

Let Cx = {l*,r*} be a generating cone of (S;,S&), but d ( s 6 )  < 
d ( s $ ) .  There are two cases to consider: either pi 2 dQ or < dQ. 
Suppose pi 2 dQ, as shown in Fig. 20(a). Since s; # e Q ,  it 
follows that pr > 0. Now, we construct the grasp generating cone 
Cx = {l*,r} such that 

d ( s p )  = d(s ; )  + t 
for some t > 0, i.e., 

r = (fr + [ai - d ( s 5 )  + €]UP) + p ~ .  

If p denotes the characterizing parameter of the intersection of the 
line r with e Q ,  then PT > p. Hence, we have 

~ ( S Q )  = d ( s 6 )  + (& - M={O,P}) 
> d ( s 6 ) .  
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’* G ,  > 
\ \ ,,,y 

(b) 

Fig. 21. Optimal grasps with fQ lying on l*. 

+ MIN(d(sp) .d(sg)} > MIN{d(sg).d(sG)}. 
+e 

By similar arguments, we can show that if ..3/ < d g ,  then the 
grasp defined by (s;: s k )  is not optimal. A pictorial illustration for 
this case is given by Fig. 20(b). 

Condition (4) corresponds to the case where a portion of each edge 
lie inside of C x  (v*). The two configurations associated with this case 
correspond to whether r* passes through fp or 1” passes through 
fQ (by Theorem 1). Let’s consider the situation for the conditional 
statement (4b); the same arguments can be used to prove the case for 
the conditional statement (44. 

(*) Suppose d ( s $ )  = d ( s ; ) ,  but there does not exist a grasp 
generating cone such that the conditional statement (4b) is satisfied. 
Since s;. # e r  and s; # e g ,  and 1* passes through fQ, we have 

/3i = d~ and j?T > 0 

If ar < 0, then 

C x  (v) = {v, 1*, r = f~ + $pLT} 

d ( S P )  = d ( s ; )  

4 S Q )  > 4 s ; )  

satisfies 

but this contradicts our assumption that the grasp defined by (s;. s t )  
is optimal. 
(e) Suppose that (sb; s b )  satisfies the conditional statement 

(4b) as depicted by Fig 21. Now, consider the independent regions 

of contact, (sp. S Q ) ,  produced by another grasp generating cone of 
form Cx = {l*. r}. Denote the intersections of e~ with r* and r 
as .$7 and ,3r, respectively. Then 

d ( s $ )  > ~ ( s P )  if /A < /3: i d ( s & )  > ~ ( s Q )  if ,% > /3: 
Thus 

MIl-{d(s;>). d ( s & ) }  2 MIN{d(sp), d ( S Q ) } .  

Similarly, the independent regions of contact, ( S P ,  SQ), generated 
by any grasp generating cone of the form C x  = (1, r*} satisfy 

1 IIX { d ( s 1. d ( s b  ) } 2 MIN { d (s p ) d ( S Q  ) } . 

If C x  is the set of all such grasp generating cones described above, 
then all other independent regions of contact on e r  and eQ can be 
obtained by translating a cone, C (v) E C , along the segment E 
toward 0. Therefore, the translation constant is negative. Apply the 
Translation Lemma, we get 

! J I S ( ~ ( ~ > ) >  d ( ~ ; ) }  2 M I N { ~ ( s ~ ) , ~ ( s Q ) }  

for  all (sp. SQ ) of e p and e y  . Hence, the grasp defined by (sg , s b )  
is optimal. Q.E.D. 
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